Programming Networked Vehicle Systems using
Dolphin — Field Tests at REP’17

Keila Lima*, Eduardo R. B. MarquesT, José Pinto*, Jodo B. Sousa*
* Laboratério de Sistemas e Tecnologia Subaqudtica, Faculdade de Engenharia, Universidade do Porto, Portugal
Email: {keila,zepinto} @Ists.pt, jtasso@fe.up.pt
TCRACS/INESC-TEC & Faculdade de Ciéncias da Universidade do Porto, Portugal
Email: edrdo@dcc.fc.up.pt

Abstract—The increasing availability and use of autonomous
vehicles for real operational scenarios has led to the need for tools
that allow human operators to interact with multiple systems
effectively, taking into account their capabilities, limitations and
environmental constraints. Multiple vehicles, deployed together
in order to accomplish a common goal, impose a high burden on
a human operator for specifying and executing coordinated be-
havior, particularly in mixed-initiative systems where humans are
part of the control loop. In this paper, we describe experimental
field tests for Dolphin, a domain-specific language that allows a
single program to define the joint behaviour of multiple vehicles
over a network. Using the language, it is possible to accomplish an
orchestrated execution of single-vehicle tasks according to several
patterns such as sequential, concurrent, or event-based program
flow. With this aim, Dolphin has been integrated modularly
with a software toolchain for autonomous vehicles developed
by Laboratorio de Sistemas e Tecnologia Subaquatica (LSTS).
The tests we describe made use of LSTS unmanned underwater
vehicles (UUVs) at open sea during the 2017 edition of Rapid
Environment Picture (REP), an annual exercise jointly organised
by LSTS and the Portuguese Navy.

I. INTRODUCTION

The use of autonomous vehicles is now massive for a variety
of scientific, military, and civilian applications. Moreover,
quite often and increasingly, several vehicles are deployed
together in a dynamic networked environment that typically
also includes human operators and external sensors in the
control loop. The resulting networked vehicle systems presents
manifold challenges, arising from the multiple layers of com-
plexity and dynamics inherent to such a system-of-systems.
For sound and automated operation, a lower burden on the
human users, and more advanced multi-vehicle applications,
there is a pressing need for convenient models that treat a
networked vehicle system as a whole in terms of intent and
behavior, and which are effectively materialised in practice by
software tools. More specifically, we are concerned with top-
level programmability of networked vehicle systems, i.e., the
question of how to to program the coordinated behavior of
components in a networked vehicle system based on a top-
level specification.

With this general problem in mind, we recently developed
Dolphin [1,2], a programming language for autonomous ve-
hicle networks available open-source'. A Dolphin program
expresses an orchestrated execution of tasks that are defined

Thttp:/DolphinDSL.github.io

for multiple vehicles dynamically available in a network. The
built-in Dolphin operators include support for composing one-
vehicle tasks running in different vehicles, for instance accord-
ing to concurrent, sequential, or event-based program flow.
Dolphin is embedded as a domain-specific language (DSL)
in Groovy [3], allowing a direct interplay with Groovy/Java
software packages and simple addition of DSL extensions.
A Dolphin runtime has been developed for the the open-
source LSTS toolchain for autonomous vehicles [4]. The
toolchain provides support for the execution of single-vehicle
tasks, called IMC plans, instantiating the elementary unit of
computation within Dolphin programs.

Using Dolphin, we were able to orchestrate IMC plans in
expressive manner for multiple vehicles, as demonstrated by
field test trials. This paper describes the use of Dolphin at the
2017 edition of the Rapid Environment Picture (REP)2. REP
is an annual exercise organised by LSTS and the Portuguese
Navy, with the overall aim of testing the combined use of
autonomous vehicles, navy vessels and personnel. Each edition
of REP takes several weeks and involves several invited
partners and assorted scientific and technological goals, e.g.,
see [5,6] for a description of REP’16 and REP’15. In 2017,
REP’17° lasted for two weeks, and the field tests for Dolphin
were conducted for two days.

The rest of the paper is structured as follows. Section II
gives an overview of Dolphin and its integration with the LSTS
toolchain, and the example programs we tested during REP’17.
Section III presents the field tests results. Section IV concludes
the paper with an outlook of future work.

II. OVERVIEW OF DOLPHIN
A. Architecture

The use of Dolphin in integration with the LSTS toolchain is
schematically depicted in Fig. 1. As illustrated, the idea is that
a user is capable of programming a network of vehicles using
Dolphin programs. The three LSTS toolchain modules [4]
at stake comprise: (1) IMC, a message-based protocol for
interoperability between nodes in the network such as vehicles
or human operator consoles; (2) Neptus, a command-and-
control infrastructure that allows users to prepare, monitor, and

Zhttp://rep.Ists.pt
3http:/frep17.Ists.pt

N

Neptus

Dc{p\'\ln Runtimeé

< state command >
IMmc

M : N
.
PROGRAM) J

Integration of Dolphin with the LSTS toolchain.

Fig. 1.

review vehicle operations using GUI consoles, and; (3) DUNE:
an on-board software platform for autonomous vehicles.

Dolphin defines a set of abstract programming bindings that
must be instantiated through plug-ins for concrete software
platform of interest [1] like the LSTS toolchain. The pri-
mary aspects of instantiation comprise networked interactions
(network node characterisation, discovery, etc) and the nature
of single-vehicle tasks. In the case of the LSTS toolchain,
these aspects are instantiated through the IMC protocol. In
particular, an IMC message subset is dedicated to single-
vehicle tasks, called IMC plans, that can be specified using
Neptus by a human user and executed onboard a vehicle using
DUNE. An IMC plan is a sequence of maneuvers for a single
vehicle, where each maneuver may express relatively simple
behaviours such as waypoint tracking or more complex ones
such as area surveys.

The integration of Dolphin with the LSTS toolchain takes
form through a Neptus plugin for editing and running Dolphin
programs, depicted in Fig. 2, or, alternatively, a standalone
command-line tool. The Dolphin plugin for Neptus embeds
the Dolphin runtime in the overall Neptus GUI, providing
human operators a friendly environment for editing and ex-
ecuting Dolphin programs along with associated IMC plans.
In complement, a special-purpose DSL for IMC plans [1] also
allows a programmatic definition of IMC plans within Dolphin
code. No changes were required to IMC or DUNE otherwise

0 Neptus Console | Mission: REP17 Mission 7 —
Flo View Todls Advanced Profis Holp

master = pick { id 'lauv-xplore-1' }
> slavel = pick { id 'lauv-noptilus-1' }
5 slave2 = pick { id 'lauv-noptilus-2' }

- setConnectionTimeout 7.minutes

execute master

s incPlan('planl’) >>
action { post go:1} >>
incPlan('plan2’) >>
action { post go:2 },

slavel:
condition { consume go: 1} >>
imcPlan (‘surveyl'),

slave2:
condition { consume go: 2} >>
imcPlan ('survey2')

(1 sert i) () [save sepias] [] @ 58], 22
ut

1 e

Fig. 2. Dolphin plugin running in Neptus.

to support the execution of Dolphin programs. Hence, the
integration of Dolphin with the toolchain is a modular one,
a strategy we intend to pursue for other autonomous vehicle
platforms, e.g., ongoing work targets unmanned aerial vehicles
that communicate using the MAVLink protocol*.

B. Example programs

We now provide an overview of some of Dolphin’s features
through two example programs that correspond to the field test
results we present later in Section III.

Zate—p-—

surveyl

survey3

time

1 // Define area of operation.
2 Comporta = (location 38.43462, -8.86118) "~ 2.km
3

4 // Select UUVs.

5 UUVs = pick {

6 count 3

7 type ’'UUV’

8 region Comporta

9 payload ’Sidescan’
10 }

11

12 // Set connection timeout.
13 setConnectionTimeout 10.minutes

15 // Execute ocean surveys.
16 execute UUVs:

17 imcPlan[’surveyl’] |
18 imcPlan[’ survey2’] |
19 imcPlan|[’ survey3’]
20

21 // End!

22 message ’'Done!’

Fig. 3. Example Dolphin program — concurrent ocean surveys.

The first example program, shown in Fig. 3, illustrates a
simple pattern of concurrent task execution. Three UUVs are
first selected from the network using the pick instruction
(line 5), each situated in a region identified as Comporta
and equipped with a side-scan sonar. The selection output
variable, UUVs, represents the set of all three vehicles. After
selection, and before any actual operation with the vehicles,
a connection timeout is set to 10 minutes (line 13), given
that the UUVs may be underwater for a significant amount of
time, and will in that case only communicate state in sparse
intervals through limited means (e.g., underwater acoustic
modems). Actual execution is specified by the following
execute instruction (line 5), that tasks the vehicles with three
IMC plans, corresponding to ocean surveys in separate areas,
to be executed concurrently (one per vehicle), as specified by
the use of the “|” Dolphin operator. To match vehicles and

“http://mavlink.io/en; check http://DolphinDSL.github.io for further infor-
mation about MAVLink integration with Dolphin.

IMC plans, the Dolphin engine allocates each vehicle in the
UUVs set to a requested IMC plan employing an heuristic that
tries to minimize the distance of each vehicle’s current position
to the start location of an IMC plan. After all the surveys
are complete, the program ends with a simple output message

(line 22).
.4‘*"
master
pm—
master
I
: plan2 :

1

[h—"—- L. a _—

; slavel wll slave2

surveyl survey2
time

1 // Select UUVs.
2 master = pick { id ’'lauv-xplore-1’ }
3 slavel = pick { id ’'lauv-noptilus-1’ }
4 slave2 = pick { id ’'lauv-noptilus-2’' }
5
6 // Set connection timeout.
7 setConnectionTimeout 7.minutes
8

9 // Execute tasks.
10 execute master :

11 imcPlan(’planl’) >>

12 action { post go:1 } >>

13 imcPlan(’plan2’) >>

14 action { post go:2 },

15 slavel:

16 condition { consume go: 1} >>
17 imcPlan (' surveyl’),

18 slave2:

19 condition { consume go: 2} >>
20 imcPlan (' survey2’)

21

22 // End!

23 message ’'Done!’

Fig. 4. Example Dolphin program — master/slave scenario.

The second Dolphin program, shown in Fig. 4, illustrates
the use of other Dolphin features regarding vehicle selection
and task composition operators. The overall scenario again
involves 3 UUVs, but with two distinct roles: one UUV acts as
“master” for task coordination while the other two UUVs act
as “slaves”, in the sense that the slaves’ operation is dependent
on events related to the flow of the master. More specifically,
the event flow is such that the completion of IMC plans by
the master is required before plans at each of the slaves may
execute.

In the first example, all three vehicles were selected “anony-
mously” and treated as a group. In this case, each UUV is
selected separately and identified precisely by their identi-
fier (lines 2—4; note that a count 1 default configuration
is implicit in each pick instruction). Three singleton sets
identify each vehicle: master, slavel, and slave2. The
task flow specified by the subsequent execute instruction
is also quite different (line 10). The concurrent behavior is
specified separately per UUV, each in terms of a sequential
task composition, as dictated by the use of the “>>" operator.
Each slave UUV waits for a notification, go: 1 for slavel and
go:2 for slave2, before engaging in a survey plan, surveyl
and survey2 respectively. The notifications are delivered in

line with the master UUV’s execution: go:1 is delivered
after the master completes planl, at which point slavel
may proceed with surveyl and; similarly, go:2 is delivered
after the master completes plan2, letting slave2 proceed
with survey2. Note that we can attain different task flows
by rearranging the order of the the master UUV’s sequential
actions, without needing to change the specification for the
slave UUVs. For instance, if we change the program such
that go:1 and go:2 are posted only after all master UUV
plans complete, then the surveys at the slave UUVs would
start simultaneously and only after the master UUV was idle.

III. F1IELD TESTS

We now present the results for the field tests we conducted
during the REP’17 exercise. We first describe the overall field
test setup and then present the results for the two Dolphin
programs introduced in the previous section.

(b) NRP Cassiopeia and autonomous vehicles.
Fig. 5. Field test setup.
A. Setup

REP’17 took place at the Tréia peninsula, Portugal, during
two weeks in July. The Dolphin tests were conducted on July
10/11, 2017, near Comporta beach, as depicted by the map
in Fig. 5a that includes an overlay identifying the exact area
of operation. Human operators, together with Navy personnel,
were onboard the NRP Cassiopeia vessel, depicted in the photo
of Fig. 5b along with some of the autonomous vehicles used
during REP’17.

lauv-xplore-1

lauv-noptilus-2

lauv-noptilus-1

11:50 :52 :54 :56

surveyl
survey?2

survey3

:58 12:00 :02 :04 :06 :08

(a) Execution timeline.

X
start

150 125 100 75 0 25 0 25 S0 75
Y

100 125 150 175 200 225 250 275

Lposition -« I pilus-2.position

(b) UUV positions.

lauv-noptilus-1.position

(d) Sidescan sonar data.

meters

1149 11550 11:51 11:52 1153 1154 1155 11:56 11:57 1158 1159 12:00 12:01 12:02 1203 12:04 12:05 12:06 12:07
Time of day

— lauv-xplore-1.Depth — I ptil 2.Altitude

2.Depth — | ptil

(c) UUV altitude/depth.

ptilus-1.Depth — I ptilus-1.Altitude

(e) Bathymetry data.

Fig. 6. Results for the ocean surveys program.

The UUVs we used were three LAUV-class vehicles [7],
designed to operate continuously for up to 12 hours travelling
at 3 knots, with two distinct payload configurations: Noptilusl
and Noptilus2 are vehicles equipped with DVL and side scan
sonars, making them them suitable for bathymetry or sea-
floor mapping, and; Xplorel is a vehicle equipped with an
environmental probe measuring temperature, salinity, pH and
Redox, making it suitable for water column surveys. For
homogeneous operation, the third vehicle we had in mind
was Noptilus3, a vehicle bearing the same characteristics as
Noptilusl and Noptilus2, but logistical issues involving that
vehicle implied that we had to resort to Xplorel instead.

For communication between operator consoles and vehicles,
we used a Manta communications gateway [4] that provided
WiFi and interface with underwater acoustic modems in a
range of approximately 1 kilometre. The main state relevant

to Dolphin programs could only be obtained through WiFi,
since data transmitted over acoustic modems did not convey
full information regarding IMC plan execution. Acoustic com-
munications nevertheless provided useful feedback in the form
of periodical updates for vehicle positions.

B. Results

We exercised the ocean surveys scenario/program of Fig. 3
as follows. First, given that Xplorel was not equipped with
a side scan, we adjusted the Dolphin program not to re-
quire that payload for the vehicles, i.e., we removed the
payload ’SideScan’ constraint (at line 9 in Fig. 3). The
IMC survey plans were designed to conduct a global survey
split in different areas by the 3 UUVs. Each plan included
two “row” maneuvers, that make a vehicle cover rectangular
areas in legs, mediated by a vehicle “pop-up”, i.e., a maneuver
that makes a UUV come at the surface and remain there for a

specified amount of time. A pop-up may be useful for several
purposes, e.g., to adjust navigation errors or to communicate
data via Wifi or Iridium. From the Dolphin program’s perspec-
tive, the purpose of the pop-ups was having check-points to
ensure the vehicles were executing the expected IMC plans.

The results of the ocean surveys program are shown in
Fig. 6. The main observations are as follows:

o The execution timeline (6a) shows that all three surveys
executed concurrently and took roughly 17 minutes to
conclude. This duration is more than the connectivity
timeout set in the Dolphin program (10 minutes), but
the pop-up maneuvers we configured for the IMC plans
(making the vehicle surface in-between rows and com-
municate via WiFi) prevented timeout expiration.

o The UUV positions’ plot (6b) for vehicle positions illus-
trates the two row maneuvers mediated by a pop-up per
each survey plan/vehicle.

o The altitude/depth plot indicates that the surveys for
Noptilus] and Noptilus2 were set up for seafloor tracking,
parameterised by a distance of 3 meters to the sea-floor,
while the survey for Xplorel was set up for the surface.

o The side scan (6d) and bathymetry (6e) plots show that
we were able to obtain a mapping of the sea floor in
regard to the areas in which Noptilusl and Noptilus2
operated. Xplorel did not have sensors to measure altitude
and, as mentioned earlier, was not also equipped with a
side scan sonar.

lor ' planl

lauv-noptilus-1

uv-xplor . plan2

surveyl

survey2

54 :56 58 12:00 :02 04 :06 :08 10

(a) Execution timeline

600
575
550
525
500
a75
450
425
400
375
350

x 325
300
275
250
225
200

175
150
125
100
75
50 start

275 250 225 200 175 150 -125 100 75 50 25 0 25 50 75 100 125

ptilus-2.position _+ | pil

(b) UUV positions.

1.position

1.position

Fig. 7. Results for the master/slave program.

Let us now turn to the master-slave program/scenario (of
Fig. 4) and the corresponding results shown in Fig. 7. Recall
that the Dolphin code (lines 2—4 in the program) specifies a
master role for Xplorel and slave roles for Noptilusl and Nop-
tilus2. The slave plans (surveyl and survey2) were similar

in nature to the ocean surveys scenario, and the master plans
(planl and plan2) consisted of simple waypoint tracking
patterns over a short area, thus taking a relatively short amount
of time; our aim was merely testing event-based coordination
in Dolphin in simple manner. The results are depicted in terms
of an execution timeline (7a) and UUV vehicle positions (7b).
The timeline illustrates that the desired orchestration of IMC
plans was fulfilled, i.e., the master executes planl and plan2
in sequence, and surveyl and survey2 initiate at distinct
times defined by the completion of each of the master’s plans.
The UUV position plot depicts the slave vehicles’ surveys
along with the short paths for the master’s plans (shown
bottom-right). We omit altitude/depth data, plus bathymetry
and side scan plots derived from Noptilusl / Noptilus2 data,
that have a similar nature to the oceans survey scenario.

IV. CONCLUSION

We presented the use of the Dolphin language in field tests
involving UUVs deployed at ocean sea during the REP’17
exercise. The type of scenarios we considered are relatively
simple, for example in comparison to the survey/rendez-vous
scenario we describe in [1] involving more complex language
features and distinct types of vehicles, but also what we have
in mind for language developments and field tests in the future.

Some key conceptual and technical requirements will drive
subsequent work, such as: supporting cooperative vehicle tasks
that may also allocate vehicles dynamically, as opposed to the
current static and one-to-one allocation of tasks to vehicles that
is also unable to adapt to vehicle churn; language constructs
for a a richer characterisation of task and event flow, e.g., to
express patterns of persistent operation over time and space, or
to account for varying network conditions, and; finally, also the
need to interface with vehicles enabled by software platforms
other than the LSTS toolchain.

ACKNOWLEDGMENTS

This work was partially funded by European Commis-
sion, H2020 and DG ECHO, under the projects BRIDGES
(GA 635359) and E-UReady40OS (GA 740129) and by
ERDF (P2020), under projects Marinfo (NORTE-01-0145-
FEDER-000031) and SMILES/TEC4GROWTH (NORTE-01-
0145-FEDER-000020).

REFERENCES

[1] K. Lima, E. R. B. Marques, J. Pinto, and J. B. Sousa, “Dolphin:
a task orchestration language for autonomous vehicle networks,” in
arXiv:1803.00944 — submitted to IROS’18, 2018.

[2] K. Lima, “Dolphin: A domain-specific language for autonomous vehicle
networks,” Master’s thesis, MIERSI/DCC/FCUP, 2017.

[3] F. Dearle, Groovy for Domain-Specific Languages.
2015.

[4] J. Pinto, P. S. Dias, R. Martins, et al., “The LSTS toolchain for networked
vehicle systems,” in Proc. Oceans’13. 1EEE, 2013.

[S] A. S. Ferreira, J. Pereira, J. Pinto, et al., “Rapid environmental picture
atlantic exercise 2016: Field report,” in Proc. Oceans’17. 1EEE, 2017.

[6] J. B. de Sousa, J. Pereira, J. Pinto, et al., “Rapid environmental picture
atlantic exercise 2015: A field report,” in Proc. Oceans’16. 1EEE, 2016.

[7] L. Madureira, A. Sousa, J. Braga, et al, “The Light Autonomous
Underwater Vehicle: Evolutions and networking,” in Proc. Oceans’13.
IEEE, 2013.

Packt Publishing,

