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ABSTRACT
In the last decade, technological advances and improved manu-
facturing processes have significantly dropped the price tag of
mobile devices such as smartphones and tablets whilst augment-
ing their storage and computational capabilities. Their ubiquity
fostered research on mobile edge-clouds, formed by sets of such
devices in close proximity, with the goal of mastering their global
computational and storage resources. The development of crowd-
sourcing applications that take advantage of such edge-clouds is,
however, hampered by the complexity of network formation and
maintenance, the intrinsic instability of wireless links and the het-
erogeneity of the hardware and operating systems in the devices.
In this paper we present a middleware to deal with this complexity,
providing a building block upon which crowd-sourcing applica-
tions may be built. We motivate the development of the middleware
through a discussion of real-world applications, and present the
middleware’s architecture along with the associated components
and current development status. The middleware takes form as a
Java API for Android devices that allows for the establishment of
links using heterogeneous communication technologies (e.g., Wifi-
Direct, Bluetooth), and the combination of these links to form a
logical edge-cloud network. On top of this functionality, services for
edge computation, storage, and streaming are also being developed.
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1 INTRODUCTION
Since their introduction, mobile devices such as smartphones and
tablets have traditionally been seen as thin clients of network appli-
cations, depending on beefy servers to perform most computation-
ally intensive tasks [1]. Subsequently, the Mobile Cloud Computing
(MCC) paradigm emerged [2], letting computationally intensive
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tasks and large data sets be offloaded to cloud computing infrastruc-
tures for execution and/or storage. The MCC approach, however,
is inadequate for applications with low latency and/or high band-
width requirements. This motivated the appearance of cloudlets [3],
that handle requests from mobile devices at the edge of the net-
work while serving as caches for heavyweight cloud computing
infrastructures. Thus, cloudlets bring some of the computational
and storage power of traditional cloud computing to local, less
powerful servers, but improving quality of service.

Beyond MCC and cloudlets, the ongoing technological evolu-
tion makes the case for mobile edge-clouds [4], networks formed
by nearby mobile devices where infrastructural support may be
optional. Smartphones and tablets have become ubiquitous [5] and
typically feature powerful multi-core processors, several gigabytes
of storage space and multiple communication interfaces (e.g., Wifi,
Wifi-Direct, Bluetooth, 3G/4G). As such, they pack considerable
computational power and can communicate in device-to-device
(D2D) mode with low latency and high bandwidth. A whole class
of services and applications is made possible by crowd-sourcing
the resources of these devices in such mobile edge-clouds [6–11].

Despite the growing interest in this area, and the fact that the
market is relatively homogeneous, being dominated by Google’s
Android and Apple’s iOS operating systems, relatively few crowd-
sourcing applications have been proposed, either as research proto-
types or commercial products. One of the reasons for this meagre
output is, we believe, the lack of adequate middleware to support
the development of such applications, allowing programmers to
abstract away from the intricacies of device-to-device communi-
cation using multiple protocols, from building and maintaining a
mesh network of devices, from moving and storing data between
devices, from scheduling computations over the network, and other
complex operations. A middleware capable of providing an API and
core services with such functionality would go a long way to make
application development more agile.

In this paper we present the architecture of one such middleware
that is being developed in the context of the Hyrax project1. Sec-
tion 2 describes the applications that motivated and provided the
foundations for the middleware architecture presented in Section 3.
Section 4 discusses related work. Section 5 concludes the paper
with a discussion of open issues and future work.

2 MOTIVATIONAL APPLICATIONS
The Hyrax project defined as its main goal to explore game chang-
ing applications in the context of mobile edge-networks. Towards
this goal, three application scenarios were selected, presenting
progressive levels of untethered operation from traditional cloud
infrastructures. These applications were built from scratch using
the Android API for all operations, without resorting to rooting of

1http://hyrax.dcc.fc.up.pt
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devices or any operation that might render them useless for general
use. The study of the scenarios and the development of the appli-
cations provided us with the required experience to identify the
common denominator at various levels of abstraction, towards the
development of a middleware that factors out these common func-
tionalities and provides a productive tool upon which developers
can build on.

2.1 User-generated replays
The User-Generated Replays (UGR) application [11] allows users
to capture and share videos in a crowded venue, e.g., during a sport
event (Figure 1). Traditional applications rely on infrastructural
communications for data dissemination, leading to traffic conges-
tion, e.g., infrastructural Wifi and 3G/4G access is often quite slow
and limited in sporting venues with an attendance of thousands
of people. UGR mitigates this problem by leveraging edge-cloud
networks formed by nearby devices. Each individual device is able
to generate videos and cache/disseminate from/to nearby devices,
and uses infrastructural communications as a last resort, thus alle-
viating the load on the latter. In a real-world experiment, the use of
UGR was able to offload congestion from infrastructural Wifi and
4G by as much as 80% in terms of connected users and close to 60%
for video downloads, while improving video download speed by a
factor of 3 for devices connected to the edge cloud.

Figure 1: Video dissemination in large venues.

2.2 Distributed face recognition
We are developing a crowd-sourcing application for distributed face
recognition to deal with emergencies like Amber alerts, used to dis-
seminate information about missing people. We consider crowded
scenarios such as stadiums or shopping malls, where it is common
for instance to have children getting lost from their parents (Fig-
ure 2). By using computer vision on edge-clouds [12], it is possible
to minimize, and potentially eliminate, the dependency on infras-
tructural clouds, by doing the search of the missing person’s photo
on the local storage of each mobile device without having to dis-
close them to a central cloud provider. The aim is to gather positive
identifications of a missing person, along with important time and
spatial information.

Missing

Figure 2: Searching for missing persons.

2.3 Rescue assistance in emergency scenarios
In recent years, several crowd-sourcing applications emerged to
deal with emergency and disaster scenarios making use of mobile
devices [13, 14]. Most of these applications, though, rely on standard
communications and a web/cloud-based infrastructure, and are
focused on mobile data collection and dissemination. In disaster
scenarios, infrastructural communications (Wifi, GSM/ 3G/4G) may
be severly impaired due to adverse environmental conditions, and
people (e.g., a rescue teamworker or a person in distress) find it hard
or impossible to communicate (Figure 3). With this in mind, we are
currently developing an application on top of Hyrax middleware
that lets users find others that may be near the same physical
vicinity, and establish peer-to-peer communication for the exchange
of text messages or other media like audio/video, geo-tags, etc.

Figure 3: Communication in a disaster scenario.

3 THE HYRAX MIDDLEWARE
In this section we provide an overview of the Hyrax middleware.
We first describe its architecture and provide a summary of the



Towards a Middleware for Mobile Edge-Cloud Applications MECC’17, December 11–15, 2017, Las Vegas, NV, USA

Figure 4: The Hyrax middleware architecture.

components in its layered structure. We then go through the mid-
dleware layers in more detail, describing their core functionality,
design, and current implementation status.

3.1 Architecture
The Hyrax middleware architecture is illustrated in Figure 4. As
shown, the middleware is used by mobile edge-cloud applications
(shown at top) that run on top of the Android OS (bottom). The
middleware comprises the following layers (bottom-up):

• The Link Layer is used to access the diverse communication
technologies that may be available in a device, such as Wifi
or Bluetooth. The primary concerns are to establish network
links using these technologies and to provide the basic device
discovery mechanisms required for proximity-awareness.
For that purpose, it provides a normalised API interface
that abstracts away the use of diverse technology-specific
Android APIs.

• The Network Layer is responsible for defining and maintain-
ing a logical network abstraction. It provides mechanisms for
network formation and routing, that are automated, churn-
tolerant, and employ diverse communication technologies
simultaneously, forming an overlay network. On top of an
up-and-running network, diverse types of communication,
e.g., stream or packet-based, can be used with parametrisable
levels of quality-of-service.

• The Service Layer comprises a set of core services that can
be used directly by applications, such as for distributed stor-
age (e.g., key-value stores), computation (e.g., for volunteer
computing) or logical messaging (e.g., publish-subscribe).
These services may offer a simple programming interface to
applications, hiding away the complexity of the underlying
network dynamics.

3.2 Link Layer
The organisation of the Link Layer is depicted in Figure 5. An API
interface (shown top) is provided to deal with links; a link is an
abstraction for a communication technology that is present on

Figure 5: The link layer.

an Android device. Currently, the following types of link are sup-
ported (shown bottom in the figure): Wifi, Wifi-Direct, Bluetooth,
Bluetooth Low Energy (LE) and 3G/4G. The API is a normalised
interface to all of these, freeing the programmer from dealing with
a set of heterogeneous, technology-specific Android APIs. The sup-
port for each technology in the Link Layer is organised as a set of
logic controllers (shown middle), translating API operations into
technology-specific commands. No root-level access (“rooted” de-
vice) is required, and the standard Android distributions are used.

The Link Layer operations concern device discovery and con-
nection establishment. To give an example, the following sequence
of calls sets up a device to become a Wifi-Direct access point (AP)
and accepting connections from other devices:

L ink l i n k =
L i n k S e r v i c e . c r e a t e ( Technology . WIFI_DIRECT ) ;

l i n k . enab l e ( ) ;
l i n k . a c c ep tConnec t i on s ( ) ;
l i n k . v i s i b l e ( ) ;

In the sequence, we first obtain a link handler toWifi-Direct through
the call to LinkService . create () , and make it active through the
enable () operation. The link is then set up such that the device
is visible by others, using visible () , and accepts connections (i.e.,
becomes an AP) through acceptConnections()). In symmetry, the fol-
lowing sequence of calls would discover all nearby devices and
choose an AP to connect to:

L ink l i n k =
L i n k S e r v i c e . c r e a t e ( Technology . WIFI_DIRECT ) ;

l i n k . enab l e ( ) ;
Outcome< Co l l e c t i o n <Device >> o = l i n k . d i s c o v e r ( ) ;
i f ( o . i s S u c c e s s f u l ( ) ) {

C o l l e c t i o n <Device > d e v i c e s = o . g e t R e s u l t ( ) ;
f o r ( Dev ice d : d e v i c e s )

i f ( someCondit ion ( d ) ) l i n k . connec t ( d ) ;
}

As in the first sequence, we get a link handle and make it active.
Thereafter, all devices that may be nearby are looked up using
discover () . If a suitable access point exists, then it is chosen to form
a Wifi-Direct connection through connect () . The illustrated code
fragments would work similarly for other technologies merely by
changing the link type argument, e.g., Technology.BLUETOOTH for
Bluetooth.
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3.3 Network Layer
The Network Layer is responsible for defining a logical network,
more precisely an overlay network defined on top of communi-
cation links that can be enabled using the Link Layer. Thus, as
illustrated by Figure 6, the Network Layer makes it possible to
combine heterogeneous networks/communication technologies to
yield the abstraction of a single logical network.

Figure 6: Logical edge-cloud network.

The organisation of the Network Layer is depicted in Figure 7.
An API (top) defines operations for packet-based and stream-based
communication, and, in addition, the enabling/disabling of physical
network interfaces to use (bottom, at the Link Layer level). For
instance, we may choose to define a network based solely on Blue-
tooth or combine Bluetooth and Wifi-Direct, and API hides any
interaction with the Link Layer in the process.

Logical addresses are used to identify peers in the network in
technology-agnostic manner (e.g., not tied to IP or MAC addresses),
which are then translated on-the-fly to physical addresses when
data is sent through actual network interfaces. Meta-information
per device/logical address such as physical location or battery level,
may guide the operation of routing algorithms which work on

Figure 7: The Network Layer.

the logical address level. Under the hood, network formation al-
gorithms guide the actual establishment of physical networks and
their logical inter-connection.

In the current version, we employ relatively simple algorithms
for message routing and network formation. Routing is based on a
scoped flooding strategy, something we expect to improve by lever-
aging/adapting well-established algorithms (e.g., AODV, OLSR) but
possibly also geographical (position-based) routing [15]. Network
formation works by defining star-like networks for each technol-
ogy, which are inter-connected by bridge devices that participate
in more than one such (sub-)network. For instance, a bridge device
may be one that participates in a Bluetooth network and a Wifi-
Direct network simultaneously, or one that is a Wifi-Direct access
point and has access to infrastructural Wifi. Currently we are also
implementing mesh formation algorithms, and considering support
for Wifi-Direct multi-group formation [16].

We now illustrate the use of the API for simple packet-based
data exchange. To bootstrap the network, we use boot () to obtain
a reference to a Network object, specifying the (logical) routing
algorithm to use, and enable the desired network interfaces through
the enableFormation(). For instance, to start a network with flood-
based routing, and enable Bluetooth and Wifi-Direct, we write:

Network net = NetworkSe rv i ce . boot ( Rout ing . FLOOD)
net . enab l eFo rmat ion ( Topology . BLUETOOTH_STAR )
net . enab l eFo rmat ion ( Topology . WIFI_DIRECT_STAR )

To send messages over the network, send() routes messages to a
specific device, and sendToAll () does so for all reachable devices:

Address s p e c i f i c P e e r = . . . ;
by te tag = MY_SERVICE_TAG ;
byte [ ] data = . . . ;
ne t . send ( tag , data , s p e c i f i c P e e r ) ;
ne t . s endToA l l ( tag , data ) ;

The sendToAll () and send() operations can be combined meaning-
fully, e.g., sendToAll () may be used by a service running on a device
to announce itself, and send() for peer-to-peer interaction after dis-
covery. Note also that, as shown above, messages are sent with
an associated (single-byte) tag. Tags facilitate message filtering by
different services sitting on top of the network layer. To receive
messages, a listener may be set up using addMessageListener():

NetworkMessageL i s tener l i s t e n e r = new
NetworkMessageL i s tener ( ) {

p u b l i c vo id onMessage
( byte tag , byte [ ] data , Address sou r c e ) {

/ / Handle i n coming message
. . .

}
} ;
ne t . addMessageL i s t ene r (MY_SERVICE_TAG , l i s t e n e r ) ;

3.4 Service Layer
On top of the Hyrax Network Layer, services can be deployed to
provide common functionalities to edge-cloud applications. We
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briefly refer to three such services developed in the scope of Hyrax
project that are being ported to use the Hyrax middleware.

P3-Mobile [17] is a service for opportunistic, best-effort parallel
computing. The system builds a peer-to-peer hierarchical overlay
on top of a Wifi or Wifi-Direct network. Computational tasks are
subdivided for parallel execution as new devices join the overlay,
but the scheme is also fault-tolerant when devices leave without
notice. A snapshot mechanism keeps track of the completed portion
of the workload for a given task. Thus, there is an on-the-fly recon-
figuration of workload of the computation that is churn-tolerant.
P3-Mobile also implements a simple distributed key-value store that
can be used as a communication channel between devices, e.g., for
reporting the results of subtasks. In an early proof-of-concept exper-
iment, substantial speedups were obtained for a simple benchmark
application that used up to 16 Android devices.

Ephesus [18] is a distributed file storage service for mobile edge-
clouds. It allows users to share files without requiring infrastruc-
tural communications, through a key-value store API implemented
on top of a distributed hash table (DHT). To cope with churn, the
service implements a best-effort approach to data consistency and
persistence. The built-in mechanisms are adaptive to the popularity
of data items, e.g., more frequently requested items are prioritised
for replication among peers. Ephesus is also energy-aware, making
a device disengage from the DHT when its battery level goes below
a certain threshold. The system has been demonstrated by a shared
photo gallery application (e.g., that can be used in party gatherings)
where users take photos and share it with others.

Thyme is a time-aware publish-subscribe service for mobile
edge-clouds under development, following up on the ideas pre-
sented in [15]. The service follows the typical operation of a publish-
subscribe messaging system, but is time-aware in the sense that
subscriptions have an associated time interval, i.e., are active only
between specified start and end times. Geographical routing algo-
rithms are employed, where devices are organised in spatial clusters,
allowing messages to be routed without knowledge of the network
topology or a priori route discovery. The point is to avoid the net-
work communication overheads of standard routing protocols, and
instead rely on the fact that device location has a strong connection
to network topology in mobile edge-clouds.

4 RELATEDWORK
4.1 Networking for edge-clouds
A number of APIs/toolkits have been developed in recent years in
support of proximity-aware mobile applications that use peer-to-
peer communications. In common with our middleware’s network
and link layers, the core concerns relate to the discovery of nearby
devices and subsequent peer-to-peer communication, although in
some cases relying on infrastructural support.

Apple’s MultipeerConnectity framework for iOS [19] that can
use infrastructural Wi-Fi, Wifi-Direct/Wi-Fi peer-to-peer and Blue-
tooth for device discovery and peer-to-peer communication. Infras-
tructural support is not mandatory for operation. Other commercial
toolkits provide similar capabilities such as MeshKit from Opengar-
den [20] or P2Pkit from Ueppa [21].

Google Nearby [22] for Android and iOS combines Bluetooth,
Bluetooth Low Energy, Wi-Fi, and near-ultrasonic audio for device

discovery. However, the current version requires infrastructural
(Internet and cloud) support to facilitate actual communication.

Alljoyn [23] is an open source framework for application dis-
covery and communication that runs on several types of systems,
including mobile Android devices. The Alljoyn API is based on
network bus abstraction that hides the underlying networking dy-
namics. Under the hood, networking is implemented on top of
Wi-Fi, Wi-Fi Direct and Powerline, but not Bluetooth.

WebRTC (Web Real-Time Communication) [24] designates a col-
lection of open-source protocols and APIs that enable real-time
communication over peer-to-peer connections. There is recent sup-
port for Android and iOS devices, although official support for strict
peer-to-peer based discovery and communication is still unclear,
e.g., an unofficial open-source project seeks to enable Wifi-Direct
to work with WebRTC [25].

In spite of the availability of these systems, we decided to build
a middleware from scratch based on three key factors. First, and
foremost, to conduct research on mobile edge-clouds, we required
full control of the software stack in order to gather reliable results.
Thus we could not rely on closed-source systems. Second, systems
that required infrastructure access to function could not be used
as building blocks for our work either, as it involves scenarios of
completely untethered computing. Third, we opted to develop for
Android rather than iOS, as the Android ecosystem is more flexi-
ble regarding matters of customisation and software distribution.
MeshKit, P2pKit, and MultipeerConnectity all provide some core
functionalities that are close to those of our middleware, but are not
open-source, and MultipeerConnectity works for iOS only. Google
Nearby requires infrastructural support to pair devices, and Wi-Fi
multicast in particular for multi-hop communication (unlike our
middleware). Finally, Alljoyn and WebRTC require an underlying
physical network already setup to function, and do not provide fine-
grained programmatic control to setup and logically coordinate
diverse communication technologies simultaneously.

4.2 Services and applications
On top of the base functionalities for device discovery and peer-to-
peer communication, complementary services can be deployed in
support of applications, but also already full-blown applications.
For instance, some chat applications that do not require an In-
ternet connection are quite popular for use in crowded venues,
like ZombieChat [26] (that uses Apple’s MultipeerConnectity) or
FireChat [10] (based on Opengarden’s Meshkit).

Streaming services and applications over mobile edge-clouds
are also becoming significant. BitTorrent Live [27] allows peer-to-
peer video streaming between mobile devices without an Internet
connection. WebRTC, mentioned earlier, also deploys audio/video
streaming services through the RTP protocol.

Distributed storage is another area of interest. Resilio Sync [28]
is a popular application deployed on top of the BitTorrent proto-
col that allows file sharing over a private cloud enabled through
Wifi-Direct. Research tools like iTrust [29], Krowd [6], along with
Ephesus (Section 2), also implement distributed storage schemes
for mobile edge-clouds.

In regard to distributed/parallel computing services using mobile
devices like P3-Mobile (Section 2), there were several research ef-
forts, for instance: MMPI [7], for message-based parallel programs
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written in a subset of MPI, and deployed over Bluetooth piconets;
Honeybee [30] for task-based parallelism, using both Bluetooth and
Wifi-Direct to form networks; the Hyrax [8] map-reduce engine
for Android based on Hadoop; and FemtoClouds [31], a system for
general computation offloading over a network of mobile devices.

5 DISCUSSION AND FUTURE WORK
We end the paper with a general summary of the current develop-
ment status and future work. We then provide a separate discussion
of security and privacy issues, that have not been addressed in this
paper but are also crucial topics for future work.

5.1 Current status and evolutions
Currently, initial versions of the Hyrax middleware Link and Net-
work Layers have been released2 and are being integrated into
services like P3-mobile or applications like UGR (mentioned earlier
in Section 2). Future work will concern evolutions of the Hyrax
middleware in some key directions.

We plan to make the Link/Network layers more mature to incor-
porate configurable network formation and routing algorithms. We
then wish to make a comparative evaluation of these algorithms
using our applications in different settings (e.g., in relation to the
churn level, network topology, mobility model). Integration with
cloudlets is also a relevant line of work, enabling a broader range
of applications and network dynamics.

Regarding applications for evaluation, beyond those already de-
veloped or being developed, we are also interested in data-intensive
applications like torrent-based file sharing and video streaming,
and crowd-sourcing sensing applications which tend to be less
data-intensive but exhibit a high degree of mobility.

5.2 Security and privacy
Security and privacy are fundamental, cross-cutting issues for a
middleware that supports crowd-sourcing applications.

In Hyrax we aim to address the basic building blocks needed
to support a secure and distributed middleware, namely autho-
risation, authentication and auditing across heterogeneous trust
domains. One problem is that most cryptographic primitives and
security protocols rely on centralised trust entities, e.g., Public Key
Infrastructure, thus they are not suitable for edge-clouds. We are
currently conducting research on reputation-based mechanisms
to detect malicious behaviours within a pure decentralised archi-
tecture, avoiding on centralised security oracles. Additional ap-
proaches are relevant, such as information flow control (IFC) [32]
that assigns security tags for data flows within a distributed system.
IFC suffers from tag explosion, however, that hampers its appli-
cability in highly dynamically systems. Additionally, the secure
management of IFC tags is still an open research topic.

On top of thesemechanisms, additional schemes can be leveraged
to enhance device security, including the use of memory enclaves,
e.g., Android already employs ARM TrustZone, and the provision
of other techniques for isolation/sandboxing. Complementary ap-
proaches such as proof-carrying code and homomorphic encryption
provide strong guarantees, but are too demanding resource-wise
for the mobile edge-cloud context.
2You may request access to these releases to the authors.
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