SEAWARE: A PUBLISH-SUBSCRIBE
MIDDLEWARE FOR NETWORKED VEHICLE
SYSTEMS

Eduardo R. B. Marques, Gil M. Gongalves, Joao B. Sousa

Underwater Systems and Technology Laboratory (USTL)
Faculty of Engineering, University of Porto (FEUP)
{edrdo,gil jtasso} Qfe.up.pt

Abstract: This paper describes the use of the Seaware publish-subscribe communi-
cations middleware in networked vehicle systems composed of AUVs (autonomous
underwater vehicles), ROVs (remotely operated vehicles), UAVs (unmanned air
vehicles) and ASVs (autonomous surface vehicles). Seaware provides a high level
interface to network communication and may be deployed with a combination of
heterogeneous components within a dynamic network. Seaware uses the RTPS
(Real Time Publish Subscribe) protocol and other forms of network transport.

Keywords: autonomous vehicles, communication networks, distributed control.

1. INTRODUCTION

In the PISCIS project (Cruz et al., 2003) a sys-
tem for the mixed initiative control and coor-
dination of multiple underwater and surface ve-
hicles for oceanographic and environmental data
collection has been developed. The system con-
sists of 1) autonomous underwater vehicles and
autonomous surface vehicles equipped with acous-
tic modems (for underwater communications), ra-
dio/GPS systems (for interactions at the surface),
2) buoys equipped with transponders (for acoustic
localization) and 3) a sensor network. PISCIS
is a distributed system supported by multiple
communication links (radio, Ethernet, acoustic
links) with services for vehicle tele-operation, tele-
programming and supervision, services for data
collection from a sensor network, and services for
system supervision with aggregation of informa-
tion collected in real-time. In this system, vehicles
and operating modules come and go and services
and interactions are built on the fly.

To address the diverse communication require-
ments and enhance its support in PISCIS , a

communications middleware called Seaware has
been developed. Seaware was deployed in vehicles
and ground stations of the PISCIS system, in or-
der to provide an uniform, portable, efficient and
high level interface to network communication.
Seaware embraces a publish-subscribe messaging
paradigm and makes use of modern developments
in that field, specifically the Real Time Publish
Subscribe (RTPS) network protocol (IDA, 2001).

The rest of this paper is structured as follows.
Section 2 provides an overview of the Seaware im-
plementation. Section 3 describes its application
to multi-vehicle networked systems with an ex-
ample application, discussion of general operating
scenarios and evaluation summary. Section 4 ends
the paper with concluding remarks and highlights
future work.

2. OVERVIEW OF SEAWARE

Seaware is a middleware for network commu-
nication in dynamic and heterogeneous network
environments, oriented to data-centric network

computation. It has been specifically designed for
integration in networked vehicle systems of the
PISCIS project, which is the focus of this paper,
however it has a generic approach in its design
and is therefore suitable for application in other
general-purpose networked systems in automation
and control. The main aspects of Seaware are:
the use of publish-subscribe messaging paradigm,
the support of heterogeneous platforms and the
provision of a high-level interface to network com-
munications.

2.1 Requirements

The requirements imposed by a networked vehicle
system which have led to the development of
Seaware are as follows:

Heterogeneous support - The system components
are heterogeneous and it is the role of the mid-
dleware to abstract and encapsulate the diverse
nature of these components and underlying sup-
port in an usable, modular and uniform interface
for communications. Several heterogeneity aspects
need to be addressed, such as the diverse nature of
underlying hardware, software and network sup-
port.

Dynamic network environment - The network in-
teractions are complex and may change over time
in terms of communication flow or components
in the network and the middleware must adapt
to communication patterns and network events
on the on-the fly. Specifically, the system has
to provide support for: dynamic component peer
discovery, plug-in and plug-out; many-to-many
changeable communication patterns; and on-the-
fly component re-configurability.

Lightweight robust real-time operation - The mid-
dleware must provide lightweight robust opera-
tion, considering limited resource or operation
restraints in components and underlying support.
The main restrictions may be posed on the net-
work interface (intermittent availability, limited
network bandwidth) or processing power (for ex-
ample, processor speed, memory availability). In
regard to real-time operation, the requirements
can be considered as soft real-time, with no strict
deadlines, but real-time response with network
latency of a few milliseconds at most is required.

Software engineering - The middleware must pro-
vide a simple and abstract model of communi-
cation of feasible use by any programmer and
portable across different platforms. Specifically,
an high level object-oriented design embodying fa-
miliar concepts in general programming, bindings
to standard programming languages and support
by diverse operating systems are highly desirable.

2.2 Software framework

The Seaware software framework architecture is
shown in Figure 1. An object oriented API, with
Java and C++ bindings, is available for applica-
tion development. This high level API encapsu-
lates access to a core API written using the C
programming language. Further down this tier-
architecture, a network interface layer encapsu-
lates access to network transports; in the current
implementation these are RTPS, acoustic modem
based communications, HTTP and (raw) UDP.

C++ Application (" Java Application)
(Seaware C++ API) [Seaware Java API)

(Seaware Core C API]
(RTPS JUDPJHTTP)__Acoustic modems
C_Wifi/Ethernet >CUnderwater acoustics >

Fig. 1. Seaware software framework

This software framework works both on Linux
and Windows operating systems. The use of an
high level object-oriented API, with bindings to
standard programming languages and operating
systems, enables portable software development in
heterogeneous systems.

2.3 Publish-subscribe messaging

Publish-subscribe is a communications paradigm
that has been adopted in recent years in net-
work communication middleware systems. It is
defined by anonymous message exchange between
components that produce data (publishers) and
those that consume it (subscribers). Each message
exchanged has an associated topic id that pairs
together publishers and subscribers. Data issued
by a publisher or various publishers for a certain
topic is delivered to all subscribers of that topic,
allowing variation of components and types of
data in the network over time. Publishers and
subscribers do not need to know who their peers
are; instead the middleware is responsible for dy-
namically enabling peer discovery and adapting to
network changes at execution time.

This form of communication is simple and in-
herently suitable for dynamic communication en-
vironments, with on-the-fly component integra-
tion, many-to-many communication and change-
able communication patterns. It can also easily
emulate more traditional forms of communication
such as peer-to-peer, client-server or broadcast.

Seaware embraces publish-subscribe messaging in
two ways: firstly it provides a publish-subscribe
data-centric model; secondly it uses the RTPS
protocol as the main form of network transport.

Publish-subscribe data-centric model - Figure 2
illustrates the publish-subscribe messaging model

implemented by Seaware. Applications (Appl and
App2 in the figure) have resident nodes (N1 to
N4) which exchange messages for published or
subscribed topics (A to C). Topic namespaces (S1
to S3) are used to define distinct subsets of topics.
Message exchange may occur within the same
application (N1 to N2, N3 to N4) or over the
network (N1 to N4, N3 to N2).

/N] Pub |\ Sub | N2 App 1
A A
Pub | Sub | Pub (' Sub

Fig. 2. Publish-subscribe model entities

Use of RTPS - Publish-subscribe messaging has
been adopted in distributed real-time commu-
nication standards as the Real-Time Publish-
Subscribe (RTPS) network protocol. RTPS is a

standard protocol for communicating over lightweight

unreliable network transport (typically UDP/IP),
complemented in some implementations with
the Data Distribution Service (DDS) architec-
ture (OMG, 2005) for high level operation. We
have initially integrated RTPS support using the
research-based open-source ORTE implementa-
tion (Smolik et al., 2003), then also incorporated
NDDS (RTI, n.d.), a commercial implementation
of DDS/RTPS used in industrial automation/real-
time applications. Although ORTE and, in a more
elaborate form, NDDS, are middleware technolo-
gies on their own, the Seaware API encapsulates
and hides access to them, in order to provide a
simpler interface.

2.4 Other network transports

RTPS allows applications to operate on a Wifi or
Ethernet environment, but other heterogeneous
transports are supported by Seaware in order
to deal with specific communication media or
operational limitations.

Acoustic modems - Underwater communications
are made possible through the use of acous-
tic modems transport layer, with a simple func-
tional design. The support offers message in-
tegrity control (using CRC checksum), basic
message re-transmission control (through a ba-
sic message acknowledgment mechanism provided
by the acoustic modems we use) but no sup-
port for more automated communication such
as time-division multiple-access (TDMA) scheme

(application-level logic must ensure collision avoid-
ance on the half-duplex acoustic channel, an ex-
ample of a possible configuration is a master-slave
layout).

Raw UDP tramsport - Some of our vehicles use a
legacy software infrastructure which is unpracti-
cal to change and where communication is done
through raw UDP sockets. For communication
with these vehicles, a Seaware enabled application
must use the raw UDP transport backend.

HTTP transport - HTTP based-transport is an
experimental feature which is being tested for
web-data publishing. The aim is to interconnect
Seaware applications and Java applets which may
remotely displaced on any site in the Internet.

2.5 Implementation

The core aspects of the Seaware implementation
are summarized in the following topics.

Application programmer interface - The Seaware
application programmer interface (API), with
Java or C++ bindings, has its core support pro-
vided by the API class skeletons shown in Fig-
ure 3 (only a simplified overview is shown due
to space requirements): a message (i) that ap-
plications must extend to define message con-
tents and network serialization format; publication
and subscription for topic configuration (ii); node
(iii) providing the core messaging operations; a
message listener (iv) for asynchronous message
notification. This API interface is in direct cor-
respondence with the publish-subscribe entities
described before, provides uniform access both in
Java and C++ and for all types of transport,
and encapsulates message transport using only a
publish-subscribe oriented access.

QoS (Quality of Service) settings - RTPS/DDS
provides support for a number of built-in QoS set-
tings of interest(IDA, 2001; OMG, 2005), some of
which have been deployed in the implementation
of Seaware: configurable message reliability, on a
per-topic basis, which enables/disables message
reliability depending on the requirements of the
message exchange - application logic may toler-
ate some message loss in some exchanges, or it
may require reliability for strict in-order message
delivery; time-based separation and deadline for
topic subscriptions, which specify the minimum
and maximum time interval for the receipt of new
message issues, allowing optimization of network
flow through different separation settings for dif-
ferent subscribers and timeout control using the
deadline setting; UDP multicast for automatic
application discovery, allowing a dynamic envi-
ronment on which the network hosts need not
be known in advance; use of RTPS domains for

separation of distinct application sets; application
refresh time and expiration time which specify
how long an application acknowledges its presence
on the network (even if not publishing data) and
how long it may be out of reach or not sending
any messages and later re-establish contact with
their peers.

Since there may be other types of transport apart
from RTPS, support is provided so that some of
the settings may be interpreted generically for all
transports, specifically those related to message
timing (time-based separation and deadline) and
also to some degree message reliability (excluding
the legacy "raw UDP” transport).

Configuration support - The system uses a XML
configuration format for the various components
in the publish-subscribe model, to minimize pro-
gramming work using the API. A XML configura-
tion may be loaded to allow direct configuration
in Java, or automatic code generation in C++.

Performance evaluation - Benchmarks and field
test results indicate good performance in terms of
message delivery rate, connectivity response time,
use of network bandwidth: message delivery rate
yields a maximum throughout of 3000 messages
per second over Ethernet/Wifi; peer connection
time is normally less than 5 milliseconds; network
payload is sustainable (50 bytes overhead due to
RTPS message header per message issue).

i. Message
public interface Message ... {
public int serialize(...);
public void unserialize(...);
}

#. Topic configuration
enum QO0S { DEADLINE, RELIABILITY, SEPARATION, ...J};
class TopicConfiguration{

void setQ0S(QOS qos, int value);
void setNamespace(String ns);
}
class Publication<T extends Message>
extends TopicConfiguration { ... }
class Subscription<T extends Message>
extends TopicConfiguration { ... }
14¢. Node class
class Node {
void defineTopic(TopicConfiguration p);
void publish(Message m);
Message pull(String topic,Messagelnfo info);
void setMessageListener(String topic,
MessageListener 1);
}
. Message listener
class MessageListener{
public void onMessage
(Message msg,MessageInfo info);

¥

Fig. 3. Seaware API overview

3. APPLICATION TO NETWORKED
VEHICLE SYSTEMS

3.1 Ezxample application

An evaluation of Seaware in the context of net-
worked vehicle systems operational scenarios was
made during tests conducted in Portugal, at the
Montemor-o-Velho canoeing race track and Por-
tuguese Navy facilities in Lisbon and Troia. Two
vehicles - the Isurus AUV and the Roaz ASV,
depicted in Figure 4 - and the Neptus framework
application suite were used for our tests:

The Neptus framework (Dias et al., 2005) is an
environment to support network centric opera-
tion of heterogeneous teams of autonomous and
semi-autonomous vehicles and systems. Neptus is
programmed in Java and Seaware has been inte-
grated into it, replacing previous network support
for vehicle communications. In the context of the
Neptus framework, a wide variety of possible in-
teractions take place between the pilot (human
or automated) and the vehicles. In the field tests,
the Neptus framework was used to plan a mission
for autonomous execution by the Isurus AUV and
allowed remote human tele-operation of the Roaz
ASV.

Fig. 4. Isurus AUV and Roaz ASV

Isurus is a AUV with programmable mission
execution within the Neptus framework (Dias
et al., 2006), acoustic beacon based localization
(Cruz et al., 2001), Wifi surface connectivity, un-
derwater acoustic modem communications, and
multiple sensory devices. During mission execu-
tion the localization of Isurus may be tracked by
a Neptus console with an attached serial device in-
terface to the acoustic beacon system. This data is
then re-transmitted over RTPS using Seaware so
that the vehicle’s position may also be tracked by
other peers. Mission control commands and state
monitoring data can be sent or received through
acoustic modems (with master-slave application
level control for acoustic channel collision han-
dling) when the vehicle is underwater or over Wifi
”raw UDP” when the vehicle is at the surface.

L% | ;5
\ - ()
Isurus Y 47‘ k
~

console
(Neptus)

= mission |
#_ ‘W a)
. o 4 ISURUS .
Isurus

monitoring

- -

v o _ » : —

tele-operation Roaz
nonitoring
monitoring

Fig. 5. Networked vehicle system

Roaz
console
(Neptus)

Passive
console
(Neptus)

Roaz (Ferreira et al., 2006) is a multi-purpose
ASV with a docking station for AUVs. It is tar-
geted to flexible and coordinated operations with
long durations. Roaz is equipped with plug-and-
play sensors and Wifi network support. In the
test setup, Roaz was configured in tele-operation
mode, allowing remote control by a Neptus con-
sole, with vehicle tracking done with on-board
GPS and video camera and side-scan sonar de-
vices operating independently from Neptus com-
munication. The core Roaz control tasks for vehi-
cle guidance, GPS tracking, and on-board logging,
are programmed in C++ and use Seaware for Wifi
communication with Neptus consoles.

The publish-subscribe setup deployed in our
field mission tests is depicted in Figure 5, that
shows how components are connected from an
high level viewpoint, corresponding to our pre-
vious component architecture. Figure 6 provides
more fine grained detail on the most elaborate
publish-subscribe setup, that concerning Neptus-
Roaz ASV communication, in terms of message
exchange. Four topics are used for communi-
cation: EstimatedState for vehicle positioning
data,collected using the vehicles on-board GPS re-
ceiver; Joystick for the tele-operation command
through Neptus; Motor for on-board motor mon-
itoring data, as for example rotations per minute
and power consumption data; and Heartbeat
used for mutual acknowledgment issued with a
periodic 1 Hz rate.

X EstimatedState
EstimatedState
Vehicle GPS
monitoring tracking

On-board
logger

Heartbeat Heartbeat
control
Tele
operation
Roaz
console

Heartbeat
Motor

Main
control task

Roaz

Joystick

Fig. 6. Detailed setup for Roaz ASV

The global communication setup was experi-
mented with good results. Overall, a robust op-
eration has been observed, running applications
could enter and leave the system on the fly with-
out disrupting the communications environment
and its configuration could be adjusted with lit-
tle effort. Interaction between Roaz and Neptus
consoles allowed the surface vehicle to be guided
within the bounds allowed by the on-site wireless
communications infrastructure (up to 1000 me-
ters). In regard to Isurus, the position tracking
re-publication scheme and Wifi UDP and acoustic
modem interfaces were successfully validated, al-
lowing more than one ground console to monitor
the vehicle’s position and mission control to be
done at surface level or underwater.

3.2 General application

The usability of the Seaware system, from the
perspective of network communication and con-
trol can be discussed considering generic classes of
typical operational scenarios in networked vehicle
systems. We address some of the typical scenarios
(Sousa and Sengupta, 2001; Girard et al., 2004)
from an high level network control infrastructure
perspective.

Centralized ground-to-vehicle control - A ground
control console and a vehicle communicate, al-
lowing remote operation and monitoring of the
vehicle. The scheme may be generalized to more
than one vehicle, but keeping a centralized control
approach, where a single console controls more
than one vehicle. This is the basic operational
scenario for which Seaware provides support, on
which other more elaborate scenarios build up.

Multi-vehicle coordinated missions - In multi-
vehicle coordinated missions, vehicles may com-
municate with each other in order to accomplish
a task and also cooperate with ground control
tasks for shared semi-autonomous control. Besides
the described integration of Seaware in the exam-
ple scenario described, on-going developments are
integrating Seaware in a new generation of vehi-
cles for multi-vehicle operation scenarios (AUVs,
UAVs, ROVs and ASVs).

Dynamic many-to-many vehicle control - The con-
trol environment is highly distributed between
ground control and vehicles in the environment,
with many-to-many communication. There are
several possible layouts for these operational sce-
narios. In a single vehicle scenario one of the
consoles may act as the active vehicle controller
whereas others merely execute passive tasks, such
as vehicle state monitoring or data logging. In
a multi-vehicle scenario various consoles may be
used, each acting as master control for a vehicle

while at the same time being able to monitor
the other vehicles in the environment (the field
test setting we described is a particular example).
Richer operational scenarios may be considered
where main control of one or more vehicles is
effectively shared between several nodes and may
change over time with complex interaction, as
it happens with layered control architectures for
multi-vehicle coordinated missions.

3.8 Evaluation

Seaware greatly enhances the scope and flexibil-
ity of the networked vehicle systems communi-
cation infrastructure in a number of important
aspects, considering the particular field test set-
tings described and the generic operational sce-
narios discussed, by comparison with the previ-
ous networking support we used in our projects.
Centralized vehicle control was the bare support
we had, with only one static ground control and
one or more vehicles connected to it or connected
to non-communicating ground controls; a vehicle
was also only prepared to communicate with a
single ground control. There was also no built-
in support for distributed many-to-many commu-
nication, dynamic on-the fly integration of com-
ponents or varying network communication pat-
terns. Finally, communications support was het-
erogeneous and low-level in terms of systems pro-
gramming which made it difficult to have an uni-
form and model-based implementation of commu-
nication and had a strong impact in the software
development cycle. All these limitations are ad-
dressed in the implementation of Seaware.

4. CONCLUDING REMARKS

We have provided an overview of the implementa-
tion of the Seaware publish-subscribe middleware
and its application to networked vehicle systems
with heterogeneous components.

Future work in Seaware will mainly be driven
by other projects which have already integrated
Seaware, for example the ASASF multiple UAV
control project (Almeida et al., 2006) and a new
generation of other vehicles being developed in
our research group (AUVs, ASVs and ROVs).
Some specific items for work in the near fu-
ture are as follows: support of spread-spectrum
radio based networks, to be deployed in ASVs
and UAVs for long-range communications; more
advanced acoustic modem communications sup-
port to cope with more elaborate communication
requirements, exploiting TDMA and store-and-
forward message routing schemes; development of
tools for run-time network state monitoring and
configuration.

ACKNOWLEDGEMENTS

This work has been partially funded by Agéncia
de Inovacédo through the PISCIS project.

REFERENCES

Almeida, P., G. Gongcalves and J. Sousa
(2006). Multi-UAV platform for integration
in mixed-initiative coordinated missions. In:
1st IFAC Workshop on Multi- Vehicle Systems
(MVS’06). Accepted for publication.

Cruz, N., J. B. Sousa, F. L. Pereira, J. E. Silva,
J. Coimbra and E. B. Dias (2003). Operations
with multiple autonomous underwater vehi-
cles: the PISCIS project. In: Second Annual
Symposium on Autonomous Intelligent Net-
works and Systems AINS 2003.

Cruz, N., L. Madureira, A. Matos and F. L.
Pereira (2001). A versatile acoustic beacon
for navigation and remote tracking of mul-
tiple underwater vehicles. In: MTS/IEEE In-
ternational Conference Oceans 2001.

Dias, P. S., R. Gomes, J. Pinto, G. M. Gongalves,
J. B. Sousa and F. L. Pereira (2006). Mis-
sion planning and specification in the Nep-
tus framework. In: Humanitarian Robotics,
ICRA 2006 IEEFE International Conference
on Robotics and Automation.

Dias, P. S., R. Gomes, J. Pinto, S. L. Fraga, G. M.
Gongalves, J. B. Sousa and F. Lobo Pereira
(2005). Neptus a framework to support mul-
tiple vehicle operation. In: MTS/IEEE Inter-
national Conference Oceans 2005.

Ferreira, H., A. Martins, A. Dias, C. Almeida,
J. M. Almeida and E. P. Silva (2006). Roaz
autonomous surface vehicle design and imple-
mentation. In: ROBOTICA 2006, Portuguese
National Robotics Meeting.

Girard, A. R., J. Sousa and J. K. Hedrick (2004).
A selection of recent advances in networked
vehicle systems. In: Proc. of the Institution
of Mechanical Engineers (IMECHE), Part I

IDA (2001). Real Time Publish Subscribe
(RTPS), Wire Protocol Specification 1.0. In-
terface for Distributed Automation group.

OMG, Object Management Group (2005). Data
Distribution Service for Real-time Systems
Specification, v1.1.

RTI, Real Time Innovations Inc (n.d.). NDDS.
http://rti.com/products_ndds.html.

Smolik, P., Z. Sebek and Z. Hanzilek (2003).
ORTE-open source implementation of Real-
Time Publish-Subcribe protocol. In: 2nd In-
ternational Workshop on Real-Time lans in
the Internet Age. pp. 68-72.

Sousa, J. B. and R. Sengupta (2001). Networked
multi-vehicle systems. In: Tutorial session for
the IFAC Decision and Control Conference.

