
IMC: A Communication Protocol for Networked
Vehicles and Sensors

Ricardo Martins
Paulo Sousa Dias

Eduardo R. B. Marques
José Pinto

LSTS – Underwater Systems and Technology Laboratory
Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias s/n
4200-465 Porto, Portugal

{rasm,pdias,edrdo,zepinto,jtasso,flp}@fe.up.pt

João B. Sousa
Fernando L. Pereira

Abstract—This paper presents the Inter-Module Communi-
cation (IMC) protocol, a message-oriented protocol designed
and implemented in the Underwater Systems and Technology
Laboratory (LSTS) to build interconnected systems of vehicles,
sensors and human operators that are able to pursue common
goals cooperatively by exchanging real-time information about
the environment and updated objectives. IMC abstracts hardware
and communication heterogeniety by providing a shared set of
messages that can be serialized and transferred over different
means.

The described protocol contrasts with other existing appli-
cation level protocols by not imposing or assuming a specific
software architecture for client applications. Native support can
be automatically generated for different programming languages
and/or computer architectures resulting in optimized code which
can be used both for networked nodes and also for inter-process
and inter-thread communication.

The protocol has already been tested throughout various exper-
iments led by LSTS where it has taken care of communications
between vehicles, sensors and operator consoles. We are now
developing the protocol in the direction of having multi-vehicle
cooperation using live data from environmental sensors and
mixed-initiative user interaction.

I. INTRODUCTION

This paper presents the Inter-Module Communication (IMC)
protocol, a message-oriented protocol designed and imple-
mented in the Underwater Systems and Technology Laboratory
(LSTS) for communication between heterogeneous vehicles,
sensors and human operators. Recent technological advances
have led to the proliferation of several types of unmanned
robotic vehicles that are able to perform dangerous, long and
dull tasks even while unattended. In LSTS, we have built
several such vehicles, namely Autonomous Underwater Ve-
hicles (AUVs) [1], Autonomous Surface Vehicles (ASVs) [2],
Unmanned Air Vehicles (UAVs) [3], and Remotely Operated
Vehicles (ROVs). Some of those are shown in Figure 1. Along
with vehicles, we are also using different types of wireless
sensors that can be embedded in static or drifting buoys, shown
in Figure 2.

Our main objective is to build interconnected systems of
vehicles, sensors and human operators that are able to pursue

common goals cooperatively by exchanging real-time infor-
mation about the environment and updated objectives. In these
systems, operators can be kept in the loop in order to change
the behaviour of the system in real-time. These operators
can also answer to unforeseen situations where their input is
crucial, following a mixed-initiative interaction pattern. There
is a large number of applications for such systems like adaptive
sampling [4], border patrolling or cooperative warfare [5], but
all of these come at the cost of high complexity, in part because
of sensor, vehicle and communication links heterogeneity. To
answer this problem, we are using reusable, interoperable and
independent blocks, all communicating with IMC, enabling
rapid integration of new hardware and easing the development
of new cooperation algorithms.

This paper is structured as follows. Section II gives an
overview of the protocol and how we are applying it to control
different existing systems. In Section III we provide technical
details about the current implementation. Section IV discusses
related work. Section V concludes and highlights directions for
future work.

II. IMC OVERVIEW

The IMC protocol comprises different logical message
groups for networked vehicle and sensor operations. It defines
an infrastructure that is modular and provides different layers
for control and sensing. The use of IMC in the context of the
Seascout Light AUV (LAUV) [1], [6] - depicted in Figure 1a
- is a typical example. Figure 3 illustrates the use of IMC
within the LAUV. The message flow corresponds to the several
control and sensing layers within IMC:

1) Mission control messages define the specification of a
mission and it’s life-cycle, for the interface between a
CCU (Command and Control Unit) such as a Neptus [7]
console and a mission supervisor module. A mission is
a sequence or graph of maneuvers - see 3 below.

2) Vehicle control messages are used to interface the vehicle
from an external source, typically a CCU or a mission
supervisor module, for example to issue maneuver com-

(a) Seascout Light AUV (b) Lusitânia UAV

(c) Swordfish ASV (d) KOS ROV

Fig. 1: Some autonomous vehicles that use IMC.

mands or other external requests, and to monitor the
vehicle’s state.

3) Maneuver messages are used to define maneuvers, asso-
ciated commands and execution state. In the LAUV, the
simplest maneuver types are related to waypoint tracking
- encoded through a Goto message - or loitering patterns
- Loiter.

4) Guidance messages are related to the guidance used
for autonomous maneuvering. In the LAUV, a guidance
step generates new reference measures for the vehicle
heading, depth, and velocity, in the form of a Desired
Guidance message.

5) Navigation messages define the interface for reporting a
vehicle’s navigation state. The Estimated State message
defines a vehicle’s navigational state by the SNAME
convention [8].

6) Sensor messages are used to report sensor readings by
the respective hardware controllers. Sensor messages in
the LAUV configuration shown are related to sensor
readings from an IMU, a GPS, and LBL (Long Base
Line) acoustic positioning system: Euler Angles, GPS
Fix, and LBL Range, respectively, among others in

diverse configurations.
7) Actuator messages specify the interface with hardware

actuator controllers. The actuators that impact in the
LAUV guidance are the fins and the thruster, interfaced
through the Set Fin Position and Set Thruster Actuation
messages respectively.

Fig. 2: Static and drifting buoys.

This layered control and sensing infrastructure is in line
with typical control infrastructure for autonomous vehicles,
and enables modular development of applications. Software
components can run in logical isolation, interfacing with other

Fig. 3: IMC message flow in Seascout Light AUV.

Fig. 4: A Neptus console.

modules merely through the exchange of IMC messages. The
control infrastructure for autonomous vehicles implemented
on-board, using the DUNE framework [9], that enables mes-
sage exchange using a message bus abstraction, and provides
transport mechanisms for external communications. Vehicles
can be monitored and controlled externally using Neptus
consoles [7]. A sample screenshot (for LAUV) is shown in
Figure 4.

Networking of vehicles and consoles, is enabled through tra-
ditional IP-based communication-mechanisms, like raw UDP
or TCP sockets, or by other means, such as the Real-
Time Publish-Subscribe protocol [10], or underwater acoustic
modems [11]. The drifting and static buoys being used are
able to communicate data over long periods of time either by
short distance multi-hop networking [12], by using ubiquitous
GSM/GPRS communications, or also by communicating large
bursts of stored data when a communication link can be
established.

III. IMPLEMENTATION

IMC defines the message entity as having an associated
uniquely identifying number and consisting of a (possibly
empty) sequence of data fields capable of representing fixed-
width integers, floating point numbers, variable length byte
sequences and inline messages (messages within messages).
Integers can be signed or unsigned with sizes ranging from 8
to 64 bits. Floating point numbers have two sizes: 32 and 64
bits.

Messages are prefixed with a header and suffixed with a
footer to form a packet. Header and footer entities are defined
as non-empty sequences of data fields and have the same
structure for all packets. Organization of data fields within
one IMC packet is described in detail in Table I.

TABLE I: IMC Packet Format.
Data Field Size Type
Synchronization Number 2 16-bit unsigned int
Message Identification 2 16-bit unsigned int
Message Size 2 16-bit unsigned int
Time Stamp 2 64-bit floating point
Message Data Message Size -
CRC 2 16-bit unsigned int

In order to transmit a message or save it to persistent storage
the message has to be encapsulated in a packet and serialized.
Serialization is performed by translating the data fields of the
packet entities (header, message and footer) to a binary stream
in the same order as they were defined. The first field of the
packet header is the synchronization number, used to mark the
beginning of a packet and to denote it’s protocol version. By
inspecting the synchronization number the recipient is able
to deduce the byte order of the remaining data fields and
perform the necessary conversions for correct interpretation.
Using this approach, communication between nodes with the
same byte order incurs in no byte order conversion overhead
and communication between nodes with different byte orders

only introduces the conversion overhead when deserializing
packets.

The complete IMC protocol is defined in a single eXtensible
Markup Language (XML) [13] document [14] that, when
changed, can be verified against a XML Schema (XSD) [15].
The XML document is organized into the following sections:

1) Description of the IMC protocol, used mainly for doc-
umentation purposes;

2) List of supported types with associated size (minimum
size in the case of variable length field types);

3) Serialization/deserialization rules for variable length
field types;

4) List of supported units for data fields;
5) Definition of the packet header;
6) Definition of the packet footer;
7) List of message groups;
8) Definition of messages and respective fields.
In the XML definition, each message field must have at

least a name, one abbreviation (used for code generation) and
a type. Optionally units and range of permissible values can
also be defined. Thus, a message representing Euler Angles
is defined using the following XML fragment (documentation
was ommited for brevity’s sake):

Listing 1: XML Code Fragment
<message i d =”109” name=” E u l e r Angles ”

a bb re v =” E u l e r A n g l e s”>
< f i e l d name=” Device Id ” a bb r ev =” i d ” t y p e =” u i n t 8 t ”/>
< f i e l d name=” Device Time ” a bb r ev =” t ime ”

t y p e =” f p 6 4 t ”/>
< f i e l d name=” R o l l ” a bb re v =” r o l l ” t y p e =” f p 6 4 t ”

u n i t =” r a d ” min =”0” max = ” 6 . 2 8 3 . . . ” / >
< f i e l d name=” P i t c h ” a bb re v =” p i t c h ” t y p e =” f p 6 4 t ”

u n i t =” r a d ” min =”0” max = ” 6 . 2 8 3 . . . ” / >
< f i e l d name=”Yaw” a bb re v =”yaw” t y p e =” f p 6 4 t ”

u n i t =” r a d ” min =”0” max = ” 6 . 2 8 3 . . . ” >
</message>

Having a XML document describing the protocol has proven
to be very practical for continuous development and testing.
This happens because just after agreeing upon a specific
version of IMC, two nodes can use the XML document to
understand each other. This has been used thoroughly in our
tests where new messages could be created as needed.

The XSL Transformations (XSLT) language [16] is used to
automatically generate the IMC protocol reference documen-
tation and optimized implementations in C++, C# and Java.

Generating native code from the XML document using
XSLT has provided not only flexibility (additional program-
ming languages are added by providing respective transforma-
tions) but also enough performance for real-time operation.

The following simplified C++ code fragment shows the
result of applying a XSLT transformation to Listing 1:

Listing 2: C++ Code Fragment
c l a s s E u l e r A n g l e s : . . .
{

/ / Device Id
u i n t 8 t i d ;
/ / Device Time

f p 6 4 t t ime ;
/ / R o l l
f p 6 4 t r o l l ;
/ / P i t c h
f p 6 4 t p i t c h ;
/ / Yaw
f p 6 4 t yaw ;

boo l v a l i d a t e () ;
P a c k e t s e r i a l i z e () ;
vo id d e s e r i a l i z e (P a c k e t) ;

} ;

In addition to the main serialization format described above,
there are two complementary serialization formats with spe-
cific intents. One is the LLF (LSTS Log Format) format, a
text format used for logging IMC, amenable to direct human
understanding and easier to parse directly by many standard
applications e.g. Matlab, MS Excel, and custom mission
review and analysis software [17]. In order to be possible to
review data from past missions, the LLF format had to be
independent of the originating IMC protocol description (since
the message format can change over time). Our approach was
to define this tab-separated log format where, for each column
(message field), there is an header describing its data type,
name and units to be used when representing the data.

Another format is the IMC-XML, which can be used as a
simplified serialization format itself for inter-module interoper-
ability. The main reason for this additional format is to enable
the integration of web-based components and web-enabled
third-party sensors into large-scale data dissemination [18]
applications.

IV. RELATED WORK

IMC falls in the scope of similar C2 (Command and
Control) protocols. In one hand it allows low level con-
trol commands like JAUS (Joint Architecture for Unmanned
Systems)/SAE AS-4 [19] and CCL (Compact Control Lan-
guage) [20] that provide a set of commands (messages) to
control the vehicle. Additionally, IMC has a set of higher-
level messages providing a level of functionality in the line
of command languages like NATO’s STANAG 4586 [21]
and Common Control Language [22]. This type of command
languages allow sending generic messages/commands and
monitoring vehicle’s real-time progress in detail.

Both CCL [20] and NATO’s STANAG 4586 [21] target
one specific type of unmanned vehicles. CCL and Common
CL [22] target AUVs, being carefully designed with low-
bandwidth underwater acoustic communications in mind. In
this protocol, all messages are designed to fit into highly
compact packets, in order that link throughput is maximized.
IMC provides different serialization formats, being the most
commonly used an efficient binary format that enables com-
munication also for low-bandwidth links.

NATO created STANAG 4586 [21] to promote UAV in-
teroperability through the specification of common interfaces
and architectures for UAV control systems. The commercial
Piccolo UAV autopilot system [23], that we use on our
UAVs [3], also defines a standard message protocol. The intent

of these is to define standards that can be used to control UAVs
with distinct features being possible for them to operate jointly.
In this manner, the protocols can be used to command any
UAV, despite its owning force or manufacturer (considering
security restrictions, of course). We consider the existence of
such intersection protocols to be a major concern in the area of
unmanned vehicle control and IMC is developed also having
interoperability and hardware abstraction in mind. Currently,
IMC provides a standardized protocol not only for controlling
UAVs or AUVs but several other types of vehicles and sensors.

Like IMC, JAUS [19] targets a wide range of types of vehi-
cles: surface, underwater, land, or aerial vehicles. It has C and
Java bindings provided by at least one implementation [24].
Again, JAUS is similar to IMC in the sense that it takes
an hierarchical view of vehicles as systems with subsystems,
nodes, components and component instances.

V. EVALUATION AND FUTURE WORK

Using IMC as the common interface between every com-
ponent in our system, made it more flexible to hardware and
software changes, highly simplifying the process of building
support for newly built hardware. Currently, we are using
IMC for communication between all our vehicles, sensors and
consoles (including portable handheld consoles). The DUNE
onboard software which is used by our vehicles also uses
IMC as the sole inter-process communication mean. IMC
has been therefore thoroughly tested in all the various real-
world experiments led by LSTS, resulting in many successful
AUV underwater missions, UAV autonomous flights and ROV
inspections. Moreover, we have also made several hardware-
in-the-loop simulations where multiple (simulated) AUVs are
controlled or followed simultaneously by different operators.
In these simulations each operator is able to control the actions
of one vehicle at a time, being possible to hand-over control
of vehicles to other operators.

On top of the hardware built at LSTS, we are also interested
in using IMC for supporting vehicles and sensors from outside
the laboratory. In collaboration with the Portuguese Air Force
Academy (AFA) we are working in a conjoint project whose
objective is to achieve cooperative multi-UAV missions using
UAVs from AFA. In the scope of our collaboration with the
Portuguese Navy, we will also use IMC to integrate new AUVs
and sensors from this institution with the objective of creating
heterogenous vehicles and sensor networks for applications
like adaptive sensing and harbor security.

IMC is currently in the (stable) version 2.2.2, being still un-
der active development to support new hardware and concepts
of operation. One of our short-term goals is to build support
for multi-hop message routing over different communication
means. This will enable the use of IMC both for extending
the connectivity of vehicle networks using homogeneous com-
munication links and to have also network nodes that act as
mobile gateways between the various supported communica-
tion means (underwater, zig-bee, wi-fi, GSM, etc), actively
extending network range.

Moreover, we are considering the cases when some nodes
are only connected for a fraction of the time (as happens with
AUVs and other environmental sensors that operate in remote
areas). Addressing this problem, we intend to incorporate
DTN concepts and specifications from the Delay Tolerant
Networking Research Group [25] into IMC in order to have
nodes acting as data mules transparently to the rest of the
network.

The way we are addressing nodes in the network is also
being changed into announce strategies where capabilities
and communication means are also informed to peers in the
network. This can be seen as a way of establishing cooperation
links between nodes which will, in the end, enable the pursuit
of common goals using link-aware controllers.

REFERENCES

[1] “Seascout Project Web Site,” 2009. [Online]. Available:
http://whale.fe.up.pt/seascout/

[2] H. Ferreira, R. Martins, E. Marques, J. Pinto, A. Martins, J. Almeida,
J. Sousa, and E. Silva, “SWORDFISH: an Autonomous Surface Vehicle
for Network Centric Operations,” in OCEANS 2007 - Europe, June 2007.

[3] P. Almeida and R. Bencatel and G. Gonçalves and J. B. Sousa and C.
Ruetz, “Experimental results on Command and Control of Unmanned
Air Vehicle Systems,” in 6th IFAC Symposium on Intelligent Autonomous
Vehicles (IAV’07), 2007.

[4] N. E. Leonard, D. A. Paley, F. Lekien, R. Sepulchre, D. M. Fratantoni,
and R. E. Davis, “Collective Motion, Sensor Networks, and Ocean
Sampling,” in Proceedings of the IEEE, Vol 95, January 2007, pp. 48–74.

[5] J. Sousa, T. Simsek, and P. Varaiya, “Task Planning and Execution for
UAV Teams,” 43rd IEEE Conference on Decision and Control, 2004.

[6] A. Tinka, S. Diemer, L. Madureira, E. Marques, J. Sousa, R. Martins,
J. Pinto, J. E. Silva, P. Saint-Pierre, and A. M. Bayen, “Viability-based
computation of spatially constrained minimum time trajectories for an
autonomous underwater vehicle: implementation and experiments,” in
American Control Conference (ACC’09) - to appear, 2009.

[7] P. S. Dias, J. B. Sousa, and F. L. Pereira, “Networked Operations (with
Neptus),” in MAST 2008, 3rd annual Maritime Systems and Technologies
conference, Cadiz, Spain, 11 2008.

[8] Principles of Naval Architecture - 2nd revision. Society of Naval
Architects and Marine Engineers, 1989.

[9] “Seascout On-Board Software Distribution 0.1,” 2007. [Online].
Available: http://whale.fe.up.pt/seascout/

[10] E. R. B. Marques, G. M. Gonçalves, and J. B. Sousa, “Seaware: A
Publish/Subscribe Communications Middleware for Networked Vehicle
Systems,” in Proc. IFAC Conference on Manoeuvring and Control of
Marine Craft (MCMC), 2006.

[11] E. R. B. Marques, J. Pinto, S. Kragelund, P. S. Dias, L. Madureira,
A. Sousa, M. Correia, H. Ferreira, R. Gonçalves, R. Martins, D. P.
Horner, A. J. Healey, G. M. Gonçalves, and J. B. Sousa, “AUV control
and communication using underwater acoustic networks,” in Proc. IEEE
Oceans Europe, 2007.

[12] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks, vol. 38, pp. 393–422,
2002.

[13] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, and
J. Cowan, “Extensible Markup Language (XML) 1.1 (Second Edition),”
World Wide Web Consortium, Recommendation REC-xml11-20060816,
August 2006. [Online]. Available: http://www.w3.org/TR/2006/REC-
xml11-20060816

[14] J. Pinto, P. S. Dias, G. M. Gonçalves, R. Gonçalves, E. Marques,
J. B. Sousa, and F. L. Pereira, “Neptus – a framework to support
a mission life cycle,” in 7th IFAC Conference on Manoeuvring and
Control of Marine Craft, Lisboa, 09/2006 2006. [Online]. Available:
http://whale.fe.up.pt/Papers/2006/PAPER MCMC2006-Neptus.pdf

[15] D. C. Fallside and P. Walmsley, “XML Schema Part 0: Primer
Second Edition,” World Wide Web Consortium, Recommendation
REC-xmlschema-0-20041028, October 2004. [Online]. Available:
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028

[16] “Extensible Stylesheet Language (XSL) Version 1.1,” World Wide Web
Consortium, Recommendation REC-xsl11-20061205, December 2006.
[Online]. Available: http://www.w3.org/TR/2006/REC-xsl11-20061205

[17] P. S. Dias, J. Pinto, G. Gonçalves, R. Gonçalves, J. Sousa, and F. Pereira,
“Mission Review and Analysis,” in 9th International Conference on
Information Fusion (Fusion 2006), 2006.

[18] J. Pinto, P. Dias, J. B. Sousa, and F. L. Pereira, “Large Scale Data
Collection Using Networks of Heterogeneous Vehicles and Sensors,” in
Proc. Oceans’09 Europe, 2009.

[19] “Joint Architecture for Unmanned Systems,” September 2008. [Online].
Available: http://www.jauswg.org

[20] R. P. Stokey, L. E. Freitag, and M. D. Grund, “A compact control
language for AUV acoustic communication,” in Oceans 2005 - Europe,
Vols 1 and 2, 2005, pp. 1133–1137, Oceans 2005 Europe International
Conference, Brest, FRANCE, JUN 20-23, 2005.

[21] “STANAG 4586 Second Edition, Standard Interfaces of UAV Control
System (UCS) for NATO UAV Interoperability, NATO Standardization,”
November 2007.

[22] C. N. Duarte and B. B. Werger, “Defining a common control language
for multiple autonomous vehicle operation,” in Oceans 2000 MTS/IEEE,
2000, pp. 1861–1867, MTS/IEEE Oceans Conference and Exhibition on
Where Marine Science and Technology Meet, PROVIDENCE, RI, SEP
11-14, 2000.

[23] B. Vaglienti, “Communications for the Piccolo Avionics, version 2.1.0k,”
Cloud Cap Technology, 2009.

[24] “Open JAUS.” [Online]. Available: http://openjaus.com
[25] “Delay Tolerant Networking Research Group,” 2009. [Online].

Available: http://www.dtnrg.org/wiki

