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Abstract: Seaware is a publish-subscribe middleware used in multi-vehicle net-
worked systems composed of autonomous and semi-autonomous vehicles and sys-
tems. Seaware provides a high level interface to network communications and may
be deployed with a combination of heterogeneous components within a dynamic
network. Seaware supports the RTPS (Real Time Publish Subscribe) protocol,
underwater acoustic modems and other forms of network transport. This paper
gives an overview of Seaware’s implementation and its application to multi-vehicle
networked systems.
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1. INTRODUCTION

The PISCIS project (Cruz et al., 2003) has de-
veloped a system for the mixed initiative con-
trol and coordination of multiple underwater and
surface vehicles for oceanographic and environ-
mental data collection. The system consists of 1)
autonomous underwater vehicles and autonomous
surface vehicles equipped with acoustic modems
(for underwater communications), radio/GPS sys-
tems (for interactions at the surface), 2) buoys
equipped with transponders (for acoustic localiza-
tion), 3) a sensor network and 4) computer con-
soles for mixed initiative interactions with human
operators. The PISCIS system provides services
for vehicle tele-operation, tele-programming and
supervision, services for data collection from a
sensor network, and services for system super-
vision with aggregation of information collected
in real-time. Vehicles and operator consoles come
and go and services and interactions are built on
the fly and communication links can be of various
types (radio, Ethernet, acoustic links).

Seaware is a publish-subscribe middleware that
has been developed for the PISCIS project to ad-
dress this networked environment. Seaware aims
to provide an uniform, portable, efficient and
high level interface to network communication for
the heterogeneous components and communica-
tion links used in multi-vehicle networked systems
of the PISCIS project. In this paper, we describe
Seaware and its use in PISCIS.

The rest of this paper is structured as follows. Sec-
tion 2 provides reference to related work, section 3
gives an overview of the Seaware implementation,
section 4 describes its application to multi-vehicle
networked systems and section 5 ends the paper
with concluding remarks and discussion of future
work.

2. RELATED WORK

We next provide brief references to related work
covering: middleware toolkits and their use in



robotics; the use of RTPS technology ; and un-
derwater acoustic modem communications.

A review of communication toolkits in application
to robotics environments is provided in (Gowdy,
2000). Two examples of modern middleware sys-
tems used in robotics are the CORBA-based
Miro (Utz et al., 2002) and the publish-subscribe
based Artificial EcoSystem (Sgorbissa and Zac-
caria, 2004).

The Real-Time Publish-Subscribe (RTPS) proto-
col is a standard (IDA, 2001) for distributed real-
time communication, complemented and tightly
coupled in some implementations with the Data
Distribution Service (DDS) standard (OMG, 2005)
Seaware uses the NDDS (RTI, n.d.) implementa-
tion of RTPS/DDS from Real Time Innovations
and also the open-source OCERA ORTE (Smoĺık
et al., 2003) implementation of RTPS. Discussion
on the usability and performance of RTPS can be
found in (Sierla, 2003; Schneider et al., 1999; Mc-
Cormick and Madden, 2005) and examples of ap-
plications of RTPS in robotics and automation
can be found in (RTI, n.d.; Almadani, 2005).

The deployment of underwater acoustic networks
is described in (Proakis et al., 2001). An underwa-
ter acoustic communication framework, with simi-
larity in several aspects to that used in the PISCIS
project, is described in (Freitag et al., 2005).

3. OVERVIEW OF SEAWARE

Seaware is a middleware for network communica-
tion in dynamic and heterogeneous network envi-
ronments, oriented to data-centric network com-
putation. In spite of being designed for use in the
PISCIS project, Seaware has a generic approach
in its design and is therefore suitable for applica-
tion in other general-purpose networked systems
in automation and control. The core feature of
Seaware is the use of the publish-subscribe mes-
saging paradigm enabled by an abstract object-
oriented API, with support given by the RTPS
protocol (IDA, 2001) and other forms of net-
work transport. We next provide an overview of
Seaware, in terms of software framework, use of
publish-subscribe messaging, network transports
and core implementation.

3.1 Software framework

Fig. 1. Seaware software framework

The Seaware software framework architecture is
shown in Figure 1. An object oriented API, with
Java and C++ bindings, is available for applica-
tion development. This high level API encapsu-
lates access to a core API written using the C
programming language. Further down this tier-
architecture, a network interface layer encapsu-
lates access to network transports; in the current
implementation these are RTPS, acoustic modem
based communications, HTTP and (raw) UDP.

The framework tries to address the following
types of requirements: 1) to define a modular
and abstract communications layer that encap-
sulates the heterogeneity of component systems
in various aspects (operating system, network in-
terfaces, hardware architecture and programming
language bindings) in a simple object-oriented
publish-subscribe API ; 2) to provide for a dy-
namic network environment, where components
can enter and leave and communication patterns
change over time, without disrupting the overall
communications environment; 3) to attain robust
and lightweight (soft) real-time performance.

The software framework works both on Linux and
Windows operating systems. Besides the standard
x86 port for Linux, two specific Linux ports exist:
one for PC-104 based platforms and another one
for Intel Xscale host architectures.

3.2 Publish-subscribe messaging

Fig. 2. Publish-subscribe model entities

Publish-subscribe messaging is defined by anony-
mous message exchange between components that
produce data (publishers) and those that consume
it (subscribers). Each message exchanged has an
associated topic id that pairs together publish-
ers and subscribers. Data issued by a publisher
or various publishers for a certain topic is de-
livered to all subscribers of that topic, allowing
variation of components and types of data in the
network over time. Publishers and subscribers are
decoupled and do not need to know who their
peers are; instead the middleware is responsi-
ble for dynamically enabling peer discovery and
adapting to network changes at execution time.



This form of communication is simple and in-
herently suitable for dynamic communication en-
vironments, with on-the-fly component integra-
tion, many-to-many communication and change-
able communication patterns. Seaware embraces
publish-subscribe messaging in two ways: firstly it
provides a publish-subscribe data-centric model;
secondly it uses the RTPS protocol as the main
form of network transport.

Figure 2 illustrates the publish-subscribe messag-
ing model implemented by Seaware. Applications
(App1 and App2 in the figure) have resident nodes
(N1 to N4) which exchange messages for published
or subscribed topics (A to C). Topic namespaces
(S1 to S3) are used to define distinct subsets of
topics. Message exchange may occur within the
same application (N1 to N2, N3 to N4) or over the
network (N1 to N4, N3 to N2).

3.3 Network transports

RTPS - RTPS support has been initially deployed
using the research-based open-source ORTE im-
plementation (Smoĺık et al., 2003), then also
incorporated NDDS (RTI, n.d.), a commercial
implementation of DDS/RTPS used in indus-
trial automation/real-time applications. Although
ORTE and, in a more elaborate form, NDDS, are
middleware technologies on their own, the Sea-
ware API encapsulates and hides access to them,
in order to provide a simpler interface.

Besides RTPS, other heterogeneous forms of net-
work transport are supported by Seaware in or-
der to deal with specific communication media
or operational limitations. All forms of transport
are accessed through the same uniform API that
provides a generic publish-subscribe messaging in-
terface.

Acoustic modems - Underwater communications
are made possible through the use of an acoustic
modems transport layer, with a simple functional
design. Message integrity control is done using
CRC checksum and basic message re-transmission
control is done through a basic message ac-
knowledgment mechanism provided by the acous-
tic modems we use. No support for more ad-
vanced features such as as time-division multiple-
access (TDMA) is however provided (application-
level logic must ensure collision avoidance on the
half-duplex acoustic channel, for example using
master-slave communication layouts).

Raw UDP transport - Some of our vehicles use a
legacy software infrastructure which is not prac-
tical to change and where communication is done
through raw UDP sockets. For communication
with these vehicles, a Seaware enabled application
must use the raw UDP transport back-end.

HTTP transport - HTTP based-transport is an
experimental feature which is being tested for
web-data publishing. The aim is to interconnect
Seaware applications and Java applets which may
be remotely displaced on any site in the Internet.

3.4 Implementation

The core aspects of the Seaware implementation
are summarized in the following topics.

Application programmer interface - The Seaware
application programmer interface (API), with
Java or C++ bindings, has its core support pro-
vided by the API class skeletons shown in Figure 3
(only a simplified overview is shown due to space
constraints): 1) a message that applications must
extend to define message contents and network
serialization format; 2) publication and subscrip-
tion classes for topic configuration; 3) a node
class providing the core messaging operations; 4)
a message listener class for asynchronous message
notification. This API interface is in direct cor-
respondence with the publish-subscribe entities
described before, provides uniform access both in
Java and C++ and for all types of transport, thus
message transport is encapsulated using only a
publish-subscribe oriented access.

1) Message
public interface Message ... {

public int serialize(...);

public void unserialize(...);

}

2) Topic configuration
enum QOS { DEADLINE, RELIABILITY, SEPARATION, ...};

class TopicConfiguration{

void setQOS(QOS qos, int value);

void setNamespace(String ns);

}

class Publication<T extends Message>

extends TopicConfiguration { ... }

class Subscription<T extends Message>

extends TopicConfiguration { ... }

3) Node class
class Node {

void defineTopic(TopicConfiguration p);

void publish(Message m);

Message pull(String topic,MessageInfo info);

void setMessageListener(String topic,

MessageListener l);

}

4) Message listener
class MessageListener{

public void onMessage

(Message msg,MessageInfo info);

}

Fig. 3. Seaware API overview

QoS (Quality of Service) settings - RTPS/DDS
provides support for a number of built-in QoS
settings of interest (IDA, 2001; OMG, 2005), some
of which have been deployed in the implementa-
tion of Seaware: configurable message reliability,



on a per-topic basis, which enables/disables mes-
sage reliability depending on the requirements of
the message exchange time-based separation and
deadline for topic subscriptions, which specify the
minimum and maximum time interval for the re-
ceipt of new message issues, allowing optimization
of network flow through different separation set-
tings for different subscribers and timeout control
using the deadline setting; UDP multicast for au-
tomatic application discovery, allowing a dynamic
environment on which the network hosts need not
be known in advance; use of RTPS domains for
separation of distinct application sets; application
refresh time and expiration time which specify
how long an application acknowledges its presence
on the network (even if not publishing data) and
how long it may be out of reach or not sending
any messages and later re-establish contact with
their peers.

Since there may be other types of transport apart
from RTPS, support is provided so that some of
the settings may be interpreted generically for all
transports, specifically those related to message
timing (time-based separation and deadline) and
also to some degree message reliability (excluding
the legacy ”raw UDP” transport).

Configuration support - The system uses a XML
configuration format for the various components
in the publish-subscribe model, to minimize pro-
gramming work using the API. A XML configura-
tion may be loaded to allow direct configuration
in Java, or automatic code generation in C++.

Performance evaluation - Benchmarks and field
test results indicate good performance in terms of
message delivery rate, connectivity response time
and memory usage: message delivery rate yields
a maximum throughout of 3000 messages per
second over Ethernet/Wifi; peer connection time
is normally less than 5 milliseconds; applications
can work with less than 1 Mb of heap memory
(most of which is taken by NDDS).

Fig. 4. Roaz ASV (left) and Isurus AUV (right)

4. APPLICATION TO NETWORKED
VEHICLE SYSTEMS

We next discuss the application of Seaware to
networked vehicle systems considering general sce-
narios and giving concrete examples of each of

them. The discussion is made from the perspec-
tive of high level network control and considers
some of the scenarios described in (Sousa and
Sengupta, 2001; Girard et al., 2004). The concrete
examples presented refer to field tests conducted
in Portugal, at the Montemor-O-Velho canoing
race track, at Portuguese Navy facilities in Lisbon
and Tróia and at the Leixões harbor.

4.1 Centralized ground-to-vehicle control

The simplest scenario we consider is communi-
cation between a control console and a vehicle
for remote operation and monitoring of the ve-
hicle. This is the basic operational scenario for
which Seaware provides support, on which other
more elaborate scenarios build up. An example of
this setting is that involving a Neptus (Dias et
al., 2005) control console and the Roaz ASV (au-
tonomous surface vehicle) (Ferreira et al., 2006),
depicted in Figure 4.

The Neptus framework is an environment to sup-
port network centric operation of heterogeneous
teams of autonomous and semi-autonomous vehi-
cles and systems. Neptus is programmed in Java
and Seaware has been integrated into it, replacing
previous network support for vehicle communica-
tions. In the context of the Neptus framework,
a wide variety of possible interactions take place
between the pilot (human or automated) and the
vehicles.

Roaz (Ferreira et al., 2006) is a multi-purpose
ASV with a docking station for AUVs (au-
tonomous underwater vehicles), equipped with
plug-and-play sensors and Wifi network support.
In the test setup, Roaz was configured in tele-
operation mode, allowing remote control by a
Neptus console, with vehicle tracking done with
on-board GPS device and video camera and side-
scan sonar devices operating independently Nep-
tus. The core Roaz control tasks for vehicle guid-
ance, GPS tracking, and on-board logging, are
programmed in C++ and use Seaware for Wifi
communication with Neptus consoles.

Fig. 5. Neptus-Roaz communication

Figure 5 provides detail on the publish-subscribe
setup concerning Neptus-Roaz ASV communi-



Fig. 6. Networked vehicle system

cation. Four topics are used for communica-
tion: EstimatedState for vehicle GPS positioning
data; Joystick for the tele-operation command
through Neptus; Motor to on-board motor real-
time data such as rotations per minute and power
consumption; and Heartbeat used for mutual ac-
knowledgment issued with a periodic 1 Hz rate.

4.2 Dynamic many-to-many vehicle control

The control environment in networked vehicle sys-
tems may be highly distributed between multiple
control consoles and vehicles, with many-to-many
communications. There are several possible lay-
outs for these operational scenarios. In a single
vehicle scenario one of the consoles may act as
the active vehicle controller whereas others merely
execute passive tasks, such as vehicle state moni-
toring or data logging. In a multi-vehicle scenario
various consoles may be used, each acting as mas-
ter control for a vehicle while at the same time
being able to monitor the other vehicles in the
environment.

Figure 6 illustrates an example of this type of
scenarios, involving multiple Neptus consoles, the
Roaz ASV and the Isurus AUV. The Neptus-
Roaz setup is as described before. Isurus, depicted
in Figure 4, is a AUV with programmable mis-
sion execution within the Neptus framework (Dias
et al., 2006), acoustic beacon based localization
(Cruz et al., 2001), Wifi surface connectivity, un-
derwater acoustic modem communications, and
multiple sensory devices. During mission execu-
tion the location of Isurus may be tracked by a
Neptus console with an attached serial device in-
terface to the acoustic beacon system. This data is
then re-transmitted over RTPS using Seaware so
that the vehicle’s position may also be tracked by
other peers. Mission control commands and state
monitoring data can be sent or received through
acoustic modems (with master-slave application
level control for acoustic channel collision han-
dling) when the vehicle is underwater or over Wifi
”raw UDP” when the vehicle is at the surface.

In the test setting, both vehicles could be con-
trolled and monitored simultaneously, nodes could
enter and leave the system without disrupting the
global communication environment. Interaction
between Roaz and Neptus consoles allowed the
surface vehicle to be guided within the bounds
allowed by the on-site wireless communications in-
frastructure (up to 1000 meters). In regard to Isu-
rus, the position tracking re-publication scheme
and Wifi UDP and acoustic modem interfaces
were successfully validated, allowing more than
one ground console to monitor the vehicle’s po-
sition and mission control to be done at surface
level or underwater.

4.3 Multi-vehicle coordinated missions

In multi-vehicle coordinated missions, vehicles
may communicate with each other in order to
accomplish a task and also cooperate with control
consoles for shared semi-autonomous control. An
example of application of Seaware to this type of
scenarios is the communications infrastructure for
the ASASF multiple UAV (unmanned air vehi-
cle) control project (Almeida et al., 2006), where
multiple UAVs operate in coordinated missions,
implying vehicle-to-vehicle and ground control-to-
vehicle communication through Wifi and spread-
spectrum radio-links.

5. CONCLUDING REMARKS

Seaware greatly enhances the scope and flexibility
of the networked vehicle systems communication
infrastructure in a number of important aspects,
considering the particular field test settings de-
scribed and the generic operational scenarios dis-
cussed, by comparison with the previous network-
ing support we used in our projects.

The previous communications support was het-
erogeneous and low-level in terms of systems pro-
gramming which made it difficult to have an uni-
form and model-based implementation of commu-
nication and had a strong impact in the software
development cycle. There was also no built-in
support for distributed many-to-many communi-
cation, dynamic on-the fly integration of com-
ponents or varying network communication pat-
terns.

In a more high level view, considering the opera-
tional scenarios networked vehicle systems, cen-
tralized ground-to-vehicle control was the bare
support we had and this has been extended to
allow abstract layouts of many-to-many dynamic
communication.



Future work in Seaware will be driven by a new
generation of vehicles being developed in our re-
search group (AUVs, ASVs, ROVs and UAVs).
Some specific items for work in the near fu-
ture are as follows: support of spread-spectrum
radio based networks, to be deployed in ASVs
and UAVs for long-range communications; more
advanced acoustic modem communications sup-
port to cope with more elaborate communication
requirements, exploiting TDMA and store-and-
forward message routing schemes; development of
tools for run-time network state monitoring and
configuration.
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