
ScienceDirect
IFAC-PapersOnLine 48-2 (2015) 256–261

Available online at www.sciencedirect.com

2405-8963 © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2015.06.042

Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261

© 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

 Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261 257

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

Towards Programmable Coordination of
Unmanned Vehicle Networks �

Eduardo R. B. Marques ∗ Manuel Ribeiro ∗∗ José Pinto ∗∗

João B. Sousa ∗∗ Francisco Martins ∗

∗ LASIGE/Departamento de Informática, Faculdade de Ciências da
Universidade de Lisboa

∗∗ Laboratório de Sistemas e Tecnologia Subaquática, Faculdade de
Engenharia da Universidade do Porto

Abstract: The use of unmanned vehicle networks for diverse applications is becoming
widespread. It is generally hard to program unmanned vehicle networks as a “whole”, however.
The coordination of multiple vehicles requires careful planning through intricate human
intervention, and a high degree of informality is implied in what concerns the specification
of a “network program” for an application scenario. In this context, we have been developing a
programming language for expressing global specifications of coordinated behavior in unmanned
vehicle networks, the Networked Vehicles’ Language (NVL). In this paper we illustrate the use of
the language for a thermal pollution plume tracking scenario employing unmanned underwater
vehicles.

Keywords: Unmanned vehicles, Coordination, Cooperative control, Programming

1. INTRODUCTION

Autonomous vehicles are making their way to everyday
mainstream use. In particular, many real-world applica-
tions can take advantage of multiple autonomous vehicles
that operate cooperatively over a networked environment
e.g., see (Bellingham and Rajan (2007); Dunbabin and
Marques (2012); Sousa et al. (2014)). Large systems are
being deployed with a massive integration of unmanned
vehicles, sensors, and human user interaction, that can
also be spatially distributed across the globe (Isern and
Clark (2003); Petrioli et al. (2014)).

� The research leading to these results has received funding from the
”NETMAR” Project, 2011-1/176, funded by ERDF - Atlantic Area
Transnational Cooperation Programme.

Fig. 1. Autonomous vehicles developed at LSTS

The Laboratório de Sistemas e Tecnologias Subaquática
(LSTS) has been building and operating autonomous
vehicles for over a decade. Field operations now routinely
employ multiple vehicles for diverse uses (Faria et al.
(2014); González et al. (2012); Martins et al. (2011);
Pinto et al. (2013b); Sousa et al. (2014)), involving a
networked environment formed by human operators and
heterogenous kinds of vehicles, like unmanned underwater
vehicles (UUVs), unmanned air vehicles (UAVs), remotely
operated vehicles (ROVs), or autonomous surface vehicles
(ASVs). Some of vehicles developed by LSTS are shown in
Fig. 1.

A core challenge faced by these deployments lies on the
specification of multi-vehicle coordination. Typically, this
is accomplished through separate vehicle scripts that in-
formally “glue” during operation, as opposed to global and
self-contained specifications of an intended global behav-
ior, which we may call “network programs”. With these
“network programs” in mind, we have been developing
the Networked Vehicle’s Language (NVL), introduced in
(Marques et al. (2015)).

A single NVL program is able to express an on-the-
fly selection of multiple vehicles in a network and their
allocation to tasks, subject to several types of constraints.
For instance, NVL programs may fire concurrent tasks
in distinct vehicles over the same period of time, order
these task groups in sequence, and constrain the time
bounds for their execution. NVL programs also adapt
to the dynamics of the network “cloud”, where vehicles
come and go, have intermittent connectivity, and change
their spatial location over time. The initial prototype of
the language is already able to express commonly used
patterns in multi-vehicle operations, and some field-tests
have already been conducted (Marques et al. (2015)).

Proceedings of the IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles
April 28-30, 2015. Girona, Spain

Copyright © IFAC 2015 256

There are several heterogeneous approaches for modelling
the coordination of tasks in unmanned vehicle networks,
e.g., dynamic and hierarchical hybrid automata networks
(Sousa et al. (2004)), “vignette scripts” that map onto
abstract state machines (Shahir et al. (2012)), the use of
distributed deliberative planning using “timelines” (Pinto
et al. (2012)), dynamically-changeable Petri nets (Love
et al. (2014)), or combined bigraph/actor models (Pereira
et al. (2013)). The concerns of NVL are orthogonal to
these approaches. The language focuses on foundational
programming constructs that serve as core building blocks
for operating unmanned vehicle networks. Beyond direct
use, we think of NVL as a backend coordination language
for other higher-level modelling frameworks and semantic
abstractions in the future.

In this paper, we focus on the practical use of the language.
We present a thermal pollution plume tracking scenario
using UUVs and the use of NVL to accomplish it. We
describe the example scenario in Section 2, and the NVL
program for its realisation in Section 3. Section 4 describes
the coordination architecture and the software toolchain
for the specification and execution of NVL programs. We
conclude the paper with some final remarks in Section 5.

2. EXAMPLE SCENARIO

We begin by describing an example application scenario,
depicted in Fig. 2. The scenario at stake is adapted from
operations conduced by LSTS and partners in Marjan
peninsula at Croatia (Sousa et al. (2014)). There, three un-
manned underwater vehicles (UUVs) carrying rhodamine
sensors were used to detect and sample a simulated pollu-
tion plume. During the experiment surface vehicles and
aerial vehicles were used to relay information from the
AUVs to shore, where the base station was located. In
similar spirit, we consider the localisation and mapping
of a thermal pollution plume over an area of interest
through adaptive data sampling, employing three UUVs.
The rationale is that two UUVs track the operation zone
into distinct sections to track the origin of the plume. Since
the survey area can be too large for direct communication
range, an extra UUV serves as a communication gateway
in-between the vehicles and between vehicles and also
nodes on the shore where human operators may monitor
and command the overall operation.

The data sampling is iterative. The survey UUVs initially
cover a large area in coarse-grained manner to try to
track the probable source of the pollution. Once a survey
step is over, the temperature measurements are examined
and the zone for the next step is redefined, if found
necessary. In that case, the area is typically reduced and
shifted towards the hotter area, to get a more accurate
temperature mapping of the potential pollution plume.
The operation area is reprogrammed (reduced in size and
relocated) and again split between the UUV vehicles for
a new survey step. The data analysis and area refinement
may either be performed by a human user or cooperatively
by custom controllers running onboard each of the survey
vehicles.

The plot in Fig. 3 illustrates how the scenario may un-
fold, considering the simulated physical location of Leixões
harbour in Portugal. The data at stake was derived from

Fig. 2. Example scenario

Fig. 3. Thermal pollution plume tracking

Fig. 4. Vehicle positions

the execution of the NVL program we describe later in
Section 3. The paths of the two survey vehicles are shown,
along with (also simulated) temperature measurements
across the operation area. Higher temperature values indi-
cate a probable source of pollution. The vehicles first scan
the area looking for the plume using a coarse-grained row
pattern. After this first scan, an human user or an auto-
mated software module may analyse the data and derive
a new sub-area of interest, attending to the distribution

257

258 Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261

of temperature values and to the zones where these are
higher. In the second scan, again using row patterns, the
plume is found and mapped in more fine-grained manner.

Fig. 4 displays the vehicle positions for the same data set,
but also depicting the movement of the relay vehicle. The
aim is that the relay vehicle positions itself such that com-
munications performance and connectivity among vehicles
and offshore nodes is optimised. This can be accomplished
by a communications relay maneuver that is implemented
in LSTS unmanned vehicles (Pinto et al. (2013a)). When
executing this maneuver, a vehicle monitors the position of
other nodes in the network and moves in order to maintain
a certain minimal distance to these nodes, whilst also po-
sitioning itself in a manner that optimises communication
performance (e.g., by moving to the geometric center of
nodes’ positions).

3. NVL PROGRAM FOR PLUME TRACKING

Fig. 5 lists a NVL program that realizes the pollution
plume tracking scenario. The program declares a set of
tasks and a procedure made up of instructions that select
vehicles and associate the execution of tasks to vehicles.

1// Task d e c l a r a t i o n s
2ta sk approachArea1 (v e h i c l e sv)
3ta sk approachArea2 (v e h i c l e sv)
4ta sk su r v eyArea1 (v e h i c l e sv)
5ta sk su r v eyArea2 (v e h i c l e sv)
6ta sk r e l a y (v e h i c l e r e l ayV ,
7! v e h i c l e sv1 ,
8! v e h i c l e sv2)
9// Main p rocedu r e
10proc main () {
11// S e l e c t UUVs .
12s e l e c t 5 m {
13r e l a y V e h i c l e
14(type : ”UUV” area : 41 .18500 −8.70620 1
15i d : ” lauv−seacon−3”)
16s u r v e yV e h i c l e 1
17(type : ”UUV” area : 41 .18500 −8.70620 1)
18s u r v e yV e h i c l e 2
19(type : ”UUV” area : 41 .18500 −8.70620 1)
20}
21then {
22do {
23s tep 15 m {
24approachArea1 (s u r v e yV e h i c l e 1)
25approachArea2 (s u r v e yV e h i c l e 2)
26r e l a y (r e l a yV e h i c l e ,
27! s u r v e yVeh i c l e 1 , ! s u r v e yV e h i c l e 2)
28}
29s tep 60 m {
30su r veyArea1 (s u r v e yV e h i c l e 1)
31su r veyArea2 (s u r v e yV e h i c l e 2)
32r e l a y (r e l a yV e h i c l e ,
33! s u r v e yVeh i c l e 1 , ! s u r v e yV e h i c l e 2)
34}
35i npu t 20 m u s e r I n p u t
36{ ” con t i n u e ” ” s top ” } d e f a u l t ” s top ”
37}
38wh i l e (u s e r I n p u t = ” con t i nu e ”)
39}
40}

Fig. 5. Plume tracking program

3.1 Task declarations

A task is modelled as an indivisible unit of timed com-
putation that requires one or more vehicles in order to
execute. Tasks are merely declared by a program, as the
purpose of the program is to orchestrate task execution.
Thus, the invocation interface of tasks needs to be exposed,
but not the actual logic inherent to their implementation.
We discuss the actual mechanisms for the implementation
of tasks in Section 4.

The plume tracking program declares five tasks, from
line 2 to line 8 in Fig. 5: approachArea1, approachArea2,
surveyArea1, surveyArea2, and relay . In relation to the tar-
get scenario, approachArea1 and surveyArea1 are the tasks
to be executed by the first survey vehicle to respectively
approach and survey its sampling area, approachArea2
and surveyArea2 play a similar role for the second survey
vehicle, and relay is the task to be executed by the relay
vehicle. Each task requires only one vehicle to execute,
and the relay task additionally takes two vehicle reference
arguments, indicated by the ! vehicle syntax. The intent
of vehicle references is to make tasks aware and “linked”
to the presence of other vehicles, even if those vehicles are
independently executing other tasks. In the example, the
relay task is then supplied with references to the survey
vehicles.

Some other NVL task declaration features are not used
by the plume tracking program. For instance, tasks may
require more than one vehicle resource, when they require
the cooperative engagement of vehicles in tightly coupled
manner, and they can declare output values that may be
used in the program body to govern control flow – see
(Marques et al. (2015)) for further details and related
examples.

3.2 Procedures

NVL procedures contains sequences of instructions that
express selection of vehicles and subsequent allocation of
selected vehicles to tasks. The execution of a program
starts with a procedure called main. In the plume tracking
program there is just the main procedure, lines 10–40).

Vehicle selection. The three UUV vehicles are selected
from the network using a select instruction at line 12.
The vehicles are identified by variables relayVehicle ,
surveyVehicle1 , and surveyVehicle2 declared in the follow-
ing lines. The instruction also has an associated deadline
of 5 minutes, 5 m in the code, and states selection filters
per each vehicle.

All three vehicle filters specify the selection of a UUV
class vehicle, type: UUV in the code, located in a 1 kilo-
metre range of latitude/longitude coordinates 41.18500 N,
8.70620E, as specified by area: 41.18500 −8.70620 1. The
id : ”lauv−seacon−3” additional filter used for selecting
relayVehicle indicates that the vehicle must be a pre-
cise one that goes by the identification of “lauv-seacon-
3”. The absence of such a filter for surveyVehicle1 and
surveyVehicle2 means that the survey vehicles can be any
other UUV vehicles in the desired area.

The program stops if (any of) the vehicles cannot be
selected within the 5 minute deadline, in line with the

258

 Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261 259

of temperature values and to the zones where these are
higher. In the second scan, again using row patterns, the
plume is found and mapped in more fine-grained manner.

Fig. 4 displays the vehicle positions for the same data set,
but also depicting the movement of the relay vehicle. The
aim is that the relay vehicle positions itself such that com-
munications performance and connectivity among vehicles
and offshore nodes is optimised. This can be accomplished
by a communications relay maneuver that is implemented
in LSTS unmanned vehicles (Pinto et al. (2013a)). When
executing this maneuver, a vehicle monitors the position of
other nodes in the network and moves in order to maintain
a certain minimal distance to these nodes, whilst also po-
sitioning itself in a manner that optimises communication
performance (e.g., by moving to the geometric center of
nodes’ positions).

3. NVL PROGRAM FOR PLUME TRACKING

Fig. 5 lists a NVL program that realizes the pollution
plume tracking scenario. The program declares a set of
tasks and a procedure made up of instructions that select
vehicles and associate the execution of tasks to vehicles.

1// Task d e c l a r a t i o n s
2ta sk approachArea1 (v e h i c l e sv)
3ta sk approachArea2 (v e h i c l e sv)
4ta sk su r v eyArea1 (v e h i c l e sv)
5ta sk su r v eyArea2 (v e h i c l e sv)
6ta sk r e l a y (v e h i c l e r e l ayV ,
7! v e h i c l e sv1 ,
8! v e h i c l e sv2)
9// Main p rocedu r e
10proc main () {
11// S e l e c t UUVs .
12s e l e c t 5 m {
13r e l a y V e h i c l e
14(type : ”UUV” area : 41 .18500 −8.70620 1
15i d : ” lauv−seacon−3”)
16s u r v e yV e h i c l e 1
17(type : ”UUV” area : 41 .18500 −8.70620 1)
18s u r v e yV e h i c l e 2
19(type : ”UUV” area : 41 .18500 −8.70620 1)
20}
21then {
22do {
23s tep 15 m {
24approachArea1 (s u r v e yV e h i c l e 1)
25approachArea2 (s u r v e yV e h i c l e 2)
26r e l a y (r e l a yV e h i c l e ,
27! s u r v e yVeh i c l e 1 , ! s u r v e yV e h i c l e 2)
28}
29s tep 60 m {
30su r veyArea1 (s u r v e yV e h i c l e 1)
31su r veyArea2 (s u r v e yV e h i c l e 2)
32r e l a y (r e l a yV e h i c l e ,
33! s u r v e yVeh i c l e 1 , ! s u r v e yV e h i c l e 2)
34}
35i npu t 20 m u s e r I n p u t
36{ ” con t i n u e ” ” s top ” } d e f a u l t ” s top ”
37}
38wh i l e (u s e r I n p u t = ” con t i nu e ”)
39}
40}

Fig. 5. Plume tracking program

3.1 Task declarations

A task is modelled as an indivisible unit of timed com-
putation that requires one or more vehicles in order to
execute. Tasks are merely declared by a program, as the
purpose of the program is to orchestrate task execution.
Thus, the invocation interface of tasks needs to be exposed,
but not the actual logic inherent to their implementation.
We discuss the actual mechanisms for the implementation
of tasks in Section 4.

The plume tracking program declares five tasks, from
line 2 to line 8 in Fig. 5: approachArea1, approachArea2,
surveyArea1, surveyArea2, and relay . In relation to the tar-
get scenario, approachArea1 and surveyArea1 are the tasks
to be executed by the first survey vehicle to respectively
approach and survey its sampling area, approachArea2
and surveyArea2 play a similar role for the second survey
vehicle, and relay is the task to be executed by the relay
vehicle. Each task requires only one vehicle to execute,
and the relay task additionally takes two vehicle reference
arguments, indicated by the ! vehicle syntax. The intent
of vehicle references is to make tasks aware and “linked”
to the presence of other vehicles, even if those vehicles are
independently executing other tasks. In the example, the
relay task is then supplied with references to the survey
vehicles.

Some other NVL task declaration features are not used
by the plume tracking program. For instance, tasks may
require more than one vehicle resource, when they require
the cooperative engagement of vehicles in tightly coupled
manner, and they can declare output values that may be
used in the program body to govern control flow – see
(Marques et al. (2015)) for further details and related
examples.

3.2 Procedures

NVL procedures contains sequences of instructions that
express selection of vehicles and subsequent allocation of
selected vehicles to tasks. The execution of a program
starts with a procedure called main. In the plume tracking
program there is just the main procedure, lines 10–40).

Vehicle selection. The three UUV vehicles are selected
from the network using a select instruction at line 12.
The vehicles are identified by variables relayVehicle ,
surveyVehicle1 , and surveyVehicle2 declared in the follow-
ing lines. The instruction also has an associated deadline
of 5 minutes, 5 m in the code, and states selection filters
per each vehicle.

All three vehicle filters specify the selection of a UUV
class vehicle, type: UUV in the code, located in a 1 kilo-
metre range of latitude/longitude coordinates 41.18500 N,
8.70620E, as specified by area: 41.18500 −8.70620 1. The
id : ”lauv−seacon−3” additional filter used for selecting
relayVehicle indicates that the vehicle must be a pre-
cise one that goes by the identification of “lauv-seacon-
3”. The absence of such a filter for surveyVehicle1 and
surveyVehicle2 means that the survey vehicles can be any
other UUV vehicles in the desired area.

The program stops if (any of) the vehicles cannot be
selected within the 5 minute deadline, in line with the

258

default error handling mechanism in NVL. Custom error
handling blocks may be specified (Marques et al. (2015))
but are omitted in the example for simplicity.

Task execution. If the UUVs are successfully selected,
the then block that associates to the select instruction
in the program is carried out, i.e., the instructions from
line 21 to line 39. The then block contains a cycle ex-
pressed by a do { ... } while (...) construct (lines 22–
38) where each iteration proceeds as follows:

(1) The first step instruction (lines 23–28) fires the
approachArea1, approachArea2, and relay tasks. These
will be executed simultaneously by the surveyVehicle1 ,
surveyVehicle2 , and relayVehicle vehicles respec-
tively, with a shared deadline of 15 minutes. The
program advances to the next instruction only when
all tasks for the step complete. Observe that when
a vehicle completes its own task, it may have to
execute some default maneuver for some time, if there
are tasks in the same step still completing in other
vehicles. The step instruction will fail if some of the
tasks do not complete in the specified deadline. In
that case, similarly to vehicle selection, the default
error handling mechanism is to stop the program.

(2) The second step instruction (lines 29–34) proceeds in
analogous manner to the first one. It has a deadline of
60 minutes, and fires the surveyArea1 and surveyArea2
tasks for surveyVehicle1 and surveyVehicle2 , plus the
relay task again for relayVehicle .

(3) An iteration ends with an input instruction (lines 35–
36). This asks the human operator or a software
module that commands the NVL program for a value
in 20 minutes, which should be either ”continue” or
”stop”. The intent is to give time for data analysis
to take place to decide if another thermal plume
sampling iteration should execute (”continue”) or
not (”stop”). The instruction’s time frame is used
to perform the necessary analysis on the thermal
plume data, and, in case another iteration is required,
also to reprogram the survey vehicles’ thermal plume
sampling areas/tasks on the background.

(4) When the do { ... } while (...) loop is finished,
so is the then block and also the program, since there
are no more instructions in sequence. At this point
the vehicles are released from duty to the network by
the program back to the “network cloud”.

4. IMPLEMENTATION

4.1 Overview

The architecture for the execution of NVL programs is
illustrated in Fig. 6. The overall aim of the architecture is
that NVL programs interact with multiple unmanned ve-
hicles and possibly also human operators for a coordinated
behavior amongst all participants.

The main aspects of the architecture are as follows:

• NVL programs are written and validated using an
integrated development environment (IDE) by an
user. A validated program can then be executed by
an NVL interpreter.

Fig. 6. Coordination architecture

• The execution of NVL program within the interpreter
relies on the interaction with multiple vehicles. This
is accomplished through communication with NVL
supervisor modules that ran onboard each vehicle.
NVL supervisors handle and fire tasks that execute
on the vehicle they are responsible for.

• NVL programs also interact through human-user in-
puts, whenever user intervention is necessary for co-
ordination, i.e., through the input instruction as in
the example program.

• Three components from the LSTS open-source soft-
ware toolchain (Pinto et al. (2013a)), available from
http://github.com/LSTS, aid the execution of NVL
programs: (1) the IMC interoperability protocol is
used for communication amongst all components dur-
ing the execution of a program; (2) NVL supervisors
interact with DUNE, the onboard software system
that directly controls the vehicles; and (3) the Neptus
system is used to encode vehicle tasks in the form of
IMC plans and monitor their subsequent execution.

To derive the plots of Section 2, we deployed this architec-
ture in a simulation environment. The difference from an
actual NVL field-test deployment (Marques et al. (2015))
is that DUNE runs with a simulation profile, employing
an UUV physics simulation engine (da Silva et al. (2007))
and sensor/actuator simulator task drivers. We next de-
scribe the role of the architectural components and their
interaction in more detail.

4.2 NVL program specification

To specify NVL programs, a user employs the NVL IDE.
The purpose of the tool is to write and validate a program,
offering an user-friendly GUI interface that integrates with
the popular Eclipse programming environment. A screen-
shot of the IDE is shown in Fig. 7. The tool is developed
in Xtext, a popular open-source toolkit for implementing
domain-specific languages (Bettini (2014)), available from
http://eclipse.org/Xtext. Xtext supports the tradi-

259

260 Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261

tional tasks of typical language design and implemen-
tation, such as the definition of the language grammar,
syntactic parsing or semantic validation.

Fig. 7. Program specification using the NVL IDE

4.3 Task planning

The simplest implementation for NVL vehicle tasks is
provided by maneuver plans, which can be edited in Nep-
tus, serialised to IMC format, and then directly executed
within a vehicle by DUNE. These plans are composed of
sequences of maneuvers that range from simple waypoint
tracking or loitering to more more complex maneuvers,
like data surveys over a region with a variety of spatial
patterns. As an example, the edition of a row-pattern
maneuver for data sampling in Neptus is shown in Fig. 8.

An NVL task may be solely defined by an IMC plan,
that is simply passed on from NVL supervisor to DUNE,
or, in more elaborate form, be implemented by custom
controller code that runs within a supervisor. Custom
controllers are used to implement behavior beyond the
level of abstraction of IMC plans, particularly cooperative
tasks, e.g., multi-vehicle adaptive data sampling or vehicle
rendez-vous tasks for data transfer/muling (González et al.
(2012); Marques et al. (2007, 2015); Pinto et al. (2013b)).
These controllers may fire one or more generated IMC
plans to DUNE, that can either be pre-programmed or
generated on-the-fly.

4.4 Program execution

The execution of a program comprises the interaction
between the interpreter and the supervisors onboard each
NVL-enabled vehicle. The code of both these components
is written in Java, and executes using the low-footprint
Java SE Embedded runtime environment. Supervisors at-
tend to the interpreter’s orders for task execution, and
report back related state, mediating access to the local

Fig. 8. Edition of IMC plans using Neptus

DUNE instance that directly controls the vehicle. When
cooperative task controllers run embedded in NVL super-
visors, controllers in distinct vehicles also interact among
themselves through supervisor-to-supervisor communica-
tion. During execution, the progress of IMC plans executed
by DUNE can be monitored using Neptus. A Neptus
screenshot during execution of the plume tracking scenario
is shown in Fig. 9.

Fig. 9. Task monitoring in Neptus

4.5 IMC and networking

IMC (Martins et al. (2009); Pinto et al. (2013a)) defines
an extensible interoperability protocol for data exchanged
in networks composed of unmanned vehicles, human op-
erators, or environmental sensors. All components in our
architecture communicate through IMC messages, cover-
ing the general aspects of as vehicle interface, maneu-
ver plan specifications, and node announcement/discovery.
We extended IMC with a few NVL-specific messages for
the interpreter-supervisor interactions plus supervisor-to-
supervisor interaction during cooperative maneuvers.

5. CONCLUSION

We presented the use of the NVL coordination language in
an example scenario of thermal pollution plume tracking
using a team of UUVs. The language is being actively

260

 Eduardo R. B. Marques et al. / IFAC-PapersOnLine 48-2 (2015) 256–261 261

tional tasks of typical language design and implemen-
tation, such as the definition of the language grammar,
syntactic parsing or semantic validation.

Fig. 7. Program specification using the NVL IDE

4.3 Task planning

The simplest implementation for NVL vehicle tasks is
provided by maneuver plans, which can be edited in Nep-
tus, serialised to IMC format, and then directly executed
within a vehicle by DUNE. These plans are composed of
sequences of maneuvers that range from simple waypoint
tracking or loitering to more more complex maneuvers,
like data surveys over a region with a variety of spatial
patterns. As an example, the edition of a row-pattern
maneuver for data sampling in Neptus is shown in Fig. 8.

An NVL task may be solely defined by an IMC plan,
that is simply passed on from NVL supervisor to DUNE,
or, in more elaborate form, be implemented by custom
controller code that runs within a supervisor. Custom
controllers are used to implement behavior beyond the
level of abstraction of IMC plans, particularly cooperative
tasks, e.g., multi-vehicle adaptive data sampling or vehicle
rendez-vous tasks for data transfer/muling (González et al.
(2012); Marques et al. (2007, 2015); Pinto et al. (2013b)).
These controllers may fire one or more generated IMC
plans to DUNE, that can either be pre-programmed or
generated on-the-fly.

4.4 Program execution

The execution of a program comprises the interaction
between the interpreter and the supervisors onboard each
NVL-enabled vehicle. The code of both these components
is written in Java, and executes using the low-footprint
Java SE Embedded runtime environment. Supervisors at-
tend to the interpreter’s orders for task execution, and
report back related state, mediating access to the local

Fig. 8. Edition of IMC plans using Neptus

DUNE instance that directly controls the vehicle. When
cooperative task controllers run embedded in NVL super-
visors, controllers in distinct vehicles also interact among
themselves through supervisor-to-supervisor communica-
tion. During execution, the progress of IMC plans executed
by DUNE can be monitored using Neptus. A Neptus
screenshot during execution of the plume tracking scenario
is shown in Fig. 9.

Fig. 9. Task monitoring in Neptus

4.5 IMC and networking

IMC (Martins et al. (2009); Pinto et al. (2013a)) defines
an extensible interoperability protocol for data exchanged
in networks composed of unmanned vehicles, human op-
erators, or environmental sensors. All components in our
architecture communicate through IMC messages, cover-
ing the general aspects of as vehicle interface, maneu-
ver plan specifications, and node announcement/discovery.
We extended IMC with a few NVL-specific messages for
the interpreter-supervisor interactions plus supervisor-to-
supervisor interaction during cooperative maneuvers.

5. CONCLUSION

We presented the use of the NVL coordination language in
an example scenario of thermal pollution plume tracking
using a team of UUVs. The language is being actively

260

developed further to accommodate to new requirements.
Future work directions include:

• Adding more expressiveness to the language, e.g.,
extensions for supporting vehicle “teams” and asso-
ciated dynamics (Shahir et al. (2012); Sousa et al.
(2004)).

• Further integration with the LSTS toolchain, includ-
ing the development of a Neptus NVL plugin, and the
use of NVL as a backend language for deliberative
planning Pinto et al. (2012, 2013a).

• Formal analysis of a NVL programs, in order to es-
tablish a priori guarantees on program execution. For
instance, the following general problem of feasibility
may be stated: can program P accomplish its tasks
in t time with a vehicle set V under constraints C ?
Basic timing properties may naturally be analysed
owing to the inherently timed nature of NVL pro-
grams, e.g., estimation of a program’s execution time
under given resource and input assumptions. More
generally, we are interested in the emerging approach
of contract-based design for cyber-physical systems
(Derler et al. (2013); Sangiovanni-Vincentelli et al.
(2012)).

REFERENCES

Bellingham, J. and Rajan, K. (2007). Robotics in remote
and hostile environments. Science, 318(5853), 1098–
1102.

Bettini, L. (2014). Implementing Domain-Specific Lan-
guages with Xtext and Xtend. Packt Publishing.

da Silva, J., Terra, B., Martins, R., and de Sousa, J. (2007).
Modeling and simulation of the LAUV autonomous
underwater vehicle. In Proc. MMAR. IFAC.

Derler, P., Lee, E., Tripakis, S., and Törngren, M. (2013).
Cyber-physical system design contracts. In Proc. ICC-
CPS. ACM.

Dunbabin, M. and Marques, L. (2012). Robots for environ-
mental monitoring: Significant advancements and appli-
cations. IEEE Robotics Automation Magazine, 19(1),
24–39.

Faria, M., Pinto, J., Py, F., Fortuna, J., Dias, H., Martins,
R., Leira, F., Johansen, T., Sousa, J., and Rajan, K.
(2014). Coordinating UAVs and AUVs for Oceano-
graphic Field Experiments: Challenges and Lessons
Learned. In Proc. ICRA.

González, J., Masmitjà, I., Gomáriz, S., Molino, E.,
Del Ŕıo, J., Mànuel, A., Busquets, J., Guerrero, A.,
López, F., Carreras, M., Ribas, D., Carrera, A., Candela,
C., Ridao, P., Sousa, J., Calado, P., Pinto, J., Sousa,
A., Martins, R., Borrajo, D., Olaya, A., Garau, B.,
González, I., Torres, S., Rajan, K., McCann, M., and
Gilabert, J. (2012). AUV based multi-vehicle collabora-
tion: Salinity studies in Mar Menor Coastal lagoon. In
Proc. NGCUV. IFAC.

Isern, A. and Clark, H. (2003). The Ocean Observatories
Initiative: A continued presence for interactive ocean
research. Marine Technology Society Journal, 37(3), 26–
41.

Love, J., Jariyasunant, J., Pereira, E., Zennaro, M.,
Hedrick, K., Kirsch, C., and Sengupta, R. (2014). CSL:
A Language to Specify and Re-Specify Mobile Sensor
Network Behaviors. In Proc. RTAS. IEEE.

Marques, E., Pinto, J., Kragelund, S., Dias, P., Madureira,
L., Sousa, A., Correia, M., Ferreira, H., Gonçalves, R.,
Martins, R., Horner, D., Healey, A., Gonçalves, G., and
Sousa, J. (2007). AUV control and communication using
underwater acoustic networks. In Proc. IEEE Oceans
Europe. IEEE.

Marques, E., Ribeiro, M., Pinto, J., Sousa, J., and Martins,
F. (2015). NVL: a coordination language for unmanned
vehicle networks. In Proc. 30th ACM/SIGAPP Sympo-
sium On Applied Computing, SAC’15. ACM.

Martins, R., Dias, P., Marques, E., Pinto, J., Sousa, J., and
Pereira, F. (2009). IMC: A Communication Protocol for
Networked Vehicles and Sensors. In Proc. IEEE Oceans
Europe (OCEANS’09). IEEE.

Martins, R., Sousa, J., and Afonso, C. (2011). Shallow-
water surveys with a fleet of heterogeneous autonomous
vehicles. Sea Technology, 52(11), 27–31.

Pereira, E., Kirsch, C., R.Sengupta, and Sousa, J. (2013).
BigActors - A Model for Structure-aware Computation.
In Proc. ICCPS. ACM.

Petrioli, C., Petroccia, R., Potter, J., and Spaccini, D.
(2014). The SUNSET framework for simulation, em-
ulation and at-sea testing of underwater wireless sensor
networks. Ad Hoc Networks and Physical Communica-
tion.

Pinto, J., Dias, P., Martins, R., Fortuna, J., Marques,
E., and Sousa, J. (2013a). The LSTS Toolchain for
Networked Vehicle Systems. In Proc. Oceans. IEEE.

Pinto, J., Faria, M., Fortuna, J., Martins, R., Sousa, J.,
Queiroz, N., Py, F., and Rajan, K. (2013b). Chasing
fish: Tracking and control in a autonomous multi-vehicle
real-world experiment. In Proc. Oceans. MTS/IEEE.

Pinto, J., Sousa, J., Py, F., and Rajan, K. (2012). Ex-
periments with deliberative planning on autonomous
underwater vehicles. In Proc. WREM/IROS.

Sangiovanni-Vincentelli, A., Damm, W., and Passerone,
R. (2012). Taming Dr. Frankenstein: Contract-based
design for cyber-physical systems. European Journal of
Control, 18(3), 217–238.

Shahir, H., Glässer, U., Farahbod, R., Jackson, P., and
Wehn, H. (2012). Generating test cases for marine
safety and security scenarios: a composition framework.
Security Informatics, 1(1), 1–21.

Sousa, J., Simsek, T., and Varaiya, P. (2004). Task
planning and execution for UAV teams. In Proc. CDC.
IEEE.

Sousa, J., Ferreira, F., Costa, M., and Oliveira, M. (2014).
Building oceanographic and atmospheric observation
networks by composition: unmanned vehicles, commu-
nication networks, and planning and execution control
frameworks. In AGU Fall Meeting.

261

