
The LSTS Toolchain for Networked Vehicle Systems*

José Pinto1, Paulo S. Dias1, Ricardo Martins1, João Fortuna1, Eduardo Marques2 and João Sousa1

Abstract— This paper describes the open-source software
toolchain developed by the Underwater Systems and Technology
Laboratory (LSTS) for supporting networked heterogeneous
air and ocean vehicle systems. The toolchain supports the
deployment of air and ocean vehicles interacting over limited
acoustic and wireless networks combined with disruption-
tolerant networking protocols. We present the different com-
ponents of the toolchain and how they can be deployed and
extended for different scenarios. We conclude with descriptions
of recent applications to onboard deliberative planning and
integration of low-cost micro UAVs into the toolchain.

I. INTRODUCTION

There is an ongoing trend towards the creation of Net-
worked Vehicle Systems. These systems are composed by
autonomous vehicles, sensors and human operators that form
a network with a dynamic topology. This happens because
each node in the network has a set of communication means
which bandwidth, latency and reliability depends on their
pose and the poses of its peers. Each node in the network
may have a dynamical physical position. As nodes move, the
network topology changes: communication will be affected
in terms of connectivity, bandwidth and reliability. We are
thus interested in complex behaviors that require orchestra-
tion of communications, movement and computations inside
the network.

Consider the scenario in Fig. 1. Two operators are con-
nected to the network (others could join in at any moment)
and control the network through communication links that
are created and destroyed dynamically. If the objective of
the operator on the right was to obtain an underwater
sidescan survey at a remote location, this should be stated
to the system and the network should automatically adapt
to encompass the resulting objectives. The objectives would
include:

• find one or more vehicles which are capable of gathering
the required data;

• survey location using one or more vehicles; and
• relay (important pieces of) data back to base station.
In the presented scenario one UAV could, for instance,

download the objectives from the control station, fly towards
a device that provides both wireless and acoustic underwater
communications and relay the objectives to that device.

1 Underwater Systems and Technology Laboratory (LSTS), Faculdade de
Engenharia da Universidade do Porto lsts@fe.up.pt

2 Large-Scale Informatics Systems Laboratory, Faculdade de Ciências da
Universidade de Lisboa

*The research leading to these results has received funding from the Eu-
ropean Commission FP7-ICT Cognitive Systems, Interaction, and Robotics
under the contract #270180 (NOPTILUS).

*The authors gratefully acknowledge Kanna Rajan and Frédéric Py from
MBARI for discussions on autonomy and support in integration of TREX.

This device is then responsible for contacting one or more
AUVs that are capable of doing the survey and relaying the
objectives to them. After the survey is completed, the data
needs to somehow travel back to the base station using direct
communications (if the AUV comes near the base station) or
using one or more communication relays like before.

Orchestrating mobile heterogeneous nodes like this is very
complex for human operators since they must be aware of all
connected and disconnected devices, their current capabilities
and state and also any faults or changes that may occur in
the system. This is why it is very important that the system
aids the operators in decision making and allow disconnected
devices to sense the environment and adapt behavior to fulfill
the desired objectives.

At LSTS, we have developed different algorithms and
technologies for the operation of these networked vehicle
systems, with applications to adaptive ocean sampling [1],
mine hunting [2], data muling [3], among others [4]. For
this we have developed several AUVs, UAVs, ROVs and
ASVs (see figure 2). Most of these vehicles have been devel-
oped from scratch by the group including their electronics,
onboard software and operating consoles. Others have been
developed under ongoing collaborations with the Portuguese
Air Force Academy (bottom-left UAV in figure 2) and the
Portuguese Navy (bottom-right AUV in figure 2).

This paper presents the open-source LSTS software
toolchain [5] and design decisions that were taken to enforce
the modularity and adaptability of these tools. In section II
we describe our system architecture and illustrate it with a
sample deployment scenario. We then present the onboard
software in III and the integrated Command and Control
Software in more detail in section IV. In sections V and VI
we describe how this toolchain was extended for supporting

ASV

Surface
buoy

Drifting
sensor

AUV

Moored
sensor

operator

UAV

operator

Fig. 1. Conceptual deployment of a Networked Vehicle System

Fig. 2. Vehicles supported by the LSTS toolchain

Micro Aerial Vehicles and onboard deliberative planning,
respectively, and report results from field deployments in
VII. We end with conclusions and lines of future work in
VIII.

II. ARCHITECTURE

In order to be possible for a set of users to control a fleet
of heterogeneous vehicles and sensors the underlying archi-
tecture must be flexible enough that it can encompass not
only very diverse vehicle hardware but also communication
means, mission scenarios, operator expertise among others.

Our approach is to allow access to the different systems
through explicit and progressively lower level control /
supervision layers. This way it is possible to have system
interoperability at different levels and have controllers for
low-level actuations as well as multi-vehicle operations (and
all in between). This can be seen in figure 3, where we see
that maneuver-level and plan-level control can both be done
onboard the vehicle (fully autonomous operation) or it can be
controlled by an external operator console while the vehicle
is within communication reach.

A. Communications

All the components in our system share the same com-
munication protocol: the Inter-Module Communications pro-
tocol, described in [6] and available from [7]. IMC is a
message-oriented protocol used for both inter-process com-
munication, inter-vehicle and operator-vehicle communica-
tions, logging and also dissemination to the web. The entire

Plan-level control Plan-level control

Maneuver-level control Maneuver-level control

Guidance-level control Guidance-level control

Sensor/Actuator data Sensor/Actuator data

Operator

consoles

Onboard

software

Fig. 3. Different control layers and systems they reside in

IMC protocol definition and its documentation is documented
in a single XML from where language bindings are gener-
ated. This flexibility in creating new types of messages/events
and listening to them onboard and/or offboard is one of the
cornerstones of our system. We are currently using IMC on
unmanned vehicles, data loggers, communication gateways,
portable devices, laptops and web servers.

Moreover, since the protocol is agnostic from the underly-
ing communication mean, it can also be used in disruption-
tolerant networks by employing a DTN implementation.

In our toolchain, all processes and devices communicate
by exchanging IMC messages. These messages can represent
either chunks of a data stream (messages originated in sen-
sors or component states) or they represent an asynchronous
event that should be handled by other component.

All IMC messages contain a header with information like
its type, version, timestamp, origin and destination. Origin
and destinations are encoded as a two-part identifier: the
physical component and the computational component. A
message can thus be addressed to a set of devices of a certain
group (all consoles, all AUVs, . . .) or they can be addressed
specifically to a certain process running onboard a specified
device.

Communication gateways are able to forward messages
from one communication mean to another. For instance,
the Manta communications gateways are able to translate
messages received by acoustic modem into messages that are
transmitted encapsulated inside UDP datagrams through Wi-
Fi. These communications gateways are used in the operation
of AUVs where they are connected to one or several oper-
ator consoles and allow near real-time communication with
untethered underwater vehicles while they operate and, at
the same time allow long-range communication with ASVs,
AUVs at surface or nearby UAVs.

In figure 4, the communications diagram of a typical op-
eration scenario is depicted. An UAV (1) may be connected
to the base station through a communications gateway (2)
while operating. Moreover, in the base station one or more
operators are connected to the system via laptops (4) or
portable handheld devices (5) which are useful when the
operators require mobility like during tele-operation.

The operators on the shore can command the UAV or the
AUV (3) which are both connected to the gateway but, in the
case of the AUV, it can use only acoustic communications
while underwater and when at the surface it can use both Wi-
Fi or the acoustic modem. The communications gateway also
contains a 3G GSM modem that, when active can be used
to forward messages to a remote web server (8) that stores
incoming data. This data can be retrieved and visualized in
real time by any other system that is connected to the web
(7).

In terms of control, while the vehicles are connected to
the base station, the operators can issue both maneuver
commands or plan commands. While the vehicles are discon-
nected they should autonomously decide which commands
should be done next, according to their current state and
objectives.

(1)

(7)

(5)

(4)

(3)

(2)

(8)

wi-fi

acoustic comms

web/xml

wi-fi (unavailable)

Fig. 4. Components deployed in a typical operation

III. ONBOARD SOFTWARE

The onboard software used in all our embedded systems
is DUNE (DUNE Uniform Navigation Environment) [8].
DUNE is writen in C++ and runs on Linux 2.6+, QNX v6.x,
Solaris, Mac OS X, eCos, RTEMS, OpenBSD, FreeBSD,
NetBSD and Microsoft Windows.

A. DUNE Tasks

In DUNE, related logical operations are isolated from
each other in tasks which usually run in separate threads
of execution. Tasks communicate with one another only by
using a message bus which is responsible for forwarding
IMC messages from the producer to all their registered
receivers. Each task follows a common life-cycle and also
has method handlers for all messages that it consumes. The
life-cycle of a DUNE task comprises the following methods:

• onEntityReservation() / onEntityResolution()
• onReportEntityState()
• onResourceAcquisition() / onResourceRelease() / onRe-

sourceInitialization()
• onUpdateParameters()
• onRequestActivation() / onRequestDeactivation()
• onActivation() / onDeactivation()
• onMain()
• consume(< M > message)
Any implemented task can choose to override the inherited

(empty) implementation of the previous methods with their
specific code. As an example, a sensor payload implements
the methods onActivation and onDeactivation so that it turns
on and off the payload as requested by other tasks and
thus save on energy consumption. Resource aquisition and
initialization also follow timed phases in the initialization of
the system.

Each task can also register one or more computational
entities that can later be used to address it univocally inside
a networked vehicle system. Tasks can also implement onUp-
dateParameters that is triggered whenever their configuration
gets changed.

The onMain method is called periodically by the scheduler
so it is overriden by any tasks that want to execute something

at timed delays. Finally, all tasks can consume messages
generated by any other threads by implementing consume
methods that take as their sole parameter the generated
message (handled messages will have a corresponding type).

In DUNE, tasks are divided into sensors, actuators, esti-
mators, monitors, supervisors, controllers and transports as
follows:

• Sensors are device driver tasks, associated with some
hardware that measures the environment.

• Actuators are device drivers for hardware that allows the
vehicle to interact with the environment and / or move.

• Estimators are tasks that aggregate information from
sensors into state estimations. One good example of an
estimator is the Navigation task.

• Controllers are tasks that handle high-level commands
and transform them into lower-level commands or actu-
ations according to current estimated state. For instance,
all supported maneuvers have a corresponding maneuver
controller.

• Monitors are tasks that receive information from other
tasks and may change the vehicle state accordingly. For
instance, the Operational Limits monitor will change
the vehicle mode to “blocked” whenever the operational
limits are breached.

• Supervisors are tasks that enable and disable other tasks
according to the current vehicle state. For instance, if the
vehicle enters “blocked” mode, the vehicle supervisor
will stop the current maneuver controller from sending
commands.

• Transports are tasks in charge of transporting messages
in and out of the message bus. Logging is a special
transport task that listens to a set of messages and
records their serialized state to persistent storage. Other
transport tasks are UDP, TCP, HTTP, etc.

B. Run configurations

All running instances of DUNE share the same code base
but run under different configurations. We call configuration
to a description of the tasks that are enabled and their
parameters. The configuration of a running DUNE instance
can change according to user intervention or in response to
a Supervisor task command.

A DUNE configuration file describes which tasks are
enabled initially and also what are their initial parameters.
Using a referencing mechanism, a configuration file may
include parts of other configuration files. This allows the
creation of small and less error-prone vehicle-specific con-
figuration files, since most of the tasks (and their parameters)
are common between similar vehicles.

To choose if a task will be enabled in a configuration file,
the user must select in which profiles the task will be enabled
by default. DUNE uses profiles to allow multiple (typical)
configurations to be defined on a single file. Some examples
profiles are:

• Hardware This task will be enabled only when DUNE
is connected to the real hardware devices (real vehicle).

• Simulation These tasks are enabled only when DUNE
is running with no connection to real hardware sensors
and actuators. Simulated versions of the sensors and
actuators will thus correspond to simulation tasks that
run only in this profile and produce simulated data.

• HIL This profile is used on the real hardware but part
of the actuators and sensors will have simulated inputs
/ outputs. For instance, the Thruster task in this mode
will run at a fraction of the commanded RPMs so that
it can be used safely out of the water.

In the configuration file, tasks are enabled/disabled by
selecting between Hardware, Simulation, HIL, Always and
Never profiles of execution.

C. Safety mechanisms

DUNE features a set of tasks (Monitors) tasks that con-
stantly check vital parts of the system. In case any of these
tasks enter an error state, a listening Supervisor will enable
/ disable other tasks accordingly. We next give examples of
these safeties for underwater and aerial vehicles.

1) Fuel Level: If the Fuel Level task detects that the fuel
is too low, the vehicle supervisor will detect it and stop
the current plan controller from executing, replacing it by
a safety maneuver controller.

2) Leaks: If there is a leak detection onboard an AUV, its
vehicle supervisor will shutdown all payloads and execute a
safety maneuver to bring the vehicle to the surface.

3) Operational Limits: If the user-defined limits were
breached by the current plan controller, it will be blocked
from controlling and only teleoperation and safety maneuvers
are allowed to be executed by the vehicle supervisor.

4) Communications: If an UAV loses communication
with the base station for more than a user defined time
interval, the vehicle will stop the current plan and execute a
predefined plan that will bring it back near to the base (hover
next to the base station).

IV. COMMAND AND CONTROL SOFTWARE

Neptus [9] is the C2 (Command and Control) software
used to command and monitor our unmanned systems. It is
written in Java and it currently run in Linux and Microsoft
Windows operating systems.

The main Neptus communication interface is IMC, making
it interoperable with any other IMC-based peer. Neptus has
been used to command all our systems which correspond
to very heterogeneous classes of autonomous vehicles and
sensors.

Despite the heterogeneity of the controlled systems, Nep-
tus provides a coherent visual interface to command all these
assets. The main purpose is for an operator to take advantage
of what these assets have to offer in terms of sensor and
actuator capabilities without having to dwell into specific
C2 software and details.

A typical mission life-cycle comprises the planning, exe-
cution, and review and analysis phases:

1) The planning phase is generally performed prior to the
execution of a mission. On it, the operator is generally

equipped with the mission objectives and its where he
becomes acquainted with possible obstacles, depths,
tides, traffic, etc. With these elements in mind the
operator can choose the best locations for the command
center, communication and location aids, and starts
preparing the mission plans to be used and does rough
simulations of them.

2) In the execution phase, the operator is in charge of
preparing the vehicles for deployment, monitor the
systems telemetry and execute/adapt the mission plans.
Also, in a multi-vehicle operation, the several C2s need
to be aware of each other and cooperate to achieve the
global mission objectives.

3) The review and analysis phase takes place on site
or after the mission is concluded. In this phase, the
collected data is processed and analyzed to compile the
mission results or evaluate individual plan execution in
order to adjust and re-plan to achieve another desired
outcome.

Neptus is a framework that was created from scratch
having in mind its adaptability and flexibility to encom-
pass needs from diverse vehicles, scenarios and operator
experiences. As a result, it provides the rapid creation of
derived tools and can be customized according to operator
and mission needs.

A plug-in can be developed independently of the main
Neptus source and added as a compiled jar file. This way
Neptus can be extended by a third party with new compo-
nents with the added possibility of not sharing source code
among developers (which can sometimes be a requirement
for ITAR-constrained code, for instance).

A. Neptus Operator Consoles

An operator console is a Neptus application that provides
basic functionality to its plug-ins: a communications in-
frastructure, several layout mechanisms, means for showing
notifications to the user and a map that can be extended
with new layers and interaction mechanisms, among others.
The resulting consoles support all the phases of the mission
life-cycle in an integrated interface (mission revision is
intentionally simplified in this interface).

A console is defined by an XML configuration file that
lists the plug-ins and their configuration (desired layout in
the window, specific parameters), following the pattern used
by DUNE for describing running configuration instances.

There are several options to configure the placement of
the components, but most important it is the ability for every
console configuration to hold several layouts of its compo-
nents. These layouts are called profiles, again resembling the
profiles from DUNE but this time they are usually switched
at run time by the user.

Each console profile can show and hide selected compo-
nents declared in the console and define a distinct placement
for them. These profiles allow a quick change of components
layout allowing the operator to choose the one that is better
adapted to the current mission phase, a currently focused
system or abnormal situation.

Fig. 5. Neptus operator console

The console shown in figure 5, is a console targeted at
operating the LAUV AUV. We can look at this console by
dividing it in two, the left and right sides.

On the left we see the map. In this component we can
find the virtual representation of mission site. For the map
tiles, the user can choose from several sources like Open
Street Map, Google Maps, or Virtual Earth (tiles are cached
for offline use). S57 nautical charts are also available but for
this option, nautical charts are loaded from disk while on the
former they are loaded from the Web.

On the right-hand side of the interface, the console pro-
vides several planning components and commands. On the
top, a combo box makes it possible to change the system
currently being controlled. Below, the plan control buttons
allow operators to send and execute mission plans and
monitor the state of execution of active plans in the panel
below. The tree in right is called the mission tree and there is
where the operators can find and edition the mission elements
(beacon locations, mission plans and static base location).
These elements allow a suitable command of the AUV.

Moreover, several less used widgets can be shown/hidden
in pop-up dialog windows by using accelerator keys. This
was added in order to access more detailed information
quickly as needed.

In the map panel in the figure 5, we can see a mission plan
which consists of two rows (lawnmower pattern) interleaved
with go-to maneuvers. When editing a plan, the operator can
select from the set of the vehicles’ feasible maneuvers and
build a plan by adding maneuvers and creating transitions
between them (Neptus creates a sequencing transition as
default). For each maneuver, a set of maneuver-specific pa-
rameters, together with vehicle-specific payload parameters

can be set in order to use, or disable, vehicle payloads or
configure some other parameter of the vehicle.

Our UAVs are also controlled by Neptus through a similar
interface.

B. Communications infrastructure

The communications infrastructure in Neptus supports
messages coming from UDP (unicast and multicast) or TCP
as well as connecting to web services (XML/HTTP). In order
to establish a connection to a system, a common communica-
tion mean must be found and set. Neptus holds some vehicle
configurations that are updated by a discovery mechanism
based on the multicast of Announce IMC messages.

The Announce message describes the originating sys-
tem by providing its system name and type, current
location and set of available services (e.g. commu-
nication protocols or gateways, or onboard payloads).
These services are defined by a URI. Examples of
these URI are: imc+udp://192.168.106.34:6002/ (IMC via
UDP), imc+tcp://192.168.106.34:6002/ (IMC via TCP), or
dune://0.0.0.0/uid/1294925553839635/ (DUNE instance ID,
changed on DUNE reboot).

Neptus communications infrastructure receives this infor-
mation (while also publishing Neptus own services) from all
reachable systems. After a system is known to Neptus, the
operator can start exchanging telemetry and control data with
that system, on request.

In the case of UAVs we also made a partial implemen-
tation [10] of the STANAG 4586 protocol [11]. NATO
Standardization Agreement 4586 is a Standard Interface
of the Unmanned Control System (UCS) for NATO UAV
Interoperability.

To add support for 4586, Neptus was extended with new
specific console widgets and the communications infrastruc-
ture was adapted to be able to exchange 4586 messages. This
was done by extending the base communications infrastruc-
ture.

C. Mission Review and Analysis

The Neptus interface for analyzing the collected data is the
MRA (Mission Review and Analysis) shown in figures 6 and
7. This interface is targeted at viewing IMC logs and other
collected sensor data (for sensors that have own specific file
formats).

Logs are produced onboard devices by serializing gen-
erated messages and concatenating them into one or more
binary files. In order to present the data, these files are
initially indexed and merged with files logged onboard other
systems, ordering them by the origin timestamp. As a result,
both operator commands and multi-vehicle surveys can be
concentrated in a single log file and visualized (see section
VII-A for multi-vehicle visualization examples).

MRA interface is divided in two parts. On the left side,
the messages and available visualizations are listed, while
on the right the active visualization is displayed. Any IMC
message can be inspected rapidly in a tabular form or as
a multi-variable/multi-message time-series plot. Some plots
are predefined and others can be created inside MRA by

Fig. 6. Sidescan visualization in Neptus MRA

Fig. 7. Camera visualization in Neptus MRA

selecting fields to plot. Moreover, plots can also be created
in Javascript derived language and saved as a plot script.

Other specialized visualizations are also available, and
similarly to the console widgets, can be added as Neptus
plug-ins. Examples of these specialized visualizations are the
sidescan analyzer seen in figures 6, 12, or 14, plots like the
figure 10, 13, or 15, mission replays with map overlays like
seen in figure 11, a photo visualization plugin like in figure
7, 3D bathymetry and trajectory visualizations, etc.

V. EXTENSIONS FOR MICRO AERIAL VEHICLES

The prices of UAVs recently have come down abruptly
mostly due to the creation of a very low-cost auto-pilot
hardware and software based on the Arduino platform, the
ArduPilot [12].

In order to add support for vehicles based on Arduino,
some extensions were added to DUNE in order to be able
to parse normal plans and transform them into ArduPilot
commands. For navigation and low-level control of Micro
Aerial Vehicles we use ArduPilot-Mega, while for plan and
maneuver execution we rely on DUNE.

If we compare this hybrid ArduPilot-DUNE system to
just ArduPilot, in the former we get rich features such as
advanced behavior and missions. Comparing it to a single
system with low and higher level control this also presents
advantages like fault-tolerance to an error on the main
computer.

A. Hardware integration

ArduPilot is integrated with no need for modifications
in terms of its firmware or hardware as this board is
connected without modifications to DUNE which is running
on a separate CPU stack (IGEPv2 [13]). DUNE provides
communications through Wi-Fi with the base station and
controls the UAV by sending waypoints to be followed by
the auto-pilot. This hardware configuration was used for both
MAVs in figure 8.

B. Control integration

In order to integrate waypoint control of the ArduPilot,
a new DUNE task was created that translates guidance
commands into ArduPilot waypoints. Moreover, this task

Fig. 8. ArduPilot-based MAVs integrated with the LSTS toolchain

also translates between ArduPilot telemetry data and cor-
responding IMC messages.

Since the integration was done at the guidance level, all
plans / maneuvers that use guidance commands to control
the underlying hardware can still be used.

VI. EXTENSIONS FOR ONBOARD DELIBERATIVE
PLANNING

In order to provide our toolchain with deliberative plan-
ning capabilities, we integrated already existing tools: the
TREX [14] teleo-reactor executive and the EUROPA [15]
planner. As seen in [14] TREX interfaces the EUROPA
planner by a set of shared timelines to where different
reactors (components) post observations and goals.

On the existing toolchain, a new planning interface was
created as a new Neptus console plug-in, a new a TREX
monitor task was added to DUNE and two new messages
were added to the IMC protocol. Results of this integration
are reported in this paper, in section VII-B.

Neptus Neptus

TREX plugin TREX plugin

IMC

TrexToken

DUNE DUNE

TREX

monitor

TREX

monitor

TREX TREX Platform

Reactor

Platform

Reactor

UDP

Transport

UDP

Transport

Deliberative

Reactor

Deliberative

Reactor

Message bus
Timelines

Deliberative

Reactors

IMC (local)

TrexCommand

Deliberative

Reactors

Fig. 9. Integration of TREX into the LSTS toolchain

A. IMC adaptations

IMC was adapted by adding two new messages:
• TrexCommand messages are used to send commands

to TREX directly. These commands include enabling
/ disabling TREX control of the vehicle, posting new
goals and recalling goals.

• TrexToken messages are generated in TREX reactors
and are posted to the Neptus interface (and logged to
disk) with all observation/plan tokens being produced
by TREX. In TREX/EUROPA, a token can either be an
observation that is derived from current and past states
of the environment or may also be a an observation
that should be made in the future (goal). All the tokens
being produced by the reactors are this way logged and
shared in real-time with Neptus if there is an available
communication mean.

B. DUNE adaptations

In DUNE, we created a new DUNE monitor task that mon-
itors the connection with the TREX process. The monitor
is in normal state only if the TREX process is reporting a
normal execution every 1 seconds.

C. Neptus adaptations

In Neptus, we created a new TREX plug-in that provides
the following extensions:

1) A new map layer in the console that displays the state
of all goals received by TREX. This plugin merges
data from both the sent TrexCommand and TrexToken
messages received from TREX.

2) A new map interaction mode adds the possibility
(when active) to add/remove goals that are sent to
TREX when the vehicle is connected.

3) A new MRA visualization was added to plot the
timelines generated by TREX and logged as TrexToken
messages.

D. TREX adaptations

In order to execute deliberative plans with TREX, we
carefully described the domain model of our AUVs in
NDDL [16] and created a Platform reactor that serves as a
bridge between TREX and DUNE, translating DUNE vehicle
state into TREX observations and transforming TREX goals
into DUNE commands (IMC messages).

The platform reactor used DUNE as a library mostly for
IMC communications. This reactor listens to IMC messages
(coming from DUNE) and posts the corresponding observa-
tions to its controlled timelines. For instance, EstimatedState
messages received from DUNE generate corresponding Posi-
tion observations and VehicleCommand messages correspond
to Command observations, etc.

The command timeline, controlled by the Platform reactor
was special in the sense that it both posted the current
maneuvers being executed by the vehicle but also accepted
commands that would be translated into VehicleCommand
IMC messages. VehicleCommand messages allow starting /
stopping the execution of a maneuver onboard DUNE and
this is how TREX could control the vehicle.

VII. FIELD TESTS AND RESULTS

The LSTS toolchain has been tested numerous times in
the field with hundreds of operational hours for both AUVs
and UAVs. In this section we will report results of 2012
experiments.

A. Multi-vehicle experiments at Porto Harbor

In this experiment the vehicles LAUV-Xtreme-2 (XT2) and
LAUV-Noptilus-1 (NP1) were used for testing interference of
sonars when vehicles operate close to each other. XT2 used
LBL navigation while NP1 used inertial navigation only. We
did two separate tests:

1) Multi-vehicle survey: In this test, we had both vehicles
executing a similar rows plan 20 meters apart from each other
(see Fig. 10). The vehicles were always between 40 and 50
meters from each other and both registered sidescan imagery
from the bottom while executing it. Moreover, XT2 was also
reporting its position using the acoustic modem every 60
seconds.

As a result it was possible to do a bathymetry and
sidescan survey in half the time it would be possible using

Fig. 10. Positions of vehicles in multi-vehicle survey test

Fig. 11. Merged bathimetry data from multi-vehicle survey

a single AUV (see Fig. 11). Also, in the NP1 gathered
sidescan data (Fig. 12) we can observe that there are external
acoustic interferences coinciding with the times when XT2
was sending its position using the acoustic modem. Also it
is visible that this interference is more predominant in the
starboard sidescan transducer than it is on the port transducer.
This can be explained by of the location of XT2 relative to
NP1. We conclude that this interference was thus introduced
solely by the position communications of the other vehicle
(XT2).

2) Sidescan detection of a moving AUV: In this test,
we had both vehicles operating in the same region, but at
different depths. XT2 was loitering in circles at 2 meters
from the bottom while NP1 was doing a survey at 1 meter
from the surface (see Fig. 13).

The objective of this experiment was to test if it was
feasible to detect XT2 in the sidescan imagery of NP1. In the
resulting data there is actually a sighting of a moving object
near the bottom (see Fig. 14) exactly when both trajectories
cross. The moving contact results in a line traced in the
sidescan plot which moves out of the sidescan range after
a few seconds. However this proves that sidescan imagery
can be used to detect and possibly follow other UVs in the

Fig. 12. External acoustic interferences in starboard transducer

Fig. 13. Positions of vehicles in sidescan detection test

water.

B. Onboard deliberative planning

During the Rapid Environmental Picture event 2012 at
Sesimbra [17], we field-tested the EUROPA deliberative
planner [15] running onboard the LAUV-Seacon-1 (SC1)
[18].

For this test, there was a TREX program running side-by-
side with DUNE onboard SC1. On the TREX side, there was
a reactor (module) that was capable of receiving high-level
objectives from Neptus and forwarding them to deliberative
reactors. These reactors, were then in charge of creating a
plan that encompasses all the usual operational constraints
(speed, depth, battery) as well as accomplish the desired
objectives.

In this experiment, objectives were either points to be
visited or areas to be surveyed. Moreover the vehicle was
also required to surface periodically and obtain a GPS fix.

As expected, the planner rejected impossible objectives
like the objectives outside the operational limits and never
stayed underwater for more than the maximum allowed time.
The plot in Fig. 15, shows the vehicle depth against number
of visible GPS satellites as it was being controlled by the
onboard deliberative planner. The maximum allowed time
for the vehicle to be underwater in this test was 5 minutes.

Fig. 14. Sidescan detection of moving AUV (trace on the right)

Fig. 15. Vehicle depth against visible GPS satellites during deliberatibe
planning experiments

After this time, the planner should command the vehicle
to obtain GPS fix, at the surface. This plot illustrates that
the vehicle was capable of accomplishing more than one
goals (at different depths) while underwater (10:40 - 10:46)
and also it surfaced briefly before continuing the pursuit of
objectives that took more than 5 minutes to conclude (10:48
- 10:58). When idle, the planner would come back to the
surface in order to receive more goals from the user.

VIII. CONCLUSIONS AND FUTURE WORK

We have described the overall architecture of our toolchain
and showed how it can been used to control multiple un-
manned vehicles of different types.

DUNE is currently running onboard all our vehicles and
Neptus is used to control them. For this, the fact that we
share the same IMC protocol among all components has
proven to be the right decision concerning flexibility and
adaptability of the framework to new objectives. This is
especially noticeable in the documented extensions for MAVs
and onboard deliberative planning.

Extending the LSTS toolchain for supporting new control
algorithms, data visualizations or hardware is possible by
implementing new tasks / plug-ins that are compatible with
IMC and then all remaining toolchain modules will after-
wards be compatible with it.

The current limitations of the toolchain towards the control
of networked vehicle systems reside mostly on the complex-
ity that operators still need to handle in order to be able to
control several vehicles simultaneously. We aim to continue
improve situational awareness and planning interfaces in an
undergoing collaboration with the Monterey Bay Research
Aquarium where we are trying to add onboard deliberative
planners to all vehicles as well as at the operator consoles
for aiding operators in the creation of plans and safe tasking
of vehicles.

The toolchain has recently been open sourced and is now
free to use and ready for contributions from other research
groups. From this, we expect several new requirements, ex-
tensions and support for other currently unforeseen scenarios
and results.

REFERENCES

[1] R. Martins, P. Dias, J. Pinto, P. Sujit, and J. B. Sousa, Multiple
Underwater Vehicle Coordination for Ocean Exploration. IJCAI,
2009.

[2] R. Martins, J. B. de Sousa, C. Carvalho Afonso, and M. Incze, “REP10
AUV: shallow water operations with heterogeneous autonomous vehi-
cles,” in OCEANS, 2011 IEEE-Spain. IEEE, 2011, pp. 1–6.

[3] R. Martins, “Disruption/delay tolerant networking with low-bandwidth
underwater acoustic modems,” in Autonomous Underwater Vehicles
(AUV), 2010 IEEE/OES. IEEE, 2010, pp. 1–5.

[4] A. Tinka, S. Diemer, L. Madureira, E. Marques, J. B. Sousa, R. Mar-
tins, J. Pinto, J. E. Silva, A. Sousa, P. Saint-Pierre et al., “Viability-
based computation of spatially constrained minimum time trajectories
for an autonomous underwater vehicle: implementation and experi-
ments,” in American Control Conference, 2009. ACC’09. IEEE, 2009,
pp. 3603–3610.

[5] LSTS group on GitHub. [Online]. Available: https://github.com/LSTS
[6] R. Martins, P. S. Dias, E. R. Marques, J. Pinto, J. Sousa, and F. L.

Pereira, “IMC: A communication protocol for networked vehicles and
sensors,” in OCEANS 2009-EUROPE. IEEE, 2009, pp. 1–6.

[7] IMC protocol specification and documentation. [Online]. Available:
https://github.com/LSTS/imc

[8] DUNE source code repository. [Online]. Available:
https://github.com/LSTS/dune

[9] Neptus source code repository. [Online]. Available:
https://github.com/LSTS/neptus

[10] R. Gonçalves, P. S. Dias, J. Pinto, G. Gonçalves, and J. Sousa, “A
STANAG 4586 compliant command and control operational interface
for multiple UAVs,” in Humous 2010 Humans Operating Unmanned
Systems, ISAE - Toulouse, ONERA - Toulouse, France, 2010.

[11] NATO Standardization Agency (NSA), “STANAG 4586 ed. 2.5 feb
2007 draft,” in Standard Interfaces of UAV Control System (UCS) for
NATO UAV Interoperability. NATO, 2007.

[12] DIY Drones, “Ardupilot project,” 2011.
[13] IGEPv2 processor board. [Online]. Available:

http://www.isee.biz/products/processor-boards/igepv2-board
[14] F. Py, K. Rajan, and C. McGann, “A Systematic Agent Framework

for Situated AutonomousSystems,” in 9th International Conf. on
Autonomous Agents and Multiagent Systems, Toronto, Canada, May
2010.

[15] J. Bresina, A. K. Jónsson, P. H. Morris, and K. Rajan, “Mixed-initiative
constraint-based activity planning for mars exploration rovers,” in Pro-
ceedings of 4th International Workshop on Planning and Scheduling
for Space (IWPSS), 2004.

[16] NDDL reference manual. [Online]. Available:
https://code.google.com/p/europa-pso/wiki/NDDLReference

[17] REP12 experiment web site. [Online]. Available:
https://whale.fe.up.pt/rep12/

[18] J. Pinto, J. Sousa, F. Py, and K. Rajan, “Experiments with deliberative
planning on autonomous underwater vehicles,” in IROS 2012 Work-
shop on Robotics for Environmental Monitoring, Vilamoura, Portugal,
2012.

