

NEPTUS – A FRAMEWORK TO SUPPORT THE MISSION LIFE CYCLE

José Pinto, Paulo Sousa Dias, Rui Gonçalves, E. Marques,
Gil M. Gonçalves, João Borges Sousa, F. Lobo Pereira
{zepinto, pdias, rjpg, edrdo, gil, jtasso, flp}@fe.up.pt

LSTS – Underwater Systems and Technology Laboratory
Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

Abstract: The Neptus distributed command and control framework for operations with
vehicles, sensors, and human operators in inter-operated networks is presented. This is
done in the context of applications, technologies, and field tests. There are applications
for world representation and modeling, mission planning, simulation, execution control
and supervision, and post-mission analysis. This is done in a mixed initiative fashion
allowing the intervention by experienced human operators. XML abstract data types and
XSLT technologies facilitate vehicle-interoperability and the standardization of
interactions. A publish/subscribe (P/S) middleware framework for communications in a
distributed environment enables the transparent inter-operability of communication
networks. A console builder together with the P/S middleware allow the user to configure
operating consoles for different vehicles. Results from field tests validate the overall
framework and provide directions for future work. Copyright © 2006 IFAC

Keywords: Command and Control Systems, Systems Engineering, Communication
Networks, Autonomous vehicles.

1. INTRODUCTION

Researchers and technology developers are devoting
significant efforts to the development of concepts of
operation for networked vehicle systems. In these
systems vehicles come and go and interact through
inter-operated networks with other vehicles and
human operators. Surprisingly, or not, the role of
human operators is receiving significant attention in
new concepts of operation for future systems. In fact,
this is the reason why researchers and technology
developers have introduced the concept of mixed
initiative interactions where planning procedures and
execution control must allow intervention by
experienced human operators. In part this is because
essential experience and operational insight of these
operators cannot be reflected in mathematical models,
so the operators must approve or modify the plan and
the execution. Also, it is impossible to design (say)
computer controllers that can respond satisfactorily to
every possible contingency. In unforeseen situations,
these controllers ask the human operators for
direction.

The design and deployment of mixed initiative
frameworks in a systematic manner and within an
appropriate scientific framework requires a
significant expansion of the basic tool sets from

different areas (computation, control, communication,
and human factors) and the introduction of
fundamentally new techniques that extend and
complement the existing state of the art. The major
challenges come from the distributed nature of these
frameworks and from the human factors. This is why
we need to couple the development of scientific
frameworks with field tests with human operators.

At the Underwater Systems and Technology
Laboratory (USTL) from Porto University we have
been designing and building ocean and air going
autonomous and remotely operated vehicles with the
goal of deploying networked vehicle systems for
oceanographic and environmental applications (Sousa
et al., 2003). We have developed a framework for the
mixed initiative coordination and control of
networked vehicle systems and a tool set for
deploying applications. This is done in the framework
of dynamic networks of hybrid automata. The
concepts for execution control build on experience in
the modular design of distributed control hierarchies
described in (Sousa et al., 2003). The tool set
comprises the Neptus command and control
framework (Dias et al., 2005; Neptus, 2006) and the
Seaware middleware publish/subscribe framework for
distributed real-time systems (Marques et al., 2006).

Here, we discuss mixed initiative interactions in the
context of the Neptus framework and report on field
tests with network vehicle systems. The Neptus
design facilitates mixed initiative interactions with
heterogeneous vehicle systems over inter-operated
networks. First, Neptus applications are built around a
set of truly reusable software modules with special
emphasis on modules for Graphical User Interfaces
(GUI) and data management. Second, Neptus
embodies the abstractions of our command and
control framework with XML abstract data types and
eXtensible Stylesheet Language Transformations
(XSLT) technology; this leads to vehicle-
interoperability and to the standardization of
interactions with human operators. Third, Neptus
allows the user to configure operating consoles for
different vehicles. Fourth, Neptus uses the Seaware
middleware framework for communications in a
distributed environment; this enables the transparent
inter-operability of communication networks.

There are not many references on software
frameworks for mixed initiative interactions with
networked vehicles. Previous work has focused on
operational consoles for robotic systems. There are
several examples of these of applications; see
(Hydroid Inc., 2006) for details on the Remus
autonomous underwater vehicle (AUV) console. The
Naval Postgraduate School AUV Workbench (Lee,
2004), is capable of managing various vehicles in a
cooperative manner. The PLAYER project (Gerkey
et al., 2001) developed a communication
infrastructure for robotic operations. There is a server
relaying data from existing systems (robots,
operators, sensing devices …), thus enabling the
entire world state to be shared among the existing
systems. Some systems send data as publishers and
others (subscribers) get notifications of topic updates.
STAGE is being developed in parallel to provide
means for visualization of the entire world state.

This paper is organized as follows. In section 2 we
present the main concepts behind our control and
coordination framework for multi-vehicle systems.
We present the Neptus framework in section 3 and
describe the communications infrastructure in section
4. In section 5 we discuss the configuration of
consoles for operations. In section 6, we discuss field
tests with multi-vehicle systems. Finally, in section 7,
we present the conclusions and discuss future
developments.

2. CONTROL FRAMEWORK

We use the concept of maneuver – a prototype of an
action/motion description for a single vehicle – as the
atomic component of all execution concepts. Thus we
abstract each vehicle as a provider of maneuvers and
services. A simple protocol based on an abstract
vehicle interface governs the interactions between the
vehicle and an external controller: the external
controller sends a maneuver command to the vehicle;
the vehicle either accepts the command and executes
the maneuver, or does not accept the command and

sends an error message to the controller; the vehicle
sends a done message or an error message to the
controller depending on whether the maneuver
terminates successfully or fails.

The abstract vehicle interface is targeted at operations
in multi-vehicle control and coordination frameworks.
It enables us to decouple the details of vehicle control
from the way we organize the external controllers.
These are organized in a graph with a tree structure:
the nodes are the controllers and the edges are the
links connecting them. There are four layers in this
tree structure, one layer for each type of controller –
task, sub-task, sub-team and vehicle respectively. The
root node is the task controller. It is linked to the sub-
task controllers. Each sub-task controller is linked to
the sub-team controllers. Each sub-team controller is
linked to the vehicle controllers in the sub-team. This
depends on the task specification. Controllers come
and go, but the tree structure is kept. This
organization follows from the structure of task
decomposition and vehicle allocations. We model this
control structure in the framework of dynamic
networks of hybrid automata (Sousa et al., 2004).

The design of our control structure allows for mixed
initiative interactions at all layers in the hierarchy.
This is done at the controller level. The transition
structure of the automaton model specifies the
conditions under which the operator is invoked, or
allowed, and the states where the controller waits for
the intervention of the operator. The abstract vehicle
interface allows operators to directly interact with
each vehicle. This is a first step towards automation
since human operators are able to play the role of the
external controllers with the help of the network by
conforming to the interaction protocols.

3. NEPTUS OVERVIEW

Neptus is a distributed command and control
framework for operations with networked vehicles,
sensors, and human operators. The interactions with
human operators are classified according to the
phases of a mission life cycle: world representation;
planning; simulation; execution and post-mission
analysis. There are applications for world
representation and modeling, planning, simulation,
execution control, and post-mission analysis.

Neptus uses the Seaware middleware framework for
network communication (Marques et al., 2006).
Seaware is a publish/subscribe framework for
dynamic and heterogeneous network environments
oriented to data-centric network computation.
Publishers and subscribers communicate transparently
to any node that is registered in the network. Nodes
can either be vehicles that publish sensor data and
receive operator commands or consoles that subscribe
to the data provided by vehicles and sensors and
publish operator commands. Seaware uses the RTPS
(Real Time Publish Subscribe) protocol and other
forms of network transport.

We have adopted XML for data representation in
Neptus. This enables us to define a grammar for every
data file and to specify the exact file format to be
expected from potential users. XML can also be
filtered and transformed into different formats like
text, HTML or any kind of native mission file formats
for existing vehicles. A eXtensible Stylesheet
Language Transformations (XSLT) stylesheet gives
the transformation rules from XML to the vehicle’s
mission language. This facilitates vehicle inter-
operability and the integration of new vehicles. When
we add a new vehicle to Neptus we must specify the
vehicle’s command interface in XML format.

There is a set of modular software components – Map
Editor, Mission Planner, Mission Processor, Console
Builder, Variable Tree, Renderer2D, Renderer3D –
which can be used by developers to build Neptus
applications. This is especially useful when it comes
to integrate new vehicles in the framework. The
Neptus software components and interactions are
briefly described next.

The Mission Map Editor (MME) component is a GIS-
like application that allows the creation and
manipulation of three dimensional world maps. Maps
are stored as XML files.

The Mission Planner (MP) component is a top-level
application for single and multi-vehicle mission
planning. Mission planning is vehicle specific. There
is a library of vehicle models and interfaces. Mission
plans are stored as XML files. A mission plan is
composed of world maps (links to other XML files),
vehicle mission plans (a graph with nodes
representing maneuvers and transition conditions
among them) and additional data like local
information, checklists for operations, and
specifications for tests.

The Mission Processor (MProc) component translates
Neptus mission files (XML) to the native formats
used by different vehicles. We use this module to
generate vehicle-specific mission files. These are then
uploaded to a vehicle for execution.

There are vehicle-specific and mission-specific
operational consoles. We use the first to supervise
single vehicle operations and the latter to supervise
multi-vehicle operations. We use the Console Builder
(CB) component to build operational consoles and to
tailor these consoles to each vehicle and to each
operator. Initially the CB application presents an
empty window which serves as a canvas for adding
various visual components. The visual components
are then connected to variables that might be
available on the network. These include, for example,
the state of the vehicle, or the motor RPMs. The
configurations for each console are saved as XML
files for reuse.

There is a Variable Tree (VT) module in every
console. This module stores the incoming network

data and provides generic access to data values. The
variables are stored in a tree structure. We use this
tree structure to trigger typed events and the updates
of dependant variables when the value of a given
variable is updated. This simple scheme allows the
easy specification of system alerts by defining scripts
that run whenever a variable or a variable domain is
updated.

The two dimensional (R2D) and three dimensional
Renderer (R3D) components are used to visualize the
motions of the vehicles and the state of the world.
These can be used simultaneously. The Renderer
components are connected to VT module in each
console to subscribe to the data for visualization. The
R3D version proved extremely useful to support the
human operator in remotely operated vehicle (ROV)
operations. This is because video from the vehicle
does not provide enough visual clues for tele-
operation in low-visibility areas. The R2D module is
quite useful to supervise operations that take place
over a large area. Additionally, R2D is also used for
map edition, allowing the user to interact with the
existing objects (images, paths, marks, etc.).

The Mission Review and Analysis (MRA) component
provides support for the analysis of mission data. This
includes provisions for replaying missions in a virtual
world and also to graph mission variables.

Together, these modules enable the specification of
abstract missions with coordinated vehicle plans and
world maps (Dias et al., 2006a, b).

The Neptus design supports concurrent operations.
Vehicles, operators, and operator consoles come and
go. Operators are able to plan and supervise missions
concurrently. Additional consoles can be built and
installed on the fly to display mission related data
over a network. Fig. 1 depicts multi-vehicle
interactions under Neptus and Seaware. There is one
operational console for an autonomous surface
vehicle (ASV) and another one for a remotely
operated vehicle (ROV).

Ethernet

Wi-Fi

Seaware
Publish/Subscribe

R3D Joy Video

VariableTree

Seaware Driver

ROV Console

RPM R2D Com
pass

VariableTree

Seaware Driver

ASV Console

Ethernet

Ethernet

ROAZ ASV

ROV-IES

Fig. 1. Interactions under Neptus

4. COMMUNICATION INFRASTRUCTURE

We have used XML as the base for all data transfers,
storage and manipulation in Neptus. We use XML for
the messaging services between Neptus components
and external ones. There is a base set which is easily
extended.

In order to add a new type of message to the Neptus
framework we just need to add a few lines to a XML
file. That file contains the definition of all messages
that will be able to be read by Neptus. There is a fixed
message header; the body can be composed of several
fields from the set of provided types (Table 1).

Table 1 Native types

Type Length (in bytes)
int8, int16, int32 (all signed) 1, 2, 4
Uint8, uint16, uint32 (all

unsigned)
1, 2, 4

fp32, fp64 (floating point) 4, 8
rawdata, plaintext (first 2

bytes indicates the length)
minimum 2 and

maximum 2 + 216
(65537)

Fig. 2 depicts an example of a message definition that
could be used to communicate the motor state of a
pseudo-vehicle. The message has an Id, a name, and
other fields. The Id must be unique for all the
components using the Neptus messaging service.

<message id="3" name="Motor" abbrev="Motor">
 <field name="Identification Number" abbrev="id"
 type="uint8_t" />
 <field name="Pulse Width Modulation" abbrev="pwm"
 type="fp64_t" unit="%"/>
 <field name="Tension" abbrev="u" type="fp32_t" unit="V"/>
 <field name="Current" abbrev="i" type="fp64_t" unit="A"/>
 <field name="Rotations per minute" abbrev="rpm"
 type="fp32_t" unit="rpm"/>
 <field name="Temperature" abbrev="temp" type="fp32_t"
 unit="ºC"/>
 <field name="State" abbrev="state" type="uint8_t"/>
</message>
Fig. 2. Message example

Seaware provides communication between Neptus
and vehicles in the networked environment. Seaware
is a publish/subscribe based middleware, which
serves IP-based Wi-Fi/Ethernet or underwater
acoustic modem communication setups.

The publish/subscribe mechanism allows dynamic
pairing of peers in the network according to named
message types, known as topics. Within Neptus, each
vehicle console defines two sets of published topics
and of subscribed topics which correspond to the
message exchanges required for vehicle control.

For IP-based communications, integrating new
components in the run-time network environment is
transparent; Seaware provides that support through a
Real-Time Publish-Subscribe (RTPS) protocol back-

end, with built-in support for dynamic coupling of
peers addressed by topic. It is possible to have distinct
Neptus instances interfacing with the same vehicle,
with possible generalizations to many-to-many
(consoles/vehicles) communication.

 5. CONFIGURABLE CONSOLES

We have developed the Console Builder (CB)
application to facilitate the addition of new vehicles
with new sensor suites to Neptus. The operator uses
CB to build and configure vehicle consoles.

There are two important aspects to console
configuration: visual components and event
communications.

The internal Neptus event communication system is
based on a tree structure, where nodes indicate the
subject of data values in leafs (Fig. 3). Neptus visual
components can become listeners of a single variable
(tree leaf) or of a defined variable domain (tree
branch). Whenever a message arrives from Seaware,
its data is stored in the tree at the right branch
according to the XML definition of the message and
the listeners are informed of the incoming network
middleware data. In a similar way, output data is sent
to middleware by Neptus console components
through the variable tree. The variable tree system is
also used for event communication between Neptus
local components.

There are two states in the Neptus generic console
builder application: Editing and Operational. In
editing mode, the palette of available components
(compass panel, renderer panel, RPM panel, video
panel …) becomes visible, offering the user the
possibility to add and place components freely inside
console main panel. To configure and connect the
panels to the variable tree system, the user can alter
the component properties using a dialog box. When
all components are ready, correctly placed and
connected to the system variable tree, the user can
switch the state of the application to the operational
mode where the components become fixed in the
console and start to respond to the user interactions
(mouse clicks, key presses …).

Fig. 3. Neptus variable tree for the Isurus AUV

 Currently, there is one specialized console for every
vehicle operated under Neptus. But we can do more.
We can use CB to build multi-vehicle operational
consoles for a variety of operational scenarios, even
to supervise and control several systems
simultaneously, as shown in Fig. 4.

Fig. 4. Operation scenarios allowed by Neptus

Console Builder

The architecture behind configurable consoles is
simple to use, not only for final users but also for
developers. Neptus, as an application framework, can
be used to create new visual components to be added
to operational consoles. The visual components can
be extended for scripting, which uses the variable tree
repository information. This endows a specific
interface with scripting support. With this scripting
interface, components can run JavaScript code that
accesses the system’s variable tree. The script will
run whenever some variable of the tree system it uses
is updated. The “component developer” only has to
process the script’s return value and message. This
kind of capabilities, easy to implement using the
Neptus framework, makes visual components
extremely configurable to the final user.

Another important subject that is established in CB,
for easy reconfiguration, is the alarms treatment.
Alarm components are hierarchically connected,
resulting in a tree structure where the root node is the
console itself. The alarm messages travel up the alarm
graph structure to the root. Alarms are classified into
several levels. A graphical representation of the
alarms is displayed on the operational consoles
together with a window for error messages (see the
LED bar and window for error messages window in
Fig. 5). All the alarm nodes automatically set their
state by maximizing the levels of their children
recursively. As a result, the root console alarm LED
shows the major error occurred in some component
(Fig. 6).

The use of alarms and scripting interfaces leads to a
flexible and organized way to handle malfunctions at
mission execution time.

Fig. 5. KOS ROV console and the graph of alarms.

We have used the Neptus Console Builder extensively
to configure operational consoles for ocean and air
going vehicles. CB enables us to configure a new
console rapidly and with all the required operational
ingredients.

Fig. 6. Console Alarm graph example with an RPM

error message path

6. FIELD TESTS

Field tests are essential to validate developments and
to evaluate mixed initiative interactions. We have
field-tested Neptus in our operational deployments.

We started field tests with single vehicle operations
and recently moved into multi-vehicle operations with
wireless sensor networks (WSN). In the first field test
we used Neptus for mission planning and control of
the IES ROV in the inspection of an underwater
pipeline (Fig. 7). The use of the same map for mission
planning and execution greatly reduced the number of
human errors. We were able to visualize the mission
in simulation and to use the experience acquired in
simulation to operate the vehicle in real time. The 3D
visualization of the real motions in a virtual world
proved quite useful for operations in waters with poor
visibility. We tested the mission planning GUI and
the generation of mission files through XSLT in
operations with the Isurus AUV (Fig. 7) which took
place in the Montemor-O-Velho nautical center. This
represented a great advance since we used to edit
Isurus native mission files by hand. The number of
planning errors was greatly reduced with the help of

the 2D/3D maps and of the visual aids of our planning
GUI. We have also built a new console to track the
motions of Isurus with the help of data provided by
the acoustic localization system. This console enabled
us to evaluate mission performance in real-time. We
had to provide consistency checks for displaying data
coming from different sources.

We used Neptus to operate two Wireless Sensor
Networks and two vehicles (Isurus and Roaz) in the
NATO Swordfish exercise which took place in May
2006 in Tróia (Portugal). This was done in
cooperation with the Portuguese Navy. There was one
operator per vehicle and multiple consoles to
subscribe to the data published by the vehicles and
the sensors. Data was published live to the Internet.

Fig. 7. Isurus AUV (top right), IES ROV (top left)

and Roaz ASV

7. CONCLUSIONS AND FUTURE WORK

The Neptus framework has already proven invaluable
in operational deployments with ROVs, AUVs,
ASVs, and WSNs running different operating systems
and using inter-operated communication networks
(Wi-Fi, wired Ethernet, acoustic modems, ZigBee,
etc.). This is in part because of its modular design and
of the underlying communications infrastructure. The
ability to create new specialized applications through
the reutilization of existing components is very
appreciated by developers. Heterogeneous vehicles
and sensors are easily integrated into the Neptus
framework and data is transparently shared across
operational consoles. The ability to define an abstract
mission and to translate the resulting XML by using
XSLT is also a much appreciated feature because it
allows the integration of new vehicles without
changes to the Neptus code. In the same manner, the
ability to build operating consoles with a GUI is quite
important for anyone trying to use Neptus to interact
with a new vehicle in a new operational scenario.

Neptus is a work in progress. New releases
incorporate lessons learned from operational
deployments. The available functionality is being
extended and improved. This includes: a simulation
service to support operator training and validation of
mission specifications for generic vehicles (currently
this is restricted to one ROV); GUI for mission
specification in the framework of hybrid automata
(currently mission plans have a linear structure); data

logging onto a central database which will be
accessed by the MRA application for mission revision
or through a web page. This will allow to display data
gathered anywhere in the world by any vehicle
connected to Neptus.

ACKNOWLEDGMENTS

This research was partly supported by Agência de
Inovação under project PISCIS. Paulo Dias would
like to thank the financial support of Fundação para a
Ciência e Tecnologia.

REFERENCES

Dias, P. S., R. Gomes, J. Pinto, S. L. Fraga, G. M.

Gonçalves, J. B. Sousa and F. Lobo Pereira
(2005), Neptus – A framework to support
multiple vehicle operation. In: Today's
technology for a sustainable future, OCEANS
Europe 2005, Brest, France, June 20-23.

Dias, P. S., R. Gomes, J. Pinto, G. M. Gonçalves, J.
B. Sousa and F. Lobo Pereira (2006a), Mission
Planning and Specification in the Neptus
Framework. In: Humanitarian Robotics, ICRA
2006 IEEE International Conference on Robotics
and Automation, Orlando, Florida, USA, May
15-19.

Dias, P. S., J. Pinto, G. M. Gonçalves, R. Gonçalves,
J. B. Sousa and F. Lobo Pereira (2006b), Mission
Review and Analysis. In: Fusion 2006 The 9th
International Conference on Information Fusion,
Florence, Italy, July 10-13.

Gerkey, B. P., R. T. Vaughan, K. Støy, A. Howard,
G.S. Sukhatme, R. J. Matarić (2001). Most
Valuable Player: A Robot Device Server for
Distributed Control. In Proceedings of the
Second International Workshop on Infrastructure
for Agent, MAS and scalable MAS, Montreal,
Canada, May 29

Hydroid Inc., <http://www.hydroidinc.com/>
Marques, E.R.B., G.M. Gonçalves and J.B. Sousa

(2006). Seaware: a publish/subscribe middleware
for networked vehicle systems. To appear in: 7th
Conference on Manoeuvring and Control of
Marine Craft (MCMC’2006), Lisbon, Portugal,
from September 20-22.

Neptus, <http://whale.fe.up.pt/neptus> (Jul, 2006)
Lee, C. S. (2004), NPS AUV Workbench:

Collaborative Environment for Autonomous
Underwater Vehicles (AUV) Mission Planning
and 3D Visualization. MSc Thesis, Naval
Postgraduate School, Monterey, U.S.A., March
2004

Sousa, J. B., F. Lobo Pereira, P. F. Souto, L.
Madureira and E. P. Silva (2003). Distributed
sensor and vehicle networked systems for
environmental applications. In Biologi Italiani, n.
8, pp 57-60.

Sousa, J. B., T. Simsek and P. Varaiya (2004). Task
planning and execution for UAV teams. In
Proceedings of the Decision and Control
Conference, Bahamas.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

