
Journal of Cloud Computing:
Advances, Systems and Applications

Silva et al. Journal of Cloud Computing: Advances, Systems
and Applications (2021) 10:38
https://doi.org/10.1186/s13677-021-00251-9

RESEARCH Open Access

Energy-aware adaptive offloading of
soft real-time jobs in mobile edge clouds
Joaquim Silva*, Eduardo R. B. Marques* , Luís M.B. Lopes* and Fernando Silva*

Abstract

We present a model for measuring the impact of offloading soft real-time jobs over multi-tier cloud infrastructures.
The jobs originate in mobile devices and offloading strategies may choose to execute them locally, in neighbouring
devices, in cloudlets or in infrastructure cloud servers. Within this specification, we put forward several such offloading
strategies characterised by their differential use of the cloud tiers with the goal of optimizing execution time and/or
energy consumption. We implement an instance of the model using JAY, a software framework for adaptive
computation offloading in hybrid edge clouds. The framework is modular and allows the model and the offloading
strategies to be seamlessly implemented while providing the tools to make informed runtime offloading decisions
based on system feedback, namely through a built-in system profiler that gathers runtime information such as
workload, energy consumption and available bandwidth for every participating device or server. The results show that
offloading strategies sensitive to runtime conditions can effectively and dynamically adjust their offloading decisions
to produce significant gains in terms of their target optimization functions, namely, execution time, energy
consumption and fulfilment of job deadlines.

Keywords: Computation offloading, Energy efficiency, Mobile edge clouds

Introduction
The last decade witnessed an impressive evolution in
the storage and processing capabilities of mobile devices.
Besides traditional processing cores, these microproces-
sors feature multiple GPU cores and also so called neural
cores optimized for machine learning applications such
as deep-learning and have reached performance levels
comparable to laptop and some desktop analogs [1].
Despite these advancements, some computational jobs

are too demanding for mobile devices. Mobile cloud
computing [2] has traditionally tackled this problem by
offloading computation and data generated by mobile
device applications to cloud infrastructures. This move
spares the battery in the devices and, in principle, speeds-
up computation as the high-availability, elastic, cloud

*Correspondence: joaquim.silva@fc.up.pt; ebmarques@fc.up.pt;
lmlopes@fc.up.pt; fmsilva@fc.up.pt
CRACS/INESC TEC & Department of Computer Science, Faculty of Sciences,
University of Porto, Porto, Portugal

infra-structures can adapt to the computing and storage
demands of the jobs spawned by the devices.
This offloading is, however, not without problems.

Manymobile applications involve the processing of locally
produced data (e.g., video) and uploading such large vol-
umes of data to cloud infra-structures is time consuming
and may not even be feasible from a QoS point of view
due to the high communication latencies involved. Also,
from an energy point of view, offloading jobs and/or data
to cloud infrastructures is globally highly inefficient.
Mobile edge clouds [3] and cloudlets [4], on the other

hand, try to harness the resources of local networks of
devices and/or small servers, using device-to-device com-
munication technologies such as Wifi and Wifi-Direct, at
the edge to perform demanding computational jobs tak-
ing advantage of data locality to minimize latency and
global energy consumption. In this approach, a given job
is offloaded to one mobile device or a cloudlet in the
network vicinity of the originating mobile device.

© The Author(s). 2021Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-021-00251-9&domain=pdf
http://orcid.org/0000-0002-6980-6868
mailto: joaquim.silva@fc.up.pt
mailto: ebmarques@fc.up.pt
mailto: lmlopes@fc.up.pt
mailto: fmsilva@fc.up.pt
http://creativecommons.org/licenses/by/4.0/

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 2 of 21

The two approaches can be unified in a single, multi-
tier architecture (Fig. 1), with: (a) local networks of devices
(Tier 1), with less capable processing but fast and privi-
leged access to raw data; (b) cloudlets directly accessible
from the devices, with more processing muscle and stor-
age (Tier 2), and; (c) traditional cloud infrastructures,
featuring the highest performance and storage resources
(Tier 3).
Given this architecture and a mobile application that

spawns computational jobs, we consider the problem of
offloading these jobs over the tiers in such a way to opti-
mize runtime metrics such as: total execution time, global
energy consumption, fulfillment of QoS requirements. In
general, the decision to offload (or not) a job is sup-
ported by knowledge of observables as reported from the
participating devices and servers or inferred from data
exchanges, namely: available network bandwidth, compu-
tational load at each device and server, the battery status
of the devices.
We previously introduced JAY [5] as tool to instanti-

ate and experiment with different such cloud configu-
rations, offloading strategies and mobile applications. In
that paper we evaluated only latency-aware offloading
strategies in several cloud configurations, from mobile
edge clouds formed by Android devices up to 3-tier hybrid
clouds, i.e., including also cloudlets and infrastructure
cloud server instances.
In this paper we put forward a unifying model for

this architecture upon which we can precisely specify the
infra-structure parameters (e.g., cloud tiers and topology),

Fig. 1 A hybrid cloud environment

the application parameters (the rate and size distribution
of jobs, offloading strategy, job deadlines), the observables
(as described above) and the runtime metric function to
optimize. We then use JAY with the same object detection
application as in [5] but with different model instances
that include new QoS restrictions (jobs have deadlines)
and different optimization functions such as total exe-
cution time, per device energy consumption and, total
energy consumption. The cloud configurations we exper-
iment with in this paper do not include tier-3 centralised
cloud servers (e.g., Google Cloud, Amazon Web Services,
or Microsoft Azure), as we would not be able to directly
measure vital runtime observables such as energy con-
sumption or at least infer them with enough confidence
from the underlying virtualisation infrastructure.
Thus, the main contributions of this paper are the fol-

lowing:

1. a model that specifies computational scenarios over
hybrid edge/cloudlet/cloud topologies;

2. a complete JAY instance of the model that enables
the execution of mobile applications over such network
topologies through the definition of offloading strate-
gies and optimization functions coupled with observ-
ables gathered at runtime, and;

3. a case-study with an object detection application that
generates jobs with deadlines while trying to optimize
execution time, energy consumption or both.

JAY and the model implementation presented here are
available at Github1.
The remainder of this paper is structured as follows.

Related work is discussed in “Related work” section.
“System model” section provides a description of
the model we use to describe the aforementioned
hybrid architecture and the computations therein. “The
JAY framework” section describes the JAY framework.
“Experimental setup” section presents the scenarios
we model in this paper and the experimental setup.
“Evaluation” section presents the results from the
experiments and discusses their implications. Finally,
“Conclusion” section ends the paper with concluding
remarks and a discussion of future work.

Related work
The general problem of computation offloading in mobile
edge clouds received considerable attention in the last
two decades, as documented in recent surveys [6–8].
Our discussion of related work focuses on software sys-
tems that, like JAY, conduct adaptive offloading, and in
particular those that implement energy-aware offloading
policies.

1https://github.com/jqmmes/Jay

https://github.com/jqmmes/Jay

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 3 of 21

A number of systems focuses on semi-automated
offloading to an edge cloud or centralised cloud infras-
tructure, without collaborative offloading between mobile
devices, in line with the mobile cloud computing
paradigm [2]. In some systems of this kind, e.g., Cuckoo
[9] or COSMOS [10], offloading policies merely seek to
minimize latency without any energy awareness, and gains
in energy consumption at the mobile device level are at
most a by-product of offloading computation. A num-
ber of other systems support energy-aware offloading
strategies supported by runtime profiling, like AIOLOS
[11], MAUI [12], Phone2Cloud [13], ThinkAir [14], or
ULOOF [15].
In the system model of all the former systems, energy

consumption accounts only for the (local) mobile device
that hosts applications, typically the energy consumed in
network transmission during offloading, rather than also
the upper processing tiers in network and computation
terms like JAY, which may for instance also be battery-
constrained (e.g., [16, 17]) and in any case may have
restrictions regarding energy consumption (e.g., monetary
costs).
In any case, the offloading policies of the systems still

reflect a concern for energy consumption, possibly in
conjunction with latency: AIOLOS allows one of two
configurable policies that either optimize for latency or
energy; MAIUI minimizes energy consumption subject
to a latency threshold constraint; Phone2Cloud offloads
jobs whenever the estimated latency for local execution
exceeds a configurable threshold, or when it perceive
lower energy consumption by the mobile device is attain-
able; ThinkAir implements offloading policies that can
seek to minimize only one of latency or energy consump-
tion, both latency and energy consumption (offloading
must pay off in both dimensions compared to local execu-
tion), and also optionally constrained by monetary posts
due to the use of cloud services and; finally, ULOOF eval-
uates local and remote execution cost functions that are
parametrised by a weight factor that can be used to attain
a balance between latency and energy consumption.
Other types of systems enable collaborative offload-

ing among mobile devices forming an edge cloud, and,
in some cases, also upper cloud tiers. There are systems
of this kind which merely strive to optimize latency like
FemtoClouds [18], Honeybee [19], Oregano [20], and P3-
Mobile [21], while others are explicitly energy-aware in
diverse manners, discussed next.
CWC [22] is a system for volunteer computing, where

jobs are disseminated to a pool of mobile devices. To pre-
vent battery consumption and intrusive user experience,
jobs execute only when the devices are charging their bat-
teries and have light computational loads, and may also be
paused to minimize battery charging times.

mClouds [23] works over hybrid edge clouds that, like
JAY, may be composed of mobile devices in a ad-hoc wire-
less network, cloudlet and public clouds, offloading jobs to
each of the tiers according to connectivity conditions, and
also (when multiple choices are available) by a cost model
with weights that balances execution time and energy
consumption in a configurable manner.
MDC [24] is a system for collaborative offloading among

mobile devices that seeks to maximize the battery life-
time of the set of involved devices by balancing energy
consumption among them; this concern could provide
an interesting refinement to the HYBRID strategy in this
paper, e.g., by factoring in battery levels of devices in
addition to their battery efficiency.
RAMOS [25] offloads jobs over an edge cloud formed

by heterogeneous mobile and IoT devices that act as job
workers, a concept borrowed from FemtoClouds [18]. As
in JAY, the RAMOS scheduler can be parametrised to
minimize job latency or energy consumption, jobs have
deadlines and are also executed in FIFO order by work-
ers. RAMOS’ architecture is centralised, however. Jobs
originate and are scheduled in batches exclusively by a
centralised controller node in contrast to JAY’s distributed
architecture.
Synergy [26] considers collaborative offloading between

devices in a peer-to-peer ad-hoc network, and, in order
to maximise the devices’ battery lifetime, balances latency
and energy consumption by partitioning jobs among
devices while at the same time scaling the devices CPU
frequencies.
Summarising the above discussion, Table 1 provides

a comparative overview of JAY and the other systems
mentioned. The table does so first in terms of cloud
architecture, making a distinction between: mobile cloud
computing (MCC) systems, where devices offload jobs to
a centralised cloud infrastructure; mobile edge comput-
ing (MEC) systems, where there is collaborative offloading
among mobile devices; and Femtocloud systems, where a
set of mobile devices is used as a worker pool for jobs fired
by an external host. The table next indicates awareness
to runtime information regarding time and/or energy, and
the support for job deadlines in the system model. The
two remaining columns characterize the scheduler com-
ponent responsible for offloading decisions concerning its
location and to the granularity of those offloading deci-
sions in terms of how many jobs are accounted for at
once. A scheduler may either operate locally per device
or run on a central peer, and the granularity type distin-
guishes between single-job, multiple-job, and parallel job
offloading by the scheduler. The latter is a special class
of multiple-job offloading in which all jobs are bound by
some type of parallel computation that is inherent to the
job model.

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 4 of 21

Table 1 Comparison between offloading systems

System Cloud architecture Time-aware Energy-aware Deadlines Scheduler Granularity

Jay Configurable ✓ ✓ ✓ Configurable Single-job

Cuckoo [9] MCC ✗ ✗ ✗ Local Single-job

COSMOS [10] MCC ✗ ✗ ✗ Local Single-job

AIOLOS [11] MCC ✓ ✓ ✗ Local Single-job

MAUI [12] MCC ✓ ✓ ✗ Local Single-job

Phone2Cloud [13] MCC ✓ ✓ ✗ Local Single-job

ThinkAir [14] MCC ✓ ✓ ✗ Local Single-job

ULOOF [15] MCC ✓ ✓ ✗ Local Single-job

Femtoclouds [18] Femtocloud ✓ ✗ ✗ Centralized Multiple-job

Honeybee [19] MEC ✓ ✗ ✓ Local Single-job

Oregano [20] MEC ✗ ✗ ✗ Centralized Multiple-job

P3-Mobile [21] MEC ✗ ✗ ✗ Centralized Parallel jobs

CWC [22] Femtocloud ✓ ✓ ✗ Centralized Parallel jobs

MDC [24] MEC ✓ ✓ ✗ Centralized Parallel jobs

RAMOS [25] Femtocloud ✓ ✓ ✓ Centralized Multiple-job

Synergy [26] MEC ✓ ✓ ✓ Local Single-job

The main distinctive trait of JAY is that it is configurable
in terms of target cloud architecture and scheduler oper-
ation. Thanks to a simple and flexible design, each of the
peers in a JAY system instance may act as a scheduler, a
worker, or both, as illustrated by the variety of evaluation
scenarios we put forward later in the paper, meaning that
one can use JAY for offloading using an MCC, MEC, or
Femtocloud architecture, with per-device schedulers or a
centralised one. The offloading strategies we instantiate
and evaluate in JAY are partially illustrative of compara-
ble time and/or energy-aware approaches found in other
systems. However, JAY is not bound to any particular
approach since offloading strategies are configurable, and
there is a general design for monitoring runtime state
information. Time-awareness is also reflected in JAY by
the support of job deadlines, a feature supported by only
a few other systems. Finally, JAY only supports single-job
scheduling granularity, a characteristic that is more in line
with on-the-fly offloading of independent jobs, as seen in
most systems discussed. In contrast, multiple-job granu-
larity is usually associated with the use of a centralised
scheduler, a Femtocloud architecture, or a computation
model that embodies parallelism.

Systemmodel
Overview
We now put forward the system model for our adaptive
offloading framework.
The overall rationale is as follows. We consider a set

of hosts connected over a network, such that each host
may generate and/or execute soft real-time jobs over time.

A host may then execute a mixture of local jobs and
offloaded jobs on behalf of other hosts, but it can also be
that a host only generates or executes jobs. In this set-
ting, offloading decisions can be informed and adaptive
to runtime conditions. Information broadcast amongst
hosts regarding variables such as network bandwidth and
latency, host job load and available energy provide the
required feedback. We consider each job has a soft real-
time nature, meaning that it has an associated relative
deadline expressing the maximum tolerable completion
time for good QoS, and also that it requires communi-
cation among hosts in the case of offloading to supply
job inputs (before the job’s computation can proceed) and
obtain job outputs (when the computation is done).
In what follows, we first lay out the base model concern-

ing job characteristics and the time and energy costs for
offloading, and then present sample offloading strategies
over that model.

Base definitions
We associate each job j with a release time r(j), a ter-
mination time t(j) > r(j), a relative deadline d(j), an
originating host hL from a set of hosts H, and, finally, a
computation host hC also inH. When j is clear in context,
these properties are simply denoted respectively as r, t, d,
hL, and hC. We say that the deadline of the job is fulfilled
if t ≤ r + d. Furthermore, we say the job executes locally
at hL when hL = hC, and that it is offloaded from hL to hC
when hL �= hC.
In the scenario of runtime adaptive offloading, for job j

and at time r, an offloading decision is made at time r to

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 5 of 21

Fig. 2 Illustration of system model

determine hC. We assume that decision to be computed
locally (at hL) and to have negligible overhead. In the case
of offloading (hL �= hC), we assume that network com-
munication needs to take place between hL and hC for the
inputs of j (data but possibly also code) to be available
at hC before j starts, and, later, once the computation j ter-
minates, for the outputs to be transmitted back from hC to
hL. This is illustrated in Fig. 2, along with the formulation
for time and energy overheads during offloading.
We consider the offloading decision to be informed by

estimates of completion time and energy consumption as
follows. Per each host h ∈ H (including hL) we model the
estimated completion time and energy consumption of a
given job j, T(h) and E(h), respectively as:

T(h) = TI(h) + TC(h) + TO(h)

E(h) = EI(h) + EC(h) + EO(h)

where time (T) and energy (E) are factored into a sum of
three terms: TI, EI: the (time and energy) costs of input
offloading job j; TC, EC: the (time and energy) costs of
the actual computation for job j, and; TO, EO: the (time
and energy) costs of downloading outputs of job j. Note
that, given that there is no need for network communica-
tion when h = hL, we should necessarily have TI(hL) =
EI(hL) = TO(hL) = EO(hL) = 0.
Regarding energy, our aim is not merely to account for

the energy consumption at the originating host (hL) of a
job, but also in the computation host in the case of offload-
ing (hC). This means first that network I/O expressed by
the EI and EO should account for the energy consumption
both in hL and hC: sending inputs from hL to hC requires
energy to be consumed by hL in uploading the inputs,
and hC to download, and vice-versa in the case of out-
puts. Since EI and EO are respectively dependent on the
transmission timesTI andTO and the power consumption
when doing so, we model EI and EO as follows:

EI(h) = TI(h) × PI(h)

EO(h) = TO(h) × PO(h)

where PI and PO are estimates for the power consumed
per time unit at both hL and hC2, when, respectively, send-
ing job inputs from hL to hC and receiving job outputs
at hL from hC.
Moreover, the EC term reflects the cost of executing the

job remotely at hC, but, as illustrated in Fig. 2, it should
only account for an estimate of the energy consumption
while hC is effectively performing the computation for
job j for an amount of time T̂C, rather than the energy con-
sumption over the total period TC, during which the job
may at times be pending (e.g., waiting for other jobs in hC
to complete). Thus, we write:

EC(h) = T̂C(h) × PC(h)

where PC is an estimate for the power consumed per time
unit at h due to the execution of the actual computation
of j at h.

Offloading strategies
We can now express offloading strategies that may take
into consideration multiple metrics to decide where a
computation will take place, e.g., completion time and
energy consumption. We define several such strategies for
which we present a thorough evaluation later in the paper.
Figure 3 illustrates the rationale in the offloading strate-
gies. The example at stake concerns an offloading decision
for a job originating at host hL = h0 in an environment
with four other hosts, h1 to h4, such that each host may
have different values regarding the estimates for time and
energy consumption (T and E).
The simplest case is that of no offloading, which we des-

ignate as the LOCAL strategy (i.e., as illustrated in Fig. 3,
jobs always execute locally).:

LOCAL ≡ hC = hL
The choice may also be fixed to a special host hS �= hL
(assuming hS does not generate jobs), for instance a cloud
server that is responsible for executing all jobs (in Fig. 3,
hS is host h1) , designated as the SERVER strategy:

2in these formulae, when clear from the context, the index of h is omitted for
the sake of simplicity

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 6 of 21

Fig. 3 Illustration of offloading strategies

SERVER ≡ hC = hS

In the case illustrated in Fig. 3, the LOCAL and SERVER
strategies would not lead to optimal choices with respect
to time and/or energy, as there are hosts that can exe-
cute the job faster than hL and hS (h2 and h4), or that
may consume less energy than hL and hS to do so (h3 and
h4). Adaptiveness comes into play if we account for the T
and/or E estimates.
A strategy that seeks to minimize the completion time

of job, but ignoring energy consumption, can be defined
as:

TMIN ≡ hC = argminh ∈ H T(h)

Hence, in Fig. 3 we have hC = h2 for TMIN. In anal-
ogous manner, a strategy that seeks to minimize energy
consumption can be defined as:

EMIN ≡ hC = argminh ∈ H E(h)

but it will not however attend to QoS requirements
in terms of deadline fulfilment, i.e., hC may be chosen
regardless of whether T(hE) ≤ d or not. This is illus-
trated in Fig. 3, where hC = h3 for TMIN but T(h3) > d.
Additionally, the most energy-efficient hosts will tend to
be preferred. These hosts may possibly become congested
with too many jobs whose execution can therefore be
much delayed in time. The above strategy can be refined
meaningfully to counter for these problems as:

HYBRID ≡ hC = argminh ∈ H : T(h)≤d E(h)

balancing both time and energy costs and the fulfilment of
d, as it expresses that hC is chosen as the host which con-
sumes less energy amongst those that can satisfy the job
deadline (h ∈ H : T(h) ≤ d). This is illustrated in Fig. 3,
where hC = h4 is the host with lower E value, among those
with a T value lower than d (all except h3). In the case
where HYBRID yields no result, i.e., no host is estimated
to be able to satisfy the job deadline, the offloading deci-
sion may for instance fallback to TMIN trying to complete

the job as fast as possible anyway or to simply cancel the
job altogether.
The TMIN and HYBRID strategies may lead to an

imbalance between host loads, in the sense that most
time-efficient and/or energy-efficient hosts will tend to
have higher loads. This may be counter-productive if the
hosts are stake are battery-constrained and we wish for
instance to extend battery lifetime of all hosts as fairly as
possible. To spread the loadmore evenly, a balanced selec-
tion scheme of hosts amongst those that can comply with
a job deadline can be defined. For instance, a balanced
selection policy can be defined as:

BALANCED ≡ hC = random{h ∈ H : T(h) ≤ d}
i.e., hC is randomly selected among the hosts that can
comply with the deadline. In this case, the offloading
choice may not be energy-optimal or time-optimal, but
the random choice will tend to promote a more balanced
distribution of jobs. We could also refine BALANCED
to be explicitly energy-aware by refining the definition
with constraints for energy consumption or battery level
thresholds in addition to the job’s deadline. Also, in alter-
native, a round-robin job distribution could be considered
instead to enforce stricter load balancing.
Finally, we define a strategy that implements a form of

“restricted offloading”, a trait found in various systems dis-
cussed in “Related work” section, such that jobs are only
offloaded if local execution is deemed unsuitable. That is,
a job is only offloaded if the local host hL is judged to
be incapable of fulfilling the job’s QoS, like deadlines in
our case but also possibly other factors, e.g., those associ-
ated to network transmission in terms of energy, amount
of data, or financial costs. In line with this rationale, we
formulate the “local-first” strategy LF[f], where f is the
policy to apply in the case of offloading, as:

LF[f] ≡ hC =
{
hL, if T(hL) ≤ d
f , otherwise

i.e., a job executes locally if the completion time esti-
mate complies with deadline, otherwise f is evaluated
to decide where the job should run, e.g., we can define

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 7 of 21

the LF[TMIN], LF[HYBRID], or LF[BALANCED] strate-
gies.

The JAY framework
JAY is a platform for the implementation and testing of
computation offloading strategies in hybrid clouds. JAY is
provided as services implemented in Kotlin for Android
OS, or as plain Java Virtual Machines in other OSes (e.g.,
Linux or Windows). A hybrid cloud may be composed
of mobile devices, plus servers running on cloudlets at
the edge of the network or clouds accessible through the
Internet. JAY instances in a hybrid cloud may host appli-
cations that generate jobs and/or serve as computational
resources for offloading requests. Thus, the design makes
no a priori assumptions where applications reside, even
if we are particularly interested in applications hosted on
mobile devices. In any case, note that mobile devices can
also serve offloading requests. Furthermore, JAY’s focus
is not on data security/privacy preservation, leaving this
app-dependent.

Architecture
The architecture of JAY is illustrated in Fig. 4. A single JAY
instance runs on a network host, comprising 4 services:
Broker, Scheduler,Worker and System Profiler.
The Broker service mediates network interaction with

external peers, wrapping up any necessary requests and
data interchange with the other internal JAY services on
the same local instance. Local applications interact with

the broker for job execution, and broker-to-broker inter-
action occurs between JAY instances for job offloading and
dissemination of state information.
The internal state of each JAY instance over time is

maintained by the System Profiler service, reflecting for
instance energy consumption, current job workload, and
network transmissions. All instances disseminate their
state periodically, hence the profiler is also aware of the
(latest known) state of remote JAY instances. The sys-
tem profiler (on each instance) is then able to construct a
global snapshot of all JAY instances in the network at any
given time. The goal is to use this dynamic global snap-
shot to guide the offloading decisions while adapting to
evolving runtime conditions.
Jobs are dealt with by the Scheduler and Worker ser-

vices. The scheduler is responsible for choosing the host
where to run a job submitted to the local instance by
an application. In particular, it implements the offloading
strategy. The scheduler’s choice for assigning a job is taken
from the set of all hosts having an active worker service,
and can be based on state information as reported by the
system profiler. Note that this set of active workers may
include the local instance if it has an active worker service.
Also, the local worker state is also observed by the pro-
filer and included in the construction of the global state
snapshot. The worker is in turn responsible for the actual
execution of jobs, regardless of whether they are local or
incoming from other hosts through offloading requests.
JAY instances running only one of the scheduler or worker

Fig. 4 Life cycle of a job in JAY

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 8 of 21

services merely act as a job execution clients or servers,
respectively. On the other hand, instancesmay employ dif-
ferent implementations for the scheduler and/or worker.

Job lifecycle
In line with the interplay between JAY services just
described, we can trace the lifecycle of a job in terms of
the stages indicated in Fig. 4, as follows:

Job release: an application first releases the job by plac-
ing an execution request to the broker service (step 1).
For simplicity, we will only consider the case where the
application resides on the same host as the broker, even
if JAY’s architecture does not place such a constraint
and other setups may be interesting from an applica-
tion standpoint, e.g., to accommodate for jobs fired by
IoT devices.

Offloading decision: the job execution request is
passed by the broker over to the local scheduler (2) to
determine the host that should execute the job. The
scheduler’s decision (3) may be that either the job exe-
cutes locally (the local host was chosen) or needs to be
offloaded to the target host.

Job execution: for local execution, the broker passes
the job for execution to the local worker (4a), and when
the job completes (5a) the job outputs are delivered to
the application (6a). In the offloading case, the job is
sent to the target host (4b) for execution (5b) and will,
at some point, produce the job outputs (6b) that are
then returned back to the originating host (7b) and,
finally, delivered back to the application (8b).

System instantiation
We now present a sample system instantiation of JAY,
later evaluated in the paper. It is composed of: a worker
based on a FIFO job queue; a configurable scheduler that
may implement any of the offloading strategies discussed
in our system model, and; a system profiler that esti-
mates time and energy consumption due to computation
and network transmission at the local instance and aggre-
gates it with the state information disseminated by remote
instances. The result is a global snapshot of the state of
the system that can be used to make adaptive offload-
ing decisions. A summary of the model instantiation and
associated notation is given in Table 2.

Profiler overview
The profiler is responsible for the state estimation driv-
ing adaptive offloading, with the functionality illustrated
in Fig. 5.
The first aim of the profiler is to estimate and dissem-

inate the state of the local instance (hL), and aggregate
similar state reported by the remote instances (h �= hL),
as shown lower right in the figure. The second aim is to

Table 2 Summary of model instantiation

State variables per host h Unit

n number of jobs at h -

T̂C computational time of a job s

BU bandwidth for uploading data (to h) B / s

BD bandwidth for downloading data (from h) B / s

PC power consumption during job computation W

PD power consumption during data download W

PU power consumption during data upload W

Time estimates per host h Unit

TC(h) T̂C(h) × (n(h) + 1) s

TI(h) BU(h) × |j|I s

TO(h) BD(h) × |j|O s

T(h) TI(h) + TC(h) + TO(h) s

Energy estimates per host h Unit

EC(h) T̂C(h) × PC(h) W · s
EI(h) TI(h) × (PU(hL) + PD(h)) W · s
EO(h) TO(h) × (PD(hL) + PU(h)) W · s
E(h) EI(h) + EC(h) + EO(h) W · s

use the state information for all available hosts (hL and
other hosts h �= hL) to compute estimates for all hosts for
the time (TI, TC, and TO) and energy (EI, EC, and EO) to
run a job, and feed that information to the local scheduler,
as illustrated in the lower left portion of the figure.
The locally derived information comprises three com-

ponents and their estimators (modules) also shown in the
figure: sJ, the state of local jobs, derived by the job state
estimator; sE, the energy consumption state, derived by
the energy state estimator; and sB, the bandwidth for com-
munication between hL and every other host, derived by
the bandwidth estimator. To accomplish their task, the
estimators feed on notification events provided by the
local worker and local broker regarding job and transmis-
sion events respectively, and runtime profiling of energy
consumption and bandwidth measurements. Note that
only sJ and sE need to be disseminated among instances,
whereas the sB information for all hosts is derived locally
at each instance.

Job computation
Theworker executes jobs in order-of-arrival, one at a time,
and non-preemptively until completion. Pending jobs are
kept on hold in a FIFO queue. This scheme is not adaptive
to deadlines or other job characteristics. But, on the other
hand, it allows for a simple estimation of the termination
time for a released job that is not affected by the arrival of
new jobs or more generally by overall variations in the sys-
tem workload. Assume that job j1 starts running at time

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 9 of 21

Fig. 5 State estimation by the system profiler

t, that jobs j2, . . . , jn are queued, and that there is an esti-
mate �i for the time ji takes to execute. Then an estimate
for the termination time of ji is simply t + �1 + . . . + �i.
Note that this “stable” estimate, derived from limited

information, would be impossible to achieve if we were
to resort, for instance, to an earliest-deadline first (EDF)
scheme in preemptive or non-preemptive form. In this
case, the arrival of new jobs could potentially invalidate a
previous estimatemade during an offloading decision, and
raise the need tomodel/estimate a worst-case behavior for
job arrivals.
The worker interacts with the system profiler by sup-

plying a notification whenever a job is queued, starts, and
ends. With this information, the profiler can compute an
estimate of the job execution time and the worker’s queue
size and composition. From these quantities we can in
turn derive estimates for TC and T̂C (cf. Fig. 2). Feeding
on the local worker information, the current profiler esti-
mates T̂C using a moving average of the execution time of
jobs, and TC as:

TC(h) = (n(h) + 1) × T̂C(h)

The formula above simply expresses that the time to exe-
cute a job j will have to account for the wait for up to n
jobs to complete at host h, plus the time to actually exe-
cute j. The estimate implicitly assumes however that job
execution time tends to be uniform, i.e., there is only one
class of job and their execution is regular. This in the case
of the jobs we consider for evaluation later, but the scheme
could be generalised, e.g. to handle several classes of jobs

by accounting for the number of jobs per class, and irreg-
ular jobs by accounting for different job input sizes and/or
considering execution time percentiles rather than a plain
moving average.

Network transmission times
In order to estimate network transmission times, the pro-
filer issues periodic ping (round-trip) messages to all hosts
in the network. The information gathered from thesemes-
sages allows the bandwidth estimator at each host h to
maintain a moving average for uploading and download-
ing bandwidth measures, BU(h) and BD(h), respectively.
These estimates are further refined with information gath-
ered from broker notifications regarding the observed
bandwidths when jobs (and their inputs) are uploaded
to, or their outputs are downloaded from, a remote JAY
instance. Assuming that the sizes of the inputs (|j|I) and
outputs (|j|O) of a job j are known, the profiler estimates
TI and TO as follows:

TI(h) = BU(h) × |j|I
TO(h) = BD(h) × |j|O

Power consumption estimates
The energy state monitor is responsible for maintain-
ing running estimates for the power cost terms PC, PU,
and PD that correspond, respectively, to the power con-
sumption per time unit when executing jobs at, uploading
data from, and downloading data to the local host. In con-
trast to other approaches, JAY produces estimates without
resorting to any a priori, usually device-specific, derived

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 10 of 21

model for power consumption. As such, power consump-
tion estimates may be more crude but, on the other hand,
reflect more closely the energy dynamics of the system at
any given moment.
At any given time, a JAY instance may be idle, per-

forming computation, or transmitting data. This can be
inferred by listening to job events from the worker and
transmission events by the broker or bandwidth monitor.
Whenever the worker starts a job, the active job compu-
tation status flag is enabled, meaning the ensuing energy
consumption should reflect on the PC estimate. The same
flag is disabled whenever the job ends. The PU and PD
estimates are derived similarly, using upload and down-
load status flags that are enabled and disabled according
to the start and end events for uploads and downloads
by the broker or the bandwidth monitor. The power con-
sumption estimates are updated as moving averages in
accordance to the values of the status flags, but when only
one of the flags is active. Power consumptionmeasures are
obtained in a device-specific manner through an energy
monitor. For instance, by measuring the current I and the
voltage V in a device, a simple estimate for the power con-
sumption would be P = I × V (using Ohm’s Law). With
estimates for PC, PU, and PD plus T̂C, TI, and TO we can
in turn express the corresponding energy costs for jobs as
follows:

EC(h) = T̂C(h) × PC(h)

EI(h) = TI(h) × (PU(hL) + PD(h))

EO(h) = TO(h) × (PD(hL) + PU(h))
Note that, in line with the starting discussion for the sys-
tem model, EC depends on T̂C (the effective computation
time at h) rather than TC (the entire time span the job is
at h), while EI and EO reflect the energy costs both at hL
and h.

Experimental setup
We used the JAY framework to evaluate the algorithms
presented in “System model” section, namely: LOCAL,
SERVER, TMIN and HYBRID.

Devices
The experimental setup consisted of 5 Android devices
and a PC-based cloudlet. In experiments detailed in the
next section, Android devices are used as job generators
and executors, while the cloudlet is used as job executor
only. Their characteristics are summarised in Table 3. It
can be seen that the Android devices are quite hetero-
geneous in terms of CPU, RAM and battery capacity, as
well as in terms of their Android OS version. Another
important aspect is that the cloudlet has significantly
more RAM (16 GB) than all Android devices and, as illus-
trated in detail later, also uses a higher performance CPU

configuration. All devices were connected to the same
local network, via an ASUS RT-AC56U router, featuring
a 2.4 GHz 300 Mbit/s WiFi connection for the Android
devices and a 1 Gb/s Ethernet connection for the cloudlet.
Prior to each experiment, all Android devices had their

batteries charged by at least 50%, to prevent interference
from builtin power saving mechanisms. They were then
disconnected from the power outlet using a smart plug
controlled remotely by a script. For monitoring energy
we used the standard Android BatteryManager
API3. This API provides current intensity (I) and
voltage (V) information, respectively, through the
BATTERY_PROPERTY_CURRENT_NOW counter and the
EXTRA_VOLTAGE notifications. The API is available
and reliable across all Android versions and devices we
tested, from which we estimated the instantaneous power
consumption (P = I × V). We used this approach uni-
formly for all devices, even if in some devices/Android
versions the API provided a richer set of attributes such
as the BATTERY_PROPERTY_CURRENT_AVERAGE, for
average current intensity, and BATTERY_PROPERTY_
ENERGY_COUNTER, for the remaining battery power. As
for the cloudlet, it had a permanent 220 V power supply.
Its power consumption was monitored using a Meross
MSS310 energy plug.

Benchmark application
We used a benchmark application that fires jobs for object
detection in images using deep learning, similar to one
we employed in previous work [5]. As illustrated in Fig. 6,
each object detection job takes an image as input and
yields a set of objects detected in the image along with cor-
responding bounding boxes and confidence scores. Here,
we used a “headless” variant of this computational job
with no GUI or human intervention. Overall, this type
of computation is increasingly common to classify static
images or live video frames in mobile devices [27, 28]. It
makes for an interesting case-study for offloading since
jobs can be computationally intensive and may require
high network bandwidth to transfer images. This can hap-
pen if the number of spawned jobs is large or if a QoS
restriction is added to their execution (e.g., a deadline), or
both.
We make use of a MobileNet SSD model variant [29]

trained with COCO [30], a popular image dataset used
for benchmarking object detection models that con-
tains 2.5 million labeled instances for 80 object types in
more than 300.000 images. The specific model we use
is ssd_mobilenet_v1_fpn_coco, available in stan-
dard TensorFlow (TF) [31] and TensorFlow Lite (TFLite)
format from TensorFlow’s Object Detection Zoo4. The

3https://developer.android.com/reference/android/os/BatteryManager
4https://github.com/tensorflow/models/blob/master/research/
object_detection/g3doc/tf2_detection_zoo.md

https://developer.android.com/reference/android/os/BatteryManager
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 11 of 21

Table 3 Device characteristics

Device Year CPU RAM Battery OS

Cloudlet 2015 Intel i7-6700K, 4x4.0 GHz 16 GB N/A Ubuntu 20.04 LTS

Google Nexus 9 2014 Nvidia Tegra K1, 2x2.3 GHz 2 GB 6.7 Ah Android 8.1

Google Pixel 4 2019 Snapdragon 855, 1x2.84/3x2.42/4x1.78 GHz 6 GB 2.8 Ah Android 11

Samsung Galaxy S7e 2016 Exynos 8890 Octa, 4x2.3/4x1.6 GHz 4 GB 3.6 Ah Android 10

Samsung Galaxy Tab S5e 2019 Snapdragon 670, 2x2.0/6x1.7 GHz 6 GB 7.0 Ah Android 10

Xiaomi Mi 9T 2019 Snapdragon 730, 2x2.2/6x1.8 GHz 6 GB 4.0 Ah Android 10

object detection job code, adapted from a TensorFlow
tutorial5, has been incorporated into two distinct Kotlin
modules, each linked with the JAY core library. One
module is used in the cloudlet (Linux) and employs the
standard TF library. The other is used in the Android
devices and employs TFLite. Besides CPUs, TF and TFLite
may employ GPUs, if available. In the case of TFLite in
Android, it can also use the specialised Google Neural
Networks API 6. Nevertheless, we configured the device’s
Kotlin module to use only CPUs given that this basic
option works for all devices and operating system ver-
sions.
The benchmark application runs on every device and

fires object detection jobs according to a Poisson process
with a configurable job inter-arrival time λ, and relative
deadlines d ≤ λ. Each job takes as input a randomly
selected Ultra-HD image taken from the UltraEye dataset
[32], and produces an objection detection report of at
most 4 KB. Each image has a pixel resolution of 3840 ×
2160 and an average size of 2.2 MB. All images used
were uploaded to the Android devices prior to benchmark
execution (asmentioned earlier, the cloudlet does not gen-
erate jobs in our experiments, it only executes them on
behalf of Android devices).

Evaluation
We now present the detailed experiments we conducted
and the results we obtained. Their implications are also
discussed.

Experiments
Using the experimental setup described in the previous
section, we conducted three sets of experiments:

1. We first measured the baseline behavior, in terms of
energy and computation time, for the set of devices
at hand, when executing the benchmark application in
our setup without considering any type of offloading.
The goal was to allow a relative comparison between
devices given their heterogeneity.

5https://github.com/tensorflow/examples/tree/master/lite/examples/
object_detection/android
6https://developer.android.com/ndk/guides/neuralnetworks/

2. We then considered offloading experiments for the
benchmark application in a network formed only by the
Android devices, where each device acts both as a job
generator and worker.We compare the use the LOCAL,
TMIN and HYBRID strategies for job workloads with
different values for mean job inter-arrival times and job
deadlines.

3. The previous experiments were repeated for the
benchmark application this time using a network that
also includes a cloudlet worker. Again we consider
TMIN and HYBRID strategies, but also the SERVER
strategy that offloads all jobs to the cloudlet server.

4. Finally, we consider again a network with mobile
devices, the effect of using the BALANCED and LF[f]

Fig. 6 Object detection in images

https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
https://github.com/tensorflow/examples/tree/master/lite/examples/object_detection/android
https://developer.android.com/ndk/guides/neuralnetworks/

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 12 of 21

strategies versus TMIN and HYBRID, plus a differ-
ent choice of configuration where jobs are generated
and scheduled by a single external host and the mobile
devices act only as workers, i.e., a Femtocloud-like
configuration.

Baseline experiments
For a baseline comparison between devices, we mea-
sured power consumption and time/energy consump-
tion during job execution for all devices. We first ran
scripts to measure (instantaneous) power consumption
when devices were idle, uploading data and download-
ing data. Each script ran for 10 minutes and average
power consumption results were gathered from 3 script
executions. For the uploading/downloading power mea-
surements the scripts continuously executed plain file
uploads/downloads to/from a random host in the net-
work. For job computation behavior, we ran a script that
issued local object detection jobs continuously for 10min-
utes, again for 3 rounds, and computed the average power
consumption and job execution time.
The results are listed, per device, in Table 4: power

consumption (in Watts, when devices are idle, uploading,
downloading, or computing); job execution time (sec-
onds), and; energy consumption (in milliwatt-hour, taking
into account power consumption when computing and
the execution time per job).
Overall, the results clearly expose the heterogeneity of

the devices used in the experiments. Looking at the power
consumption results, it is clear that computation is the
major factor of increase in power consumption: 2.3–4.1
times more energy is consumed than when a device is idle,
compared to just 1.1–3.5 times for uploading and 1.1–1.8
times for downloading. Compared to the Android devices,
power consumption numbers for the cloudlet are an
order of magnitude higher (approx. 10–40 times higher).
Energy-wise, the two best-performing devices while com-
puting are Google Pixel 4 and Xiaomi Mi 9T. Samsung
Galaxy S7e is the most energy conservative device when
in idle mode.
Regarding the results for execution time and energy

consumption per job, the cloudlet stands out again: it

is both the most efficient device in computation time,
and the least efficient one in energy consumption: jobs
run 1.9–5.8 times faster than on the Android devices
but on the other hand consuming 2.4–15.6 times more
energy. Among the Android devices, and for both time
and energy, Google Pixel 4 is the most efficient device, fol-
lowed by Xiaomi Mi 9T, Samsung Galaxy Tab S5e, and
Samsung Galaxy S7e, with Google Nexus 9 being the least
efficient.
We note that the measures for energy consumption

per job are more relevant for our purposes (cf. “The JAY
framework” section) than those for instantaneous power
consumption. Observe that Samsung Galaxy Tab S5e is
more energy-efficient (consumes 5.0 mWh per job) than
Samsung Galaxy S7e (which consumes 5.5 mWh per job,
10% more), even if instantaneous power consumption is
higher during computation (4.5 W vs. 3.7 W, 21% higher).
The reason for this is that the higher power consumption
is compensated in a larger proportion by faster job execu-
tion times in Samsung Galaxy Tab S5e (4.0 s vs. 5.4 s, 33%
faster).
As for the measured bandwidth during the duration of

the experiment, we obtained values averaging 110 Mbit/s
for download on all mobile devices and for upload we
verified two distinct behaviors: Nexus 9, Pixel 4 and Sam-
sung Galaxy S7e connected with a 300 Mbit/s connection
averaging 210 Mbit/s speeds while Samsung Galaxy Tab
S5e and Xiaomi Mi 9T connected to the router with
a 150 Mbit/s connection leading to an average upload
speed of 119 Mbit/s. As for the cloudlet, it was con-
nected to our router via gigabit ethernet and we obtained
and average of 941 Mbit/s upload speed and 946 Mbit/s
download.

Offloading among android devices
We considered a network formed by the Android devices,
each running the benchmark application generating jobs
with mean inter-arrival times for the governing Poisson
process of λ equal to 3, 6, 9 and 12 seconds (which trans-
lates to 20, 10, 6.7 and 5 jobs per minute respectively), and
values of d = 3, 6, 9, 12 for their relative deadlines up to
the value of λ (i.e., d ≤ λ).

Table 4 Baseline results per device

Energy consumption (mWh for 10 minute-intervals) Per Job

Device Idle Upload Download Computation Time (s) Energy (mWh)

Cloudlet 5783.3 6038.3 5935.0 15706.7 1.5 39.5

Google Nexus 9 433.3 476.7 556.7 1138.3 8.8 16.6

Google Pixel 4 185.0 271.7 230.0 528.3 2.9 2.5

Samsung Galaxy S7e 148.3 523.3 260.0 610.0 5.4 5.5

Samsung Galaxy Tab S5e 316.7 521.7 385.0 741.7 4.0 5.0

Xiaomi Mi 9T 151.7 250.0 178.3 535.0 3.2 2.9

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 13 of 21

In conjunction, we considered three offloading strate-
gies, presented in “System model” section: LOCAL (local
execution only, no offloading), TMIN (offloads jobs
strictly seeking to minimize execution time) and HYBRID
(balances QoS constraints for task deadlines with energy
efficiency). The benchmark was executed 6 times for each
offloading strategy with the same job generation seed, and
each execution was configured to generate jobs for 10min.
A first set of overall results for the experiment is pre-

sented in Fig. 7. We present plots for the energy consump-
tion and execution time per job (left and middle in the
figure, lower numbers are better), along with the corre-
sponding quality-of-service (QoS) that is expressed as the
percentage of jobs with a fulfilled deadline (right, higher
numbers are better). The average values are plotted for
each measure, along with the amplitude of the 95% gaus-
sian confidence interval. Note that, for each configuration,
the average energy consumption is obtained by measuring
the total energy consumption in all of the devices, includ-
ing idle time, divided by the number of jobs. Lower values
of λ imply more jobs, hence the average energy consump-
tion tends to decrease with λ (conversely, idle time grows
with λ).

From the results, we can first observe that both TMIN
and HYBRID generally outperform LOCAL both in
energy consumption and QoS. This shows that offload-
ing jobs pays off in both dimensions when compared to
strictly local execution of jobs. The exception to this pat-
tern is observed when the relative deadline has the tightest
value, i.e., d = 3, and only in terms of QoS. In fact, the
overall system becomes incapable of achieving reasonable
QoS in all configurations when at this point: always below
30%, regardless of offloading strategy. In themore extreme
case where λ = d = 3, the QoS is below 10% and there is
an extremely long execution time, due to the fact that jobs
simply pile up in the system. In contrast, the QoS is always
higher than 50% for all configurations with d > 3.
Comparing TMIN and HYBRID, the results are very

similar for d = 3 and d = 6 in all respects (energy,
time, and QoS). Since these deadline values are the most
tight, the HYBRID strategy has less scope for energy-
efficient offloading choices and these tend to be similar to
the choices made by TMIN. For d > 6 there are notice-
able differences though, highlighting that gains in energy
consumption can be attained by the HYBRID strategy
compared with TMIN at the cost of a slight penalty in

Fig. 7 Android devices scenario – energy, time, and QoS

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 14 of 21

QoS. The HYBRID strategy leads to a 10–20% decrease in
energy consumption compared to TMIN, while the QoS
service is only marginally higher for TMIN, at most by 5%.
At the same time, the execution time is slightly higher for
HYBRID, given that the strategy does not pick the device
estimated to run a job faster but, rather, the most energy-
efficient among those that are estimated to comply with
the job deadline. For example, when λ = 12 and d = 9
and for HYBRID we observed: 13% less energy consump-
tion (9.5 mWh compared to ∼10.8 mWh for TMIN); jobs
taking 15% longer (4.5 s vs. 3.9 s), but; a QoS degradation
of only 2% (97% vs. 99%).
The behavior of TMIN and HYBRID is compared in

more detail in Fig. 8, regarding the fraction of offloaded
jobs (Fig. 8a, left) and the fraction of jobs executed per
device (Fig. 8b, right). These results again illustrate that
there is no significant difference between both strategies
for the tighter deadline of d = 3. As the value of d
grows, however, the offloaded job ratio tends to grow and
be significantly higher for the HYBRID strategy, whereas
there are only small variations for TMIN for each value
of λ. When λ = 12 for instance, the offloading ratio
increases progressively in the case of HYBRID as d grows
from ∼40% when d = 3 up to ∼80% when d = 12, while
for TMIN it is ∼40% for all values of d.
If we look at the fraction of executed jobs per device

(Fig. 8b), we see that they are overall in line with the
baseline results, i.e., faster devices (which are also more
energy-efficient) execute more jobs. For instance, Google
Nexus 9, the slowest device, executes the fewest jobs,
while Google Pixel 4, the fastest one, executes the most
jobs. The total spread of jobs is more uniform in the
case of TMIN than with HYBRID, while HYBRID tends
to favor Google Pixel 4 significantly for d ≥ 6. These

aspects are illustrated in particular for the flow of jobs
when λ = 12 and d = 9, again comparing HYBRID
(a) and TMIN (b), in Fig. 9. The job distribution is
noticeably more biased towards Google Pixel 4 in the case
of HYBRID: Google Pixel 4 executes 56% of all jobs for
HYBRID compared to 33% for TMIN. TMIN offloads jobs
more uniformly to the other devices (note that the size of
the squares grows logarithmically), even if Nexus 9 only
executes local jobs in the case of TMIN.
We finish our analysis by highlighting estimation errors

by JAY’s system profiler. Figure 10 depicts the average
relative error in the estimated time for job execution, cal-
culated as the difference between estimated and real exe-
cution time, expressed in percentage of the real execution
time. As shown, the values are on average negative, mean-
ing that the estimates tend to be pessimistic. In amplitude,
they are less than 20% except for HYBRID when λ = 12, 9
and d ≥ 9, and both strategies when λ = 3. This is
partly explained by the fact that the estimate T̂C for exe-
cution time of a job at a JAY instance accounts for the
current number of jobs including the current one, but not
the already spent executing the current job. This behav-
ior, which can be mitigated in future developments of the
JAY prototype, is amplified in configurations where one
the devices obtains a high share of jobs (Google Pixel 4 in
the case of HYBRID, for λ = 12, 9 with d ≥ 9). On the
other hand, when the system has a high load and is unable
to cope (the case of λ = 3), estimates also tend to be less
reliable.

Extended scenario using cloudlet
We now present results for an extension of the previ-
ous experiment that introduces a cloudlet server. The
cloudlet acts only as a JAY job executor, while job

Fig. 8 Android devices scenario – job distribution

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 15 of 21

Fig. 9 Android devices scenario – flow of jobs for λ = 12 and d = 9

generation proceeds as before for the Android devices.
As before, the HYBRID and TMIN strategies were evalu-
ated but with the possibility of offloading from the devices
to the cloudlet. We consider, in addition, the SERVER
strategy that uses the cloudlet as a standalone server that
executes all jobs. We present measurements similar to
the previous scenario and highlight the impact of the
cloudlet.
In Fig. 11 we provide plots for energy consumption,

execution time and QoS. Compared to the results of the
scenario without cloudlet (cf. Fig. 7) an increase in energy
consumption as well as in QoS is noticeable for the TMIN
and HYBRID strategies. This would be expected, given
that (in line with the baseline results) the cloudlet is
the most time-efficient device but also the least energy-
efficient one. The energy consumption is significantly

higher, something that will always be true even if the
cloudlet executes no jobs (in any case it will still actively
consume energy). For example, the lowest energy con-
sumption value is 23 mWh for HYBRID and TMIN when
d = λ = 3, exceeding the value of the most energy-
hungry configuration of the previous scenario, 12 mWh
for λ = d = 12 in Fig. 7. On the other hand, the cloudlet
improves QoS for HYBRID and TMIN significantly: it is
now above 90% for every configuration with d ≥ 6, and
even 46%–67% for λ = 12, 9, 6 when d = 3 in comparison
to the 10–15% observed previously. QoS is very poor only,
and again, in the extreme λ = d = 3 case.
Looking at the results for the SERVER strategy, they

are generally worse than those obtained for HYBRID and
TMIN. This is true for energy consumption in all con-
figurations, and also QoS except for configurations with

Fig. 10 Android devices scenario – average error

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 16 of 21

Fig. 11 Cloudlet scenario – energy, time and QoS

λ = 12 where the SERVER strategy becomes competitive.
This means that job execution/offloading by the Android
devices pays off compared to using the cloudlet alone,
much like in the previous scenario where it payed off when
compared to using local job execution only.
In this cloudlet scenario, energy consumption savings

resulting from the use of HYBRID vs. TMIN can be more
pronounced. In all configurations, HYBRID consumes less
energy than TMIN, and the savings are noticeably more
pronounced as d increases, e.g., for λ = 12, TMIN con-
sumes just 4% more energy when d = 3 but 60% more
when d = 12. On the other hand, on par with the
decrease in energy consumption, HYBRID leads to notice-
ably longer job execution times as d grows, e.g., again for
λ = 12 HYBRID causes jobs to last from 2% longer when
d = 3 up to 214% when d = 12.
The difference of behavior between HYBRID and TMIN

is best understood looking at the job distribution results
in Fig. 12, where we depict for all configurations the frac-
tions of: (Fig. 12a) locally executed jobs, jobs offloaded to
Android devices, and jobs offloaded to the cloudlet, and;
(Fig. 12b) jobs per Android device and cloudlet. Besides
the fact that HYBRID tends to have a lower ratio of locally

executed jobs, as in the previous Android devices only sce-
nario, the other major difference between HYBRID and
TMIN is that HYBRID tends to offload significantly less
jobs to the cloudlet than TMIN. Looking at the distribu-
tion per device, it is clear that with HYBRID Google Pixel
4 is the device executing more jobs, whereas TMIN priv-
ileges the cloudlet. In fact, in some configurations, the
fraction of jobs executed by the cloudlet can be residual.
The job flow for both strategies when λ = 12 and d = 9
is illustrated in Fig. 13, and highlights this trend in one of
the more extreme cases: the cloudlet executes less than 1%
of all jobs for HYBRID while Google Pixel 4 executes 57%,
whereas for TMIN the fractions are 64% for the cloudlet
and 10% for Google Pixel 4 (note that, as before, the size
of the squares grows logarithmically).
Estimation errors by JAY’s system profiler are presented

in Fig. 14 for the cloudlet scenario, with similar trends to
the Android devices’ scenario (Fig. 10). The main differ-
ence is that estimation errors are not as high for the λ =
3 case. For this configuration, the overall system copes
much better with the high load scenario of in terms of
job execution times even if QoS is still low, and execution
estimate errors tend to be lower as a result.

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 17 of 21

Fig. 12 Cloudlet scenario – job distribution

Additional scenarios
A final set of results is now presented, considering again
a network formed by mobile devices alone. We consider
the effect of having a network with a Femtocloud config-
uration (FC), in which jobs are generated and scheduled
by a single external host and the mobile devices act only
as workers, in contrast to the mobile edge cloud con-
figuration (MEC) where all devices act as job generators
and workers. Furthermore, we present results for addi-
tional offloading strategies, BALANCED and LF[f] (cf.
“System model” section) that may potentially lead to dif-
ferent compromises in terms of time, energy, and job
distribution among hosts. BALANCED applies both in the
FC and MEC cases, whereas LF[f] (“local-first”) by defi-
nition only applies in the MEC case (in the FC case, the

external host does not act as worker, hence it does not
execute jobs locally).
Jobs were generated with the same methodology as

in the previous experiments the MEC configuration, but
results were gathered only for a job inter-arrival time
of λ = 9 and deadlines d = 6, 9. In the FC case,
similar deadlines are considered, but the external host
generates jobs with a λ = 9

5 inter-arrival time, so that
the overall workload is equivalent to the use of λ = 9
by all 5 devices in the MEC configuration. We empiri-
cally found these workload parameterisations to be illus-
trative of the behavior of the system for the strategies
considered.
As in the previous experiments, the results are pre-

sented in terms of: average energy consumption, average

Fig. 13 Cloudlet scenario – flow of jobs for λ = 12 and d = 9 (number of jobs)

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 18 of 21

Fig. 14 Cloudlet scenario – average error

completion time and QoS (Fig. 15), and; job offloading
rates and job share per device (Fig. 16).

Femtocloud setting
Looking first at the FC results, the energy consumption
values are clearly the lowest, as shown in Fig. 15 (top-left).
Compared to the MEC scenario, the energy consumption
values for TMIN and HYBRID are 14− 20% lower for d =
6 and 25% lower for d = 9. These gains, however, come
at the cost of higher execution times and lower QoS: for
d = 6 execution times 7 − 13% higher, and the QoS is
4 − 7% lower; for d = 9 the execution time are 11 − 12%
higher but the QoS differences are small, lower than 2% in
absolute value. Thus, the results are mixed, especially in
the case of d = 6.
A priori, it would be expected that the centralised

offloading decisions to be more reliable in the FC config-
uration, since it is free from the interference that arises
from concurrent offloading decisions by all devices in the
MEC case. However, in the MEC case jobs can execute
locally, e.g. for d = 6 the share of local jobs is 56% for
TMIN and 47% for HYBRID, as depicted at the bottom
in Fig. 16a, and estimation errors tend to be lower for
locally executed jobs. In the FC case (by definition) all jobs
are offloaded leading to higher estimate errors. These two
factors influence the behavior in different directions.

LF[f] strategies
By definition, LF[f] strategies try to execute as many jobs
as possible locally, resorting to offloading through strat-
egy f only when the local device is unable to cope with
the deadline of a job. Accordingly, as shown in Fig. 16(a),
the share of locally executed jobs is significantly higher for
LF[f] when compared to f in almost all cases, 15 − 49%

more, except for TMIN when d = 6 where the difference
is negligible (< 1%).
The results for LF[f] strategies are otherwise indicative

of energy/time/QoS trade-offs, as illustrated in Fig. 15.
This happens especially for d = 6. In this case, when com-
pared to TMIN, LF[TMIN] leads to a decrease of 9% in
energy consumption but, also, an increase of 9% in execu-
tion time and a decrease of 4% in QoS. This is expected
as the base strategy, TMIN, seeks to minimize execution
time and thus it will tend to do better in this metric as well
as in QoS. Again for d = 6, but using HYBRID as the base
strategy this time, LF[HYBRID] degrades execution time
and QoS by even more, 12% and 9% respectively, even if
energy consumption is roughly the same (1% difference
between both). Given that most energy-efficient devices
tend to also be faster in our configuration, the degradation
of execution time and QoS is expected, as with TMIN, but
the difference in energy consumption is only noticeable
for the larger deadline value of d = 9, where the energy
consumption of LF[HYBRID] is 9% higher.

The BALANCED strategy
Finally, the BALANCED base strategy has the overall
effect of smoothing the load distribution among devices,
as intended; recall (from “System model” section) that
the BALANCED strategy makes a random choice among
devices that are estimated to comply with a job’s dead-
line. Examining the numbers for the plot in Fig. 16 (b),
for configurations that employ TMIN and HYBRID as a
base or fallback strategy, the average shares of the jobs for
the Xiaomi Mi 9T and Pixel 4 devices combined (the two
devices that execute most jobs) are 64% for d = 6 and 63%
for d = 9. In comparison, for configurations that employ
BALANCED as a base or fallback strategy, the share of two
devices is 3% lower (61%) for d = 6 and, more noticeably,
10% lower for d = 9 (53%). In more detail for d = 9, the
average individual share grows for all of the 3 least used
devices in the case of BALANCED: from 3% to 6% for
Nexus 9, from 12% to 16% for Galaxy S7e, and from 21%
to 25% for Galaxy Tab S5e. At the same time, the average
share in the case of BALANCED drops from 26% to 24%
for Xiaomi Mi 9T, and from 37% to 29% for Pixel 4.
Unlike the cases for the base strategies TMIN and

HYBRID, the results for BALANCED do not exhibit a
clear trend with respect to energy/time/QoS trade-offs
(Fig. 15). All 6 executions per configuration use the same
seed to guarantee a repeatable job generation pattern. The
particular job pattern may be benefiting or hurting the
behavior of BALANCED in subtle ways according to the
configuration parameters, and the actual random choice
made by the BALANCED strategy during execution. For
instance, for d = 6 and the FC setting, the BALANCED
strategy consumes 8 − 10% more energy than TMIN and
HYBRID, execution times are 5−6% faster, and QoS is 4%

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 19 of 21

Fig. 15 Additional scenarios – energy, time and QoS

higher. The trend is however roughly symmetric for the
MEC setting for instance: 9 − 11% less energy, 10 − 12%
slower execution times, and a 7% lower QoS value.

Conclusion
In this paper we presented a model for soft-real time
job offloading over hybrid cloud topologies, along with
offloading strategies that try to optimize (either all or in
part) execution time, total energy consumption and fulfill
QoS requirements in the form of job deadlines.We instan-
tiated the model in a software system, JAY, and used it to
evaluate a variety of offloading strategies in clouds formed
by mobile devices and two-tier hybrid clouds formed by a
network of mobile devices and a cloudlet. JAY is designed
with adaptive scenarios in mind. Offloading strategies are

fed with the necessary runtime information to perform
time and energy-aware offloading on-the-fly, Moreover,
it employs a modular architecture that allows multi-tier
hybrid cloud topologies to be defined with customis-
able roles per tier or device regarding job generation and
execution. The overall system flexibility was illustrated
through experiments using a benchmark application con-
figured to spawn jobs with different rates and different soft
real-time deadlines, executed over different cloud con-
figurations and offloading strategies. The results of these
experiments show that offloading strategies sensitive to
runtime conditions can effectively and dynamically adjust
their offloading decisions to produce significant gains in
execution time, energy consumption and fulfillment of job
deadlines.

Fig. 16 Additional scenarios – job distribution

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 20 of 21

For future work, we consider two key directions:

• Regarding application scenarios, we are particularly
interested in articulating computation offloading
with data-placement awareness, as in systems like
Oregano [20], our previous work on systems for data
dissemination for hybrid edge clouds [16, 17], which
are particular instances of a class of systems that have
multiple users, and employ multiple mobile devices,
servers, and network tiers [33]. A challenge in these
scenarios is that jobs may potentially require data
stored at distinct hosts and/or tiers in the cloud,
hence the interplay between computation and data
offloading can potentially play a key role. A different
challenge is the possibility of high device churn and
intermittent connectivity over heterogeneous
communication links (WiFi, Bluetooth, 4G/5G, etc),
requiring offloading to proceed opportunistically, to
be articulated with fault tolerance mechanisms (e.g.,
job checkpointing or replication), and the overall
handling of a more dynamic environment regarding
computational resources, network bandwidth, and
energy consumption.

• Regarding JAY as a system, it can be extended in a
number of ways to support a richer set of offloading
strategies and job workloads. Given its modular
architecture, JAY can easily accommodate for other
multi-objective offloading strategies, of which the
hybrid latency-energy offloading strategy is just an
example, that account for additional aspects beyond
execution time and energy consumption, e.g., the
costs of using an infrastructure cloud or mobile
device network traffic. Moreover, even if JAY is
adaptive over a variety of hybrid cloud architectures,
we believe that awareness of the cloud system used
for offloading can lead to novel adaptive offloading
strategies, e.g., as in the TRACTOR algorithm [34]
that accounts for aspects such as power consumption
of network switches at the edge-cloud level for traffic
and power-aware virtual machine placement. Finally,
the system can also be improved for adaptivity in
terms of resource awareness to cope with changeable
cloud links due to mobility, and computational
resources (e.g., GPUs could be used on the mobile
devices by our deep learning benchmark). Mobile
applications also commonly exhibit features that
would require our job model to richer, e.g., job
precedences, job aggregation and their parallel
execution, checkpointing to allow migration, etc.

Acknowledgements
The authors wish to thank the anonymous reviewers for the helpful feedback.

Authors’ contributions
Joaquim Silva programmed JAY and conducted the evaluation experiments.
All authors have participated in the conceptual design of the JAY and

associated experiments, data analysis, and manuscript writing. The author(s)
read and approved the final manuscript.

Authors’ information
All authors are affiliated to the Department of Computer Science, Faculty of
Sciences, University of Porto (DCC/FCUP), and the Center for Research in
Advanced Computing Systems at INESC TEC (CRACS/INESC-TEC).
Joaquim Silva is a PhD student in Computer Science at DCC/FCUP, Eduardo R.
B. Marques is an assistant professor at DCC/FCUP, Luís Lopes is an associate
professor at DCC/FCUP, and Fernando Silva is a full professor at DCC/FCUP. All
authors are researchers at CRACS/INESC TEC.

Funding
This work was partially funded by project SafeCities
(POCI-01-0247-FEDER-041435) from Fundo Europeu de Desenvolvimento
Regional (FEDER), through COMPETE 2020 and Portugal 2020.

Availability of data andmaterials
JAY is available as open-source software at https://github.com/jqmmes/Jay/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 8 January 2021 Accepted: 14 June 2021

References
1. Wikipedia (2020) Apple Designed Processors; consulted on December 1.

Available at https://en.wikipedia.org/wiki/Apple-designed_processors.
Accessed: 1 May 2021

2. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: A
survey. Futur Gener Comput Syst 29(1):84–106

3. Drolia U, Martins R, Tan J, Chheda A, Sanghavi M, Gandhi R, et al (2013)
The Case for Mobile Edge-Clouds. IEEE, Washington

4. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput
8(4):14–23

5. Silva J, Marques ERB, Lopes L, Silva F (2020) Jay: Adaptive Computation
Offloading for Hybrid Cloud Environments. IEEE, Washington

6. Kumar K, Liu J, Lu YH, Bhargava B (2013) A survey of computation
offloading for mobile systems. Mob Netw Appl 18(1):129–140

7. Mach P, Becvar Z (2017) Mobile edge computing: A survey on architecture
and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

8. Shakarami A, Ghobaei-Arani M, Masdari M, Hosseinzadeh M (2020) A
survey on the computation offloading approaches in mobile edge/cloud
computing environment: a stochastic-based perspective. J Grid Comput
18(4):639–671

9. Kemp R, Palmer N, Kielmann T, Bal H (2012) Cuckoo: A computation
offloading framework for smartphones. In: Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST. vol. 76 LNICST. Springer Verlag, Berlin. pp 59–79

10. Shi C, Habak K, Pandurangan P, Ammar M, Naik M, Zegura ECOSMOS
(2014) Computation offloading as a service for mobile devices. In: Proc.
MobiHoc. ACM, New York. pp 287–296

11. Verbelen T, Simoens P, De Turck F, Dhoedt B (2012) AIOLOS: Middleware
for improving mobile application performance through cyber foraging. J
Syst Softw 85(11):2629–2639

12. Cuervoy E, Balasubramanian A, Cho DK, Wolman A, Saroiu S, Chandra R, et
al (2010) MAUI: Making smartphones last longer with code offload. In:
Proc. MobiSys. ACM Press, New York. pp 49–62

13. Xia F, Ding F, Li J, Kong X, Yang LT, Ma J (2014) Phone2Cloud: Exploiting
computation offloading for energy saving on smartphones in mobile
cloud computing. Inf Syst Front 16(1):95–111

14. Kosta S, Aucinas A, Hui P, Mortier R, Zhang X (2012) ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading. In: Proc. INFOCOM. IEEE, Washington. pp 945–953

https://github.com/jqmmes/Jay/

Silva et al. Journal of Cloud Computing (2021) 10:38 Page 21 of 21

15. Neto JLD, Yu SY, Macedo DF, Nogueira JMS, Langar R, Secci SULOOF
(2018) A User Level Online Offloading Framework for Mobile Edge
Computing. IEEE Trans Mob Comput 17(11):2660–2674

16. Garcia M, Rodrigues J, Silva J, Marques ERB, Lopes L (2020) Ramble:
Opportunistic Crowdsourcing of User-Generated Data using Mobile Edge
Clouds. In: Proc. FMEC. IEEE, Washington. pp 172–179

17. Rodrigues J, Marques ERB, Silva J, Lopes LMB, Silva F (2018) Video
Dissemination in Untethered Edge-Clouds: a Case Study. In: Proc. DAIS.
Springer, Cham. pp 137–152

18. Habak K, Ammar M, Harras KA, Zegura E (2015) Femto Clouds: Leveraging
Mobile Devices to Provide Cloud Service at the Edge. In: Proc. CLOUD.
IEEE, New York. pp 9–16

19. Fernando N, Loke SW, Rahayu W (2012) Honeybee: A Programming
Framework for Mobile Crowd Computing. In: Proc. MobiQuitous.
Springer, Berlin. pp 224–236

20. Sanches P, Silva JA, Teófilo A, Paulino H (2020) Data-Centric Distributed
Computing on Networks of Mobile Devices. In: Proc. EuroPar. Springer,
Cham. pp 296–311

21. Silva J, Silva D, Marques ERB, Lopes L, Silva F (2017) P3-Mobile: Parallel
Computing for Mobile Edge-Clouds. In: Proc. CrossCloud. ACM, New York.
pp 5:1–5:7

22. Arslan MY, Singh I, Singh S, Madhyastha HV, Sundaresan K, Krishnamurthy
SVCWC (2015) A distributed computing infrastructure using
smartphones. IEEE Trans Mob Comput 14(8):1587–1600

23. Miluzzo E, Cáceres R, Chen YF (2012) Vision: MClouds - Computing on
Clouds of Mobile Devices. In: Proc. MCS. ACM, New York. pp 9–14

24. Mtibaa A, Fahim A, Harras KA, Ammar MH (2013) Towards Resource
Sharing in Mobile Device Clouds: Power Balancing across Mobile Devices.
In: Proc. MCC. ACM, New York. pp 51–56

25. Gedawy HK, Habak K, Harras K, Hamdi M (2020) RAMOS: A
Resource-Aware Multi-Objective System for Edge Computing. IEEE Trans
Mob Comput:1–1. https://doi.org.10.1109/TMC.2020.2984134

26. Kharbanda H, Krishnan M, Campbell RH (2012) Synergy: A middleware for
energy conservation in mobile devices. In: Proc. CLUSTER. IEEE, New York.
pp 54–62

27. Ota K, Dao MS, Mezaris V, De Natale FG (2017) Deep learning for mobile
multimedia: A survey. ACM Trans on Multimedia Computing. Commun
Appl (TOMM) 13(3s):34

28. Xu M, Liu J, Liu Y, Lin FX, Liu Y, Liu X (2019) A First Look at Deep Learning
Apps on Smartphones. In: Proc. WWW. ACM, New York. pp 2125–2136

29. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al
(2017) MobileNets: Efficient convolutional neural networks for mobile
vision applications. arXiv 1704:04861

30. Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al (2014)
Microsoft COCO: Common objects in Context. In: Proc. ECCV. Springer,
Cham. pp 740–755

31. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al (2016)
TensorFlow: A system for large-scale machine learning. In: Proc. OSDI.
Usenix, Savannah. pp 265–283

32. Nemoto H, Hanhart P, Korshunov P, Ebrahimi T (2014) Ultra-Eye: UHD and
HD images eye tracking dataset. In: Proc. QoMEX. IEEE, New York. pp 39–40

33. Huang L, Feng X, Zhang L, Qian L, Wu Y (2019) Multi-server multi-user
multi-task computation offloading for mobile edge computing networks.
Sensors 19(6):1446

34. Kumar K, Liu J, Lu YH, Bhargava B (2013) A survey of computation
offloading for mobile systems. Mob Netw Appl 18(1):129–140

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org.10.1109/TMC.2020.2984134

	Abstract
	Keywords

	Introduction
	Related work
	System model
	Overview
	Base definitions
	Offloading strategies

	The Jay framework
	Architecture
	Job lifecycle
	System instantiation
	Profiler overview
	Job computation
	Network transmission times
	Power consumption estimates

	Experimental setup
	Devices
	Benchmark application

	Evaluation
	Experiments
	Baseline experiments
	Offloading among android devices
	Extended scenario using cloudlet
	Additional scenarios
	Femtocloud setting
	LF[f] strategies
	The BALANCED strategy

	Conclusion
	Acknowledgements
	Authors' contributions
	Authors' information
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

