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Abstract
We present ParTypes, a type-based methodology for the veri-
fication of Message Passing Interface (MPI) programs written
in the C programming language. The aim is to statically verify
programs against protocol specifications, enforcing proper-
ties such as fidelity and absence of deadlocks. We develop
a protocol language based on a dependent type system for
message-passing parallel programs, which includes various
communication operators, such as point-to-point messages,
broadcast, reduce, array scatter and gather. For the verifica-
tion of a program against a given protocol, the protocol is first
translated into a representation read by VCC, a software veri-
fier for C. We successfully verified several MPI programs in
a running time that is independent of the number of processes
or other input parameters. This contrasts with alternative tech-
niques, notably model checking and runtime verification, that
suffer from the state-explosion problem or that otherwise de-
pend on parameters to the program itself. We experimentally
evaluated our approach against state-of-the-art tools for MPI
to conclude that our approach offers a scalable solution.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Parallel programming; D.2.4 [Software/Pro-
gram Verification]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Concurrent, distributed
and parallel languages; F.3.1 [Specifying and Verifying and
Reasoning about Programs]

General Terms Languages, Verification
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1. Introduction
Background Message Passing Interface (MPI) [7] is the de
facto standard for programming high performance parallel
applications targeting hundreds of thousands of processing
cores. MPI programs, written in C or Fortran, specify the
behavior of the various processes, each working on different
data. Programs make calls to MPI primitives whenever they
need to exchange data. MPI offers different forms of commu-
nication, notably, point-to-point and collective operators.

Developing MPI applications raises several problems:
one can easily write code that causes processes to block
indefinitely waiting for messages, or that exchange data of
unexpected sorts or lengths. Verifying that such programs
are exempt from communication errors is far from trivial.
The state-of-the-art verification tools for MPI programs use
advanced techniques such as runtime verification [13, 28, 32,
40] or symbolic execution and model checking [10, 13, 28,
35, 38].

Runtime verification cannot guarantee the absence of
faults. In addition, the task can become quite expensive due
to the difficulty in producing meaningful tests, the time to
run the whole test suite, and the need to run the test suite
in hardware similar to that where the final application will
eventually be deployed. On the other hand, model checking
approaches frequently stumble upon the problem of scala-
bility, since the search space grows exponentially with the
number of processes. It is often the case that the verification
of real applications limits the number of processes to less
than a dozen [36].

Verification is further complicated by the different com-
munication semantics for the various MPI primitives [35], or
by the difficulty in disentangling processes’ collective and
individual control flow written on a single source file [1].
These also naturally arise in other more recent standards for
message-based parallel programs, such as MCAPI [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c© 2015 ACM. 978-1-4503-3689-5/15/10...$15.00

http://dx.doi.org/10.1145/2814270.2814302

280



We attack the problem of verifying C+MPI code using a
type theory for parallel programs. In our framework a type
describes a protocol, that is, the communication behavior of a
program. Programs that conform to one such type are guaran-
teed to follow the protocol and not to run into deadlocks. The
type system features a dependent type language including
specific constructors for some of the most common commu-
nication primitives found in MPI, in addition to sequential
composition, primitive recursion, and a form of collective
choice. Our aim is to provide a typed verification basis for the
safe development of parallel applications. The next paragraph
explains our motivation via an example.

Motivation The finite differences algorithm illustrates the
typical features present in a parallel application. Given an
initial vector X0, the algorithm calculates successive approxi-
mations to the solution X1, X2, . . . , until a pre-defined maxi-
mum number of iterations has been reached. A distinguished
process (usually process rank 0) disseminates the problem
size via a broadcast operation. The same process then di-
vides the input array among all processes. Each participant
is responsible for computing its local part of the solution.
Towards this end, in each iteration, each process exchanges
boundary values with its left and right neighbours. When the
pre-defined number of iterations is reached, process rank 0
obtains the global error via a reduce operation and collects
the partial arrays in order to build a solution to the problem.

A stripped down version of the C+MPI code is depicted
in Figure 1. Such code is extremely sensitive to variations
in the use of MPI operations. For example, the omission of
any send/receive operation (lines 11–24) leads to a deadlock
where at least one process will be forever waiting for a com-
plementary send or receive operation. Similarly, exchanging
lines 21 and 22 leads to a deadlock where ranks 0 and 1 will
forever wait for one another. Other sorts of deadlocks may
occur when different ranks perform different collective oper-
ations at the same time (say, rank 0 broadcasts and all other
ranks reduce), or when one of the ranks decides to abandon,
at an earlier stage, a loop comprising MPI primitives. It is also
easy to use mismatching types or array lengths in MPI calls,
thus compromising type and communication safety. Finally,
it may not be obvious at all why one needs a three-branched
conditional (lines 10–25) in order to perform the “simple”
operation of sending a message to the left and then to the
right, in a ring topology.

Solution We attack the problem from a programming lan-
guage angle. In particular, we:

• Propose a protocol (type) language suited for describing
the most common scenarios in the practice of parallel
programming; and

• Statically check that programs conform to a given proto-
col, effectively guaranteeing the absence of deadlocks for
well-typed programs, regardless of the number of process
involved.

1int main(int argc,char** argv) {
2MPI_Init(&argc,&argv);
3MPI_Comm_rank(MPI_COMM_WORLD,&rank);
4MPI_Comm_size(MPI_COMM_WORLD,&size);
5MPI_Bcast(&n,1,MPI_INT,0,MPI_COMM_WORLD);
6MPI_Scatter(data,n/size,MPI_FLOAT,&local[1],n/size,

MPI_FLOAT,0,MPI_COMM_WORLD);
7int left = rank == 0 ? size - 1 : rank - 1;
8int right = rank == size - 1 ? 0 : rank + 1;
9for (iter = 1; i <= NUM_ITER; iter++) {
10if (rank == 0) {
11MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

);
12MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
13MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
14MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

,&status);
15} else if (rank == size - 1) {
16MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
17MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

,&status);
18MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

);
19MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
20} else {
21MPI_Recv(&local[0],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

,&status);
22MPI_Send(&local[1],1,MPI_FLOAT,left,0,MPI_COMM_WORLD

);
23MPI_Send(&local[n/size],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD);
24MPI_Recv(&local[n/size+1],1,MPI_FLOAT,right,0,

MPI_COMM_WORLD,&status);
25}
26}
27MPI_Reduce(&localErr,&globalErr,1,MPI_FLOAT,MPI_MAX,0,

MPI_COMM_WORLD);
28MPI_Gather(&local[1],n/size,MPI_FLOAT,data,n/size,

MPI_FLOAT,0,MPI_COMM_WORLD);
29MPI_Finalize();
30return 0;
31}

Figure 1. Excerpt of an MPI program for the finite differ-
ences problem (adapted from [8])

We develop our theory along the lines of intuitionistic type
theory [22], demonstrating the soundness of our proposal
via two main results: agreement of program reduction (cf.
subject-reduction) and progress for programs.

Challenges Figure 2 presents a protocol for the finite differ-
ences algorithm. Special variable size represents the number
of processes. The protocol captures the communication struc-
ture of the algorithm. A val constructor introduces the number
of iterations; a broadcast operation initiated by rank 0 dissem-
inates the problem dimension; scatter distributes the array.
The external loop caters for the various iterations, whereas
the inner one provides for the to-left and to-right message
passing. The final reduce and gather collect the error and the
solution.

There are two points worth noticing about this protocol.
The first is that it talks about messages, whereas the source
code mentions send and receive operations. The other is that
its inner loop does not correspond to a loop in the program,
instead it corresponds to a (three-branched) conditional. The
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1 protocol FDiff {
2 val nIterations: positive
3 broadcast 0 n: {x: natural | x % size = 0}
4 scatter 0 float[n]
5 foreach iter: 1 .. nIterations
6 foreach i: 0 .. size-1 {
7 message i (i = 0 ? size-1 : i-1) float
8 message i (i = size-1 ? 0 : i+1) float
9 }

10 reduce 0 max float
11 gather 0 float[n]
12 }

Figure 2. Protocol for the finite differences program

protocol talks about the global behavior of the program, in a
form inspired by session types [14]. The sole presence of a
global protocol ensures deadlock freedom of programs that
conform to the protocol.

Each individual process contributes to the global protocol.
A novel type equivalence relation equates individual protocols
against the global description, in such a way that, if each
individual process conforms to its protocol, and all protocols
are equivalent, then the program is deadlock free. Type
equivalence also naturally justifies the three branches in the
source code, lines 10–25 in Figure 1.

Method In order to verify C+MPI source code against
protocols we use the VCC deductive software verifier [2].
Our method can be summarised as follows.

• Write a protocol for the program (the protocol serves as
further documentation for the program);

• Convert it to VCC;
• Introduce the required annotations in the C+MPI source

code; and
• Use VCC to check code conformance against the protocol.

If VCC runs successfully, then the program is guaranteed
to follow the protocol and to be exempt from deadlocks,
regardless of the number of processes, problem dimension,
number of iterations, or any other variables.

Contributions

1. A dependently typed protocol language featuring primi-
tive recursion and a separate static language of indices,
along the lines of DML [42] and Omega [34];

2. A type checking system for a core parallel programming
language ensuring a progress property for well-typed
programs; and

3. A methodology for checking C+MPI code against proto-
cols, using a deductive program verifier.

Outline The next section presents a broad overview of the
verification procedure. Sections 3 and 4 introduce the type
theory, a core programming language, and the main results of
the paper. Section 5 shows how we embodied the theory in

VCC. Section 6 quantitatively compares our approach to state-
of-the-art tools for the verification of C+MPI code. Section 7
discusses related work, and Section 8 concludes the paper.

2. Overview of the Verification Procedure
In order to check a program against a protocol, we need a
program, a protocol, and a program verifier.

• Programs are written in the C programming language and
make use of the MPI library interface;

• Protocols are written in a language described below;
• Programs are verified against a protocol using VCC.

In the sequel we detail how to construct protocols and how
to prepare source code for VCC verification.

The Protocol Language by Example We follow a step-
by-step construction of the protocol for finite differences
algorithm discussed in the introduction. The end result, we
have seen, is in Figure 2.

In the beginning, process rank 0 broadcasts the problem
size. We write this as

broadcast 0 natural

That process rank 0 divides X0 among all processes is
rendered in ParTypes as a scatter operation.

scatter 0 float[]

Now, each process loops for a given number of iterations,
nIterations. We write this as follows.

foreach i: 1..nIterations

nIterations is a variable that must be somehow intro-
duced in the protocol. The variable denotes a value that must
be known to all processes. Typically, there are two ways for
processes to get to know this value:

• The value is exchanged resorting to a collective communi-
cations operation, in such a way that all processes get to
know it, or

• The value is known to all processes before computation
starts, for example because it is hardwired in the source
code or is read from the command line.

For the former case we could for instance add another
broadcast operation in the first lines of the protocol. For
the latter, the protocol language relies on the val constructor,
allowing one to introduce a program value in the type:

val nIterations: positive

Either solution would solve the problem. If a broadcast

is used then processes must engage in a broadcast operation;
if val is chosen then no value exchange is needed, but the
programmer must identify the value in the source code that
will inhabit nIterations.

We may now continue analyzing the loop body. In each
iteration, each process sends a message to its left neighbor
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and another message to its right neighbor. Such an operation
is again described as a foreach construct that iterates over
all processes. The first process is 0; the last is size-1, where
size is a distinguished variable that represents the number
of processes. The inner loop is then written as follows.

foreach i: 0..size-1

When i is the rank of a process, an expression of the form
i=size-1 ? 0 : i+1 denotes its right neighbor. Similarly,
the left neighbor is i=0 ? size-1 : i-1.

To send a message containing a value of a datatype D,
from process rank r1 to rank r2 we write message r1 r2 D.
In this way, to send a message containing a floating point
number to the left process, followed by a message to the right
process, we write.

message i (i=0 ? size-1 : i-1) float
message i (i=size-1 ? 0 : i+1) float

So, now we can assemble the loops.

foreach i: 1..nIterations
foreach i: 0..size-1 {
message i (i=0 ? size-1 : i-1) float
message i (i=size-1 ? 0 : i+1) float

}

Once the loop is completed, process rank 0 obtains the
global error. Towards this end, each process proposes a
floating point number representing the local error. Rank 0
then reads the maximum of all these values. We write all this
as follows.

reduce 0 max float

Finally, process rank 0 collects the partial arrays and
builds a solution Xn to the problem. This calls for a gather

operation.

gather 0 float[]

Before we put all the operations together in a protocol,
we need to discuss the nature of the arrays distributed and
collected in the scatter and gather operations. Scatter
distributes X0, dividing it in small pieces; gather collects the
subarrays to build Xn. The arrays in scatter/gather protocols
always refer to the whole array, not to the subarrays. So, we
instead write:

scatter 0 float[n]
...
gather 0 float[n]

Variable n must be introduced somehow (by means of a val,
broadcast, or allreduce). In this case n is exactly the problem
size that was broadcast before. So we name the value that
rank 0 provides as follows.

broadcast 0 n:natural

But n cannot be an arbitrary non-negative number. It must
evenly divide X0. In this way, each process gets a part of

X0 of equal length, namely length(X0)/size, and we do
not risk accessing out-of-bound positions when manipulating
the subarrays. So we would like to make sure that the length
of X0 is such that length(X0)%size = 0. For this we use
a refinement datatype. Rather that saying that n is a natural
number we say that it is of datatype {x:natural|x%size=0}.

As an aside, datatype natural can be expressed as
{x:integer|x>=0}. Similarly, datatype positive abbrevi-
ates {x:integer|x>0}. Finally, syntax float[n] is the ab-
breviation of a refinement type {x:float[]|length(x)=n}.

The topology underlying the protocol for the finite dif-
ferences (Figure 2) is that of a ring: a linear array with a
wraparound link. If a different mapping of ranks to processes
is to be used, a new protocol must be derived. It turns out
that the language of protocols is flexible enough to encode
topologies in integer arrays. Such a topology may then be
made known to all processes, in such a way that processes
exchange messages as per the particular topology. This flexi-
bility is particularly useful for applications that dynamically
adequate the protocol to, say, the load of messages exchanged.
A datatype of the form

{t: {x: integer | 0<=x and x<size}[size] |
forall y: y in 0..length(t)-1 => t[y] != y}

encodes a one-dimensional network topology, where t[x]=y

means x is a direct neighbor of y: each node has one direct
neighbor (a number between 0 and size-1) that is different
from itself. Such a type, call it D, can be distributed among
all processes by, say, rank 0.

broadcast 0 topology:D

Thereafter each process can exchange a message with its
neighbor, as in:

foreach i: 0 .. length(topology)-1
message i topology[i] float

A right-to-left ring topology of length five can be encoded as
[4, 0, 1, 2, 3].

How can one encode a topology where not all processes
have direct neighbors, such as a star or a line? One possibility
is to weaken the above condition on the elements of the array,
while strengthening the subsequent message passing loop.
We could for example drop the restriction that t[y]!=y and
encode a right-to-left line of length five as [0, 0, 1, 2, 3], a 0-
centered star as [0, 0, 0, 0, 0], and a full binary 0-rooted tree
of depth 3 as [0, 0, 0, 1, 1, 2, 2]. In all cases, rank 0 has no
direct neighbor. And this causes a problem if we try to send a
message from i to topology[i], as in the above example.

Given that the topology is a data structure known to
all processes we can make use of a new primitive called
collective choice. We start by broadcasting the topology and
enter the loop as before. Then, within the loop, a message is
exchanged only if the topology array contains a valid entry.

broadcast 0 topology:
{x:integer | 0<=x and x<size}[size]
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foreach i: 0 .. length(topology)-1
if (i != topology[i])
message i topology[i] float

else
{}

Arbitrary topologies can be encoded, e.g., using an adja-
cency matrix. More examples of protocols can be found in
Section 6.

Verifying C+MPI Code against a Protocol In order to
verify a program against a protocol, we need:

• The C+MPI source code;
• The protocol in VCC syntax (a C header file);
• The type theory in VCC format (another header file).

The protocol in VCC syntax can be generated by the
ParTypes Eclipse plugin or by a web service [27]. Both check,
in addition, the good formation of the protocol. The ParTypes
VCC library can be obtained from the project’s web site [27].

All that remains is preparing the source code, so that it
may be successfully verified by VCC. First, VCC limitations
force us to adapt the C source code. In particular, VCC does
not support a theory for floating point numbers, and functions
with a variable number of arguments. Thus, we must filter
out lines that contain, e.g., printf or scanf, and also adapt
floating point code that may have impact on the verification
process, e.g., control flow predicates involving expressions
of type float or double. In this process, we must preserve
the control structure of the program, including calls to MPI
primitives and variable declarations. The resulting program
must still compile and exchange the messages the original
program was intended to.

Next, our approach requires introducing some annotations,
including:

• Those that distinguish C loops to be matched against
foreach protocols. The core language described in Sec-
tion 4 uses for expressions for code that is supposed to
match a foreach protocol and while loops for all other pur-
poses; C does not make this distinction;

• Those that distinguish C conditionals to be matched
against collective choice protocols, if-else. Again, our
core language distinguishes ifc expressions to be matched
against collective choices from if expressions used for all
other purposes, while C does not;

• The C expression that matches a val type; and
• Annotations that guide VCC in matching a foreach-type

against a non-loop C constructor.

For C functions that make use of MPI operations we have
two options:

• Inline the code (MPI programs are usually non recursive),
or

• Write a contract to the function in the form of a pre- and
a post-condition, stating the entry and exit values of p, the
ghost variable that holds the protocol.

Further details on the annotations required by ParTypes
are provided in Section 5.

We are finally in a position to run VCC on the source
code. If VCC reports no errors, the program complies with
the protocol, and we may conclude that it faithfully follows
the protocol and is, in particular, free from deadlocks.

3. The Type Theory
This section introduces the notion of type and the novel
notion of type equivalence. Type equivalence is shown to
be decidable.

Index Terms Types rely on two base sets: that of variables
(denoted x, y, z), and that of integer values (k, l,m, n). There
are two distinguished variables: size and rank; we use them to
denote the total number of processes and the unique number
of a given process, respectively. It will always be the case
that 1 ≤ rank ≤ size. Unlike the case of MPI, the ranks in our
type theory run from 1. We start by discussing a few notions
types rely on.

Index terms, i, describe the values types may depend upon.
Our language counts with variables, integer, and arithmetic
operations, as well as the usual array operations: creation
[i1, . . . , in], access i1[i2], and length len(i). Index term for-
mation further includes the standard refinement introduction
rule and datatype subsumption [11].

Datatypes Datatypes, D, describe integer values (int), ar-
rays of an arbitrary datatype (D array), and refinements of
the form {x : D | p}. Refinement datatypes allow one to
describe, e.g., integer values smaller than a given index term
i, such as {y : int | y ≤ i}, or arrays of a given length n, as
in {a : float array | len(a) = n}. Datatypes rely on proposi-
tions over index terms, including relational operations and
conjunction.

All formation rules depend on contexts, intuitively or-
dered maps from variables into datatypes. Contexts are also
subject to formation rules. Symbol ε denotes the empty
context. A notion of subtyping is defined for datatypes,
Γ ` D1 <: D2. The rules are standard and include those
for refinement datatypes [11]. They allow us to conclude that
ε ` {a : float array | len(a) = 512} <: float array.

Type Formation We are now in a position to discuss types
and type formation. The rules for type formation are in
Figure 3. Given Γ and T , if one can deduce Γ ` T :
type, then T is a (well-formed) type under a (well-formed)
context Γ. We do not provide a grammar for the constructs of
our language; such a grammar, if desired, can be recovered
from the blue text in the relevant figures.

A type of the form message i1 i2D describes a point-to-
point communication, from the i1-ranked process to the i2-
ranked process, of a value of datatype D. Both index terms
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Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true Γ ` D : dtype

Γ ` message i1 i2 D : type

Γ ` 1 ≤ i ≤ size true
Γ ` reduce i : type

Γ ` 1≤ i ≤ size Γ ` D <: {x : D′array | len(x)%size = 0}
Γ ` scatter i D : type

Γ ` 1≤ i≤ size Γ ` D <: {x : D′array | len(x)%size = 0}
Γ ` gather i D : type

Γ ` 1 ≤ i ≤ size true Γ, x : D ` T : type

Γ ` broadcast i x : D.T : type

Γ, x : D ` T : type

Γ ` valx : D.T : type

Γ, x : {y : int | y ≤ i} ` T : type

Γ ` ∀x ≤ i.T : type

Γ ` p : prop Γ ` T1 : type Γ ` T2 : type

Γ ` p ?T1 :T2 : type

Γ ` T1 : type Γ ` T2 : type

Γ ` T1;T2 : type

Γ : context

Γ ` skip : type

Figure 3. Type formation rules

must denote valid ranks, that is, they must lie between 1, the
first rank, and size, the number of processes. Furthermore, the
sending and the receiving processes must be different from
each other, since under our semantics, a message from, say,
rank 2 to rank 2 leads to a deadlock (see Section 4). A type
of the form reduce i denotes a collective operation whereby
all processes contribute with values that are used to produce
a result (say, the maximum). This value is then transmitted to
the i-ranked process, usually known as the root process.

A type of the form scatter iD describes a collective oper-
ation by which the i-ranked process (the root process) dis-
tributes an array among all processes, including itself. The
type formation rule requires i to be a valid rank, and D to
be an array. Type gather iD denotes the inverse operation,
whereby each process proposes an array of identical length,
the concatenation of which is delivered to the root process.
In both operations, D describes the whole array, that is the
array that is distributed in scatter or assembled in gather.

A type of the form broadcast i x : D.T denotes a collective
communication whereby the root process transmits a value
of type D to all processes (including itself). The continua-
tion type T may refer to the value transmitted via variable x.
Type val x : D.T is the dependent product type. In our case,
it denotes a collective operation whereby all processes agree
on a common value of datatype D, without resorting to com-
munication. Typical applications include program constants
and command-line values that programs may depend upon. A
type p ?T1 :T2 denotes a collective conditional, whereby all
processes jointly decide on proceeding as T1 or as T2, again
without resorting to communication. The type assignment
system in Section 4 makes sure that the value of p is common
to all processes.

(Γ ` T : type)

Γ ` T ; skip ≡ T
(Γ ` T : type)

Γ ` skip;T ≡ T
(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡ T1; (T2;T3)

Γ ` i < 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ skip
Γ ` i ≥ 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ (T{i/x};∀x ≤ i− 1.T )

Γ ` i1, i2 6= rank true
(Γ ` 1≤ i1, i2≤ size ∧ i1 6= i2 true) (Γ ` D : dtype)

Γ ` message i1 i2D ≡ skip

Figure 4. Type equality (excerpt)

Type T1;T2 describes a computation that first performs
the operations as described by T1 and then those described by
T2. Type skip describes any computation that does not engage
in communication. skip-typed processes are not necessarily
halted; they may still perform local operations. Finally, type
of the form ∀x ≤ i.T is a concrete instance of primitive
recursion. A type ∀x ≤ i.T uniquely determines an indexed
family of types T{i/x};T{i− 1/x}; . . . ;T{1/x}; skip.1

In addition to the above type constructors, others could be
easily added, either as primitives or as derived constructors,
including: software barriers (adapted, e.g., from reduce),
allreduce (defined as reduce followed by broadcast), and
allgather (gather followed by broadcast).

The reader may have noticed that types such as message
or reduce do not introduce value dependencies, whereas
others such as broadcast and val do. The continuation of a
message type, if exists, is captured by sequential composition,
as in message 1 2 float;message 2 1 int. The continuation of
a broadcast is built into the type constructor itself; as in
broadcast 1x : int. broadcast 1 y : {z : int | z ≥ x}.skip. The
fundamental reason for the difference lies in the target of
the values exchanged. In the cases of message and reduce
values are transmitted to a unique process, namely the root
process. In the case of broadcast all processes receive the
same value. This value may then be safely substituted in the
continuation of the types for all processes, thus preserving
the good properties of types.

Type formation is decidable; we have written an Eclipse
plugin, using an SMT solver, that checks protocol forma-
tion [27].

Term Type Equality Type equality plays a central role in
dependent type systems. In our case, type equality includes
the monoidal rules for semicolon and skip, the (base and
step) rules for primitive recursion, and a form of projection
of message types. The rules in Figure 4 determine what it

1 Contrary to the concrete syntax for protocols (cf. Figure 2), primitive
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Γ ` i1, i2 6= rank true (Γ ` message i1 i2 D : type)

Γ ` message i1 i2 D ⇒ skip
Γ ` i<1 true (Γ ` ∀x ≤ i.T : type)

Γ ` ∀x ≤ i.T ⇒ skip

Γ ` i ≥ 1 true Γ ` T{i/x} ⇒ T ′

Γ ` ∀x ≤ i−1.T ⇒ T ′′ (Γ ` ∀x ≤ i.T : type)

Γ ` ∀x ≤ i.T ⇒ T ′;T ′′

Figure 5. Type conversion (excerpt)

means for two types to be equal under a given context (rules
pertaining to congruence and equivalence omitted).

Premises enclosed in parenthesis ensure type formation,
playing no other role in the definition of type equality. If we
abbreviate a context entry of the form size : {x : int | x = 3}
by size = 3, we can easily show that:

size = 3 ` ∀j ≤ size.message j (j%size + 1) ≡
message 3 1;message 2 3;message 1 2

The last rule in Figure 4 says that a message type that
plays no role for a given process rank is equal to skip. The
rule effectively allows one to project a given type onto a
given rank, a notion introduced in the context of multi-party
session types [14], here cleanly captured as type equality.
When projecting the above type onto rank 2 we obtain the
following type equality,

size = 3, rank = 2 ` ∀j ≤ size.message j (j%size + 1) ≡
message 2 3;message 1 2

in such a way that the ∀-type is effectively equivalent to the
sequential composition of two messages, when judged under
rank 2.

Decidability of Type Equivalence The proof relies on a
type conversion relation, and follows the strategy of Co-
quand [3], albeit in a simplified form. The type conversion
relation expands ∀-types and projects message types. The re-
sult is a type where ∀ cannot be further expanded and each
message is not equivalent to skip. The relevant rules are in
Figure 5; the remaining are the ten congruence rules. The
following lemmas establish validity and confluence for the
type conversion relation.

Lemma 3.1 (agreement for type conversion). If Γ ` T ⇒ T ′

then Γ ` T : type and Γ ` T ′ : type.

Lemma 3.2 (type conversion is deterministic). If Γ ` T ⇒
T ′ and Γ ` T ⇒ T ′′, then T ′ = T ′′.

The type equivalence algorithm relies on a further relation,
structural congruence ≡c, defined as the smallest congruence

relation that incorporates the commutative monoidal rules for
semi-colon and skip.

It should be easy to see that conversion is (strongly)
normalizing (primitive recursion is and projection reduces
the size of terms). Structural congruence is also decidable
(by converting types to skip-terminated lists and checking for
equality). The algorithmic type equality, ≡a, is defined by
the following rule,

Γ ` T1 ⇒ T ′1 Γ ` T2 ⇒ T ′2 Γ ` T ′1 ≡c T
′
2

Γ ` T1 ≡a T2

and works as follows: given a context Γ and two types T1
and T2, apply type conversion to both, obtaining T ′1 and T ′2.
Then check these types for congruence.

We can easily show that algorithmic type equality is sound
and complete with respect to type equivalence.

Theorem 3.3 (correctness of algorithmic type equality). Γ `
T1 ≡a T2 if and only if Γ ` T1 ≡ T2.

Program Types Program types are vectors of term types.
Not all vectors are nevertheless of interest. Program types in
particular must not deadlock. Below are a few candidates that,
albeit composed of term types, cannot be judged as program
types. For the sake of brevity we once more omit the datatype
in types.

(message 1 2), (message 2 1)

(scatter 1), (reduce 1)

(msg 1 3; scatter 1), (msg 1 3; reduce 1), (msg 1 3; scatter 1)

(msg 3 1;msg 1 2), (msg 1 2;msg 2 3), (msg 2 3;msg 3 1)

The first vector of types is blocked since process rank 1
intends to send a message to rank 2, whereas rank 2 is
ready to send a message to rank 1. In the second vector,
rank 1 is trying to distribute an array, whereas rank 2 is
not ready to receive its part. The third case involves a 1–
3 message that leads to a deadlocked situation, namely
(scatter 1), (message 1 3; reduce 1), (scatter 1); notice that the
second type is equivalent to reduce 1. The fourth case involves
a circular waiting situation: the message between 3 and 1
cannot happen before that of 2 and 3 (see type for rank 3); the
2–3 message cannot happen before the 1–2 (type for rank 2);
and finally, the 1–2 message cannot happen before the 3–1
message (type for rank 1). We judge such vector of types as
not constituting program types.

We abbreviate context size = n, rank = k to Γn,k. The rule
defining what constitutes a program type, that is determining
the meaning of assertions S : ptype, is defined as follows.

Γn,k ` Tk ≡ T : type (1 ≤ k ≤ n)

T1, . . . , Tn : ptype

The central intuition of a program type is that it describes
a non-deadlocked computation, that is, a computation that
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is either halted or that may reduce. With this in mind it is
easy to understand that all types must be aligned (if one
is reduce i, then all are reduce j and Γ ` i = j true). One
exception is the non-collective message types. Yet, even in
this case we require type equality by taking advantage of
the “projection” rule in type equality, so that, for example,
message 1 3, skip,message 1 3 is a program type.

4. A Core Message-Passing Programming
Language

This section introduces a core Multiple-Program-Multiple-
Data message-passing imperative programming language
and its main results: agreement (cf. subject reduction) and
progress for programs.

References To deal with imperative features, we introduce
the notion of references. We rely on an extra base set, that
of reference identifiers, ranged over by r. A new datatype,
D ref, describes references to values of type D. Four new
index terms are introduced: references r, and the conventional
operations on references: creation mkref i, dereference !i, and
assignment i1 := i2.

We designed our programming language in such a way that
it directly handles the index terms present in types. The pure
index terms introduced in Section 3 are however extended
with side effects, such as reference creation and assignment.
The meaning of expressions with effects when they occur
as index objects to type families is undetermined. For this
reason we are careful in requiring index objects appearing in
types to remain pure.

Expressions The constructors of our language can intu-
itively be divided in two parts: conventional expressions usu-
ally found in a while-language and communication-specific
expressions. A selection of the expression formation rules is
in Figure 6; the remaining (skip, val, reduce, collective condi-
tional ifc, conventional conditional if, and let) are standard.

In an expression of the form send i1 i2, index term i1 (of
datatype int) denotes the target process and index term i2
(of datatype D) describes the value to be sent. The type
of the send expression is message rank i1D, representing a
message from process rank to process i1 containing a value of
datatype D. The premises come naturally if one considers the
hypothesis necessary for message rank i1D to be considered a
type under context Γ, namely, i1 must denote a valid process
number and must be different from the sender’s rank. The
value to be sent, i2, must be of datatypeD, so that it conforms
to the value the message is supposed to exchange.

An expression of the form receive i1 i2 denotes the recep-
tion of a value (of datatype D) from process i1. The value is
stored in the reference (of datatype D ref) denoted by index
term i2. The type of the expression is message i1rankD, ex-
pressing the fact that a message is transmitted from process i1
to the target process rank.

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D

Γ ` send i1 i2 : message rank i1D
Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D ref

Γ ` receive i1 i2 : message i1 rankD

Γ ` 1 ≤ i1 ≤ size true
Γ ` i2 : D Γ, x : D ` e : T rank /∈ fv(i1)

Γ ` letx : D = broadcast i1 i2 in e : broadcast i1 x : D.T

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : float array ref
Γ, rank = i1 ` i3 : float[size ∗ len(i2)]

Γ ` scatter i1 i2 i3 : scatter i1 float[size ∗ len(i2)]

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : float array
Γ, rank = i1 ` i3 : float [size ∗ len(i2)] ref

Γ ` gather i1 i2 i3 : gather i1 float[size ∗ len(i2)]

Γ ` e1 : T1 Γ ` e2 : T2
Γ ` e1; e2 : T1;T2

Γ, x : {y : int | y ≤ i} ` e : T

Γ ` forx : i..1 do e : ∀x ≤ i.T
Γ, {p} ` e : skip

Γ ` while p do e : skip
Γ ` e : T1 Γ ` T1 ≡ T2

Γ ` e : T2

In all rules, T and D contain no ref datatypes.

Figure 6. Expression formation (excerpt)

In a broadcast expression, index term i1 denotes the root
process and index term i2 the value to be distributed. The
root process cannot refer to the special variable rank, for this
has different values at different processes, precluding all pro-
cesses from agreeing on a common root process. Contrary to
the expressions studied so far, where the object of communi-
cations is stored in a reference, the value distributed by the
root process is collected in a variable x and made available
to an explicit continuation expression e. This strategy pro-
vides for datatype dependency in broadcast operations, while
keeping the expression and the type aligned, as made clear by
the type formation rule: variable x (of datatype D) is moved
into the context to type the continuation, while retaining its
presence in the dependent type for broadcast.

The scatter expression requires three index term argu-
ments: the first is the process that distributes the array (the
root), the second is the reference that will hold the subar-
ray, and the third is the array to be distributed. The premises
reflect these conditions; notice how the types for the arrays
embody the relation between their lengths. As discussed in
Section 2, notation D[p] abbreviates the refinement datatype
of the form {a : D array | len(a) = p}. The rule for the gather
expression is similar, except that the order of the last two
parameters is reversed: i2 denotes the subarrays proposed by
each process and i3 the array to be assembled at the root.

In both expressions, ref datatypes denote values written
at each process (as in receive), and the last index denotes
an expression that is evaluated only at the root process. We

recursion decreases the loop variable.
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(ρ, i)↓n,k (ρ′, v) : D (Γn,k, ρ, x : D ` e : T ) (x /∈ fv(T ))

(ρ, letx : D = i in e)→n,k (ρ′, e{v/x})
Γn,k, ρ ` p true

(Γn,k, p, ρ ` e1 : T ) (Γn,k,¬p, ρ ` e2 : T )

(ρ, if p then e1 else e2)→n,k (ρ, e1)

Figure 7. Process reduction (a flavor)

omit similar rules for arrays on integer values, as well as
multidimensional arrays.

The expression formation rule for sequential composition
e1; e2 is particular: its type, T1;T2, is composed of the types
T1 and T2 for expressions e1 and e2. The conventional rule
is obtained when e1 does not engage in communication
operations, in which case its type is skip, and we know that
Γ ` skip;T2 ≡ T2.

In expression forx : i..1 do e, variable x takes values i, i−
1, . . . , 1 in each different iteration of the loop. The rule for
while requires e to be of type skip, not allowing the loop to
perform any communication action. An entry of the form
{p} in a context abbreviates x : {x : int | p}, for x a fresh
variable [11]. Non skip-types in the body of while loops
may lead to deadlocks, since processes are not guaranteed
to run the same number of iterations. If communications
are required in a loop body, then a for loop must be used.
Finally, the last rule in our selection introduces type equality
in expression formation.

Stores For the operational semantics we make use of stores,
maps from reference identifiers into values. Stores can be
easily converted into contexts. A store entry of the form
r := v is transformed into a context entry r : D ref, if the
initial part of the store is transformed in context Γ and
Γ ` v : D. In the sequel we abuse the notation and write ρ
where a context is expected. For example ρ ` i : D means
Γ ` i : D where ρ is interpreted as a context. Store update,
notation ρ[r := v], is the store ρ′, r := v, ρ′′ if ρ is of the
form ρ′, r := v′, ρ′′ and ρ′ ` r : D ref and ρ′ ` v : D.

Index terms are evaluated against a store; evaluation also
resolves the distinguished variables size and rank. Assertion
(ρ1, i)↓n,k (ρ2, v) : D abbreviates “index term i of datatype
D evaluates under store ρ1, size = n, and rank = k, yielding
a value v of datatype D and a new store ρ2”. The rules are
straightforward and omitted.

Processes A process q is a pair (ρ, e) composed of a store ρ
and an expression e. The rule below determines the meaning
of assertions of the form Γ ` q : T .

Γ, ρ ` e : T

Γ ` (ρ, e) : T

A flavor of the process reduction rules is in Figure 7. The
remaining rules (for if-false, while-true, while-false, skip, for-
loop, for-end, and sequential composition) are standard. The

rules should be self-explanatory. The let expression evaluates
index i to value v and proceeds with expression e with v
replacing variable x. Since let is a local (process) operation,
x cannot be free in T , as discussed before. The premises in
parenthesis guarantee the good formation of the stores and
the expressions involved. Notice that process reduction does
not change the type of the expressions involved.

Lemma 4.1 (agreement for process reduction). If q →n,k q′

then Γn,k ` q : T and Γn,k ` q′ : T .

Lemma 4.2 (process reduction is deterministic). If q1 →n,k

q2 and q1 →n,k q3 then q2 = q3.

The following lemma ensures that processes do not get
stuck and will play its part in the main result of the paper.

Lemma 4.3 (progress for processes).
• If Γn,k, ρ ` e : skip then e is skip or (ρ, e)→n,k q.
• If Γn,k, ρ ` i : D and Γn,k, ρ, x : D ` e : T and
x 6∈ fv(T ) then (ρ, letx : D = i in e)→n,k q.

• If Γn,k, ρ, p ` e1 : T and Γn,k, ρ,¬p ` e2 : T then
(ρ, if p then e1 else e2)→n,k q.

• If Γn,k, ρ, p ` e : skip then (ρ,while p do e)→n,k q.
• If Γn,k, ρ, x : {y : int | y ≤ i} ` e : T then

(ρ, forx : i..1 do e)→n,k q.

Programs A program is a vector of processes q1, . . . , qn.
Not all such vectors are of interest to us. The following rule
is meaning determining for assertions of the form P : S.

Γn,1 ` q1 : T1 . . . Γn,n ` qn : Tn T1, . . . , Tn : ptype

q1, . . . , qn : T1, . . . , Tn

We can easily write the finite differences algorithm in our
language. In fact, we can write it in an SPMD or in a MPMD
style. In the former case, we follow the C+MPI program
in Figure 1. In the latter case we prepare three different
expressions: for rank 1, for rank size, and a third for all
the intermediate ranks. The fundamental observation is that
all four programs have equivalent types, under the appropriate
value for the rank variable.

Program Reduction Figure 8 contains an excerpt of the
reduction rules for programs. Program reduction is composed
of message passing—send/receive—, five collective barrier-
like rules—reduce, scatter, gather, broadcast, and val—, one
rule for collective decisions, and one rule that provides for
local process reduction. As in the previous cases, the premises
to the rule may be divided in two parts: those governing the
reduction process itself, and those guaranteeing the good
formation of the programs involved. The latter are enclosed
in parenthesis, as before.

Notation i ↓n v abbreviates the evaluation of an int
index term under the empty store, (ε, i) ↓n (ε, v) : int. The
proviso, in all rules, that types and datatypes do not contain
ref datatypes impedes reference passing (and the associated
problem of dangling references at the receiving process). A
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il ↓n m (ρl, i
′
l)↓n,l (ρ′l, v) : D im ↓n l (ρm, i

′
m)↓n,m (ρ′m, r) : D ref (l 6= m)

(Γn,l ` el : T ) (Γn,m ` em : T ) (Γn,k ` qk : T ) (k = 1..n, k 6= l,m)

q1, . . . , ql−1, (ρl, send il i′l; el), ql+1, . . . , qm−1, (ρm, receive im i′m; em), qm+1 . . . , qn →
q1, . . . , ql−1, (ρ

′
l, el), ql+1, . . . , qm−1, (ρ

′
m[r := v], em), qm+1 . . . , qn

ik ↓n l (ρl, i
′
l)↓n,l (ρ′l, v) : D (Γn ` 1 ≤ ik ≤ n true) (Γn,k, ρk ` i′k : D) (Γn,k, x : D, ρk ` ek : T ) (k = 1..n)

(ρk, letx : D = broadcast ik i′k in ek)nk=1 → (ρk, ek{v/x})l−1k=1, (ρ
′
l, el{v/x}), (ρk, ek{v/x})nk=l+1

ql →n,l q′l (Γn,k ` qk : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

q1, . . . , qn → q1, . . . , ql−1, q′l, ql+1, . . . , qn

In all rules, D and T contain no ref types and rank /∈ fv(D,T )

Figure 8. Program reduction (excerpt)

similar reason forbids the rank variable in types, for this
variable has a different value in each different process.

The rule for message-passing, evaluates both index terms
in both the send and the receive process. There is a funda-
mental difference between the first and the second parameter
in both cases. The first describes a process rank (target or
source), the second the value to be passed, or the reference
to hold the result. In general, index terms that denote process
ranks cannot refer to the store, for these exact indices show
up in the type of the processes (messagemilD, in the send
case). In such cases we use the abbreviated evaluation, as
in il ↓n m. In all other cases, we use evaluation under a
generic store, as in (ρl, i

′
l) ↓n,l (ρ′l, v) : D. The send/receive

processes reduce to skip (the stores evolve accordingly); the
others remain unchanged. In the rule for broadcast we follow
a slightly different strategy. Since a value is transmitted to
all processes, the broadcast expression features an explicit
continuation, allowing one to substitute the value directly in
the continuation process ek (and in its type T ), as opposed to
using references.

Main Results We are finally in a position to state our main
results.

Theorem 4.4 (agreement for program reduction). If P1 →
P2 then P1 : S1 and P2 : S2.

Program reduction is Church-Rosser. As usual this does
not mean that it is strongly normalising: taking advantage of
while-loops, processes may engage in infinite computations.

Theorem 4.5 (program reduction is Church-Rosser). If
P1 → P2 and P1 → P3 then P2 → P4 and P3 → P4.

In preparation for the progress result, we determine the
meaning of assertions of the form P halted using the
following rule.

(ρ1 : store) . . . (ρn : store)

(ρ1, skip), . . . , (ρn, skip) halted

We are finally in a position to establish our progress result.

Theorem 4.6 (progress for programs). If P1 : S then
P1 halted or P1 → P2.

5. Verification of C+MPI Source Code
This section shows how the theory introduced in Sections 3
and 4 is rendered in VCC, so that C+MPI code may be
checked with minimal effort.

The ParTypes VCC Library The ParTypes VCC library
comprises roughly 800 lines of code and can be obtained
from [27]. It comprises:

• The type theory of Section 3 rendered in VCC;
• Contracts for the MPI primitives supported by the theory

in Section 4;
• Functions and predicates used in annotations for C control

structures (loops and conditionals) that match protocol
control structures (foreach and collective choice); and

• miscellaneous functions and predicates.

In what follows, we outline the contents of the library and
complete the section by showing how to annotate our running
example so that it can be verified by VCC.

Datatypes in VCC Format Index terms, i, are C integer
expressions. Propositions, p, are C boolean expressions.
Datatypes, D, are rendered as a VCC datatype named Data.
We can easily show that, for each datatype D, there is
an equivalent datatype of the form {x : B | p} where
B is a non-refined datatype. Given that VCC does not
directly support multi-dimensional arrays, we consider only
datatypes of the form {x : B | p} where B is either int,
int array or float array.Such refinements are rendered in VCC
as predicates of one (int) or two arguments (arrays). The case
for float array refinements corresponds to the following VCC
function type definition.
_(ghost
typedef \bool FloatArrayPred[float*][\integer])

VCC verification logic is introduced in C programs
using annotations of the form _(...), and in particular
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_(ghost ...). We omit _(...) whenever possible to facili-
tate readability. We also remove the backslash (\) at the end
of lines in C macros.

Datatypes D are encoded as follows.

datatype Data {
case intRefin (IntPred);
case intArrayRefin (IntArrayPred);
case floatArrayRefin (FloatArrayPred);

};

Types in VCC Format Types are rendered as a VCC
datatype named Protocol. There is one VCC datatype con-
structor for each type constructor in Figure 3. In addition,
dependent types need one different constructor for each Data

constructor, for VCC does not support polymorphic type
constructors. Following the type formation rules in Figure 3,
the constructor for messages, e.g., is a triple of the form
(\integer,\integer,Data). The interesting cases are the
dependent constructors: ∀, broadcast, and val, for which we
use an higher-order abstract syntax (HOAS) [29]. We start by
preparing the abstractions for the three basic datatypes that
we support:

typedef Protocol IntAbs [\integer];
typedef Protocol IntArrayAbs [int*][\integer];
typedef Protocol FloatArrayAbs [float*][\integer];

The VCC Protocol datatype may then be defined as
follows.

datatype Protocol {
case skip ();
case size (IntPred, IntAbs);
case seq (Protocol, Protocol);
case message (\integer, \integer, Data);
case foreach (\integer, \integer, IntAbs);
case intBcast (\integer, IntPred, IntAbs);
case floatArrayBcast (\integer, FloatArrayPred,
FloatArrayAbs);

case intVal (IntPred, IntAbs);
...

}

As an example, type ∀i ≤ 10.message i (i + 1) int is
rendered in VCC as

foreach(1, 10, \lambda \integer i;
message(i, i + 1,
intRefin(\lambda \integer v; \true))

Similarly, type broadcast 1n : int. skip is rendered as

intBcast(1, \lambda \integer v; \true,
\lambda \integer n; skip())

For the purpose of verifying C+MPI code we are interested
in sequents of the form size : D ` T : type, for which
we prepared a specific constructor, size, in the Protocol

datatype.
Type formation (Figure 3) is checked by a dedicated

tool [27]. The same tool translates a type T into a VCC
Protocol datatype such as the one in Figure 9.

_(ghost Protocol program_protocol =
size(\lambda \integer size; size >= 2,

\lambda \integer size;
intVal(\lambda \integer nIterations; nIterations > 0,

\lambda \integer nIterations;
intBcast(0, \lambda \integer n;

n >= 0 && n % size == 0,
\lambda \integer n; seq(

scatter(0, floatArrayRefin(\lambda float* v;
\integer len; len == n)), seq(

foreach(1, nIterations, \lambda \integer iter;
foreach(0, size-1, \lambda \integer i;seq(
message(i, i == 0 ? size-1 : i-1,

floatArrayRefin(\lambda float* v;
\integer len; len == 1)),

message(i, i == size-1 ? 0 : i+1,
floatArrayRefin(\lambda float* v;
\integer len; len == 1)))

)
), seq(
reduce(0, MPI_MAX, floatArrayRefin(\lambda float* v;

\integer len; len == 1)),
gather(0, floatArrayRefin(\lambda float* v;

\integer len; len == n)))))))))

Figure 9. The protocol for finite differences in VCC syntax

Verification Flow The flow of program verification can be
summarized as follows:

1. The contract for MPI_Init initializes a ghost variable p

(of type Protocol) with the protocol the program must
follow, such as the one in Figure 9;

2. Contracts for MPI communication primitives progres-
sively match p against the expected communication primi-
tive;

3. Each control structure in the C program that is related to
the protocol is verified, relying on adequate annotations
in the body of program;

4. The contract for MPI_Finalize asserts that p is be equiv-
alent to skip().

In addition to p above, we use two other ghost variables,
size and rank, plus the following machinery:

• A total function, cons, that extracts, from a protocol p, a
pair composed of a head and a tail, in such a way that

p is equivalent to seq(head,tail),

protocol head is not seq, and

head is skip only when p is equivalent to skip.

The function accepts rank in addition to a protocol, so
that it may decide whether to convert messages to skip.
The pair is rendered as a Cons datatype, which we equip
with head and tail deconstructors;

• Partial functions that extract from a protocol (typically the
head) the various parts of a non-seq Protocol constructor.
As an example, for the message(f,t,d) constructor we
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prepare three functions—messageFrom, messageTo, and
messageData—returning f, t, and d, respectively; and

• An isSkip(p,rank) predicate defined as
head(cons(p,rank)) == skip().

Contracts for MPI Primitives We illustrate the cases of
some representative MPI primitives.

MPI_Init declares the ghost variables p, rank, and size,
and establishes the basic invariant between rank and size. It
then calls function cons to extract from protocol p a pair c
composed of the head and the tail. The head of c is supposed
to be a size type, so we use the two deconstructors for size,
namely sizePred and sizeAbs, to extract the predicate and
the continuation of the type. The predicate is applied to size

(VCC notation: pred[size]) as well as to the continuation
of the protocol abs, in line with HOAS.

#define MPI_Init(argc, argv)
_(ghost Protocol p = program_protocol)
_(ghost int rank, size;)
_(assume 0 <= rank && rank < size)
_(ghost Cons c = cons(p,rank))
_(ghost IntPred pred = sizePred(head(c)))
_(ghost IntAbs abs = sizeAbs(head(c)))
_(assume pred[size])
_(ghost p = seq(abs[size],tail(c)))

MPI_Comm_rank propagates the constraints introduced for
variable rank at MPI_Init to the actual variable in the source
code.

#define MPI_Comm_rank(comm, my_rank)
_(assume rank = *(my_rank))

MPI_Comm_size does the same to ghost variable size.
Once we are done with the verification of MPI operations,
we can check that the protocol is reduced to skip:

#define MPI_Finalize()
_(assert isSkip(p, rank))

We now exemplify the contract for one of the MPI commu-
nication primitives. At MPI_send we check the conformance
of the C code against the type, namely on what concerns the
three components of the type: from, to, and the data. As
in the case of MPI_Init, the macro uses function cons to
extract from the protocol its head/tail pair. Since the head
is supposed to be a message type, we use the three decon-
structors for message, namely messageFrom, messageTo, and
messageDate, to extract the components. These components
are then asserted against the expect values in the protocol. In
the end we “advance” the protocol to its tail. The simplified
version when sending an integer array is as follows.

#define MPI_Send(buf,count,dtype,to,tag,comm)
_(ghost Cons c = cons(p, rank))
_(assert messageFrom(head(c)) == rank)
_(assert messageTo(head(c)) == to)
_(ghost Data data = messageData(head(c)))
_(assert dtype == MPI_INT ==>

conformsIntArray(data,(int*)buf,count))
_(ghost p = tail(c))

In order to check that the source code conforms to the
data part of the message, we use the following predicate:

_(pure \bool conformsIntArray (Data d, int* buf,
\integer len))

_(axiom \forall IntArrayPred pred; int* buf;
\integer len; pred[buf][len] <==>
conformsIntArray(intArrayRefin(pred),buf,len))

Annotating Control Flow Annotations are required for C
code that matches primitive recursion (foreach), collective
choice (if-else), and the val protocol. Four cases arise:

• A val is matched against some C expression;
• A foreach is matched against a C for loop, e.g., the

outer foreach in Figure 2 when matched against the loop
starting at line 9, Figure 1;

• A foreach is matched against an n-branched C condi-
tional, e.g., the inner foreach when matched against the
C code in lines 10–25, Figure 1;

• A collective choice matched against a C conditional.

We analyze the first three cases; the fourth one is similar to
the second. Line 2 in the finite differences protocol (Figure 2),
namely

val nIterations: positive

requires an annotation of the form

applyInt(NUM_ITER)

to be placed in the source code somewhere after MPI_Init
and before MPI_Broadcast. The applyInt macro “injects”
the value into the protocol as follows. Once again, the macro
uses function cons to extract from the protocol its head/tail
pair. The head is now supposed to be a val type; we use
the two deconstructors for val, namely intValPred and
intValAbs, to extract the predicate and the continuation of
the type. The predicate is asserted at value NUM_ITER; value
NUM_ITER is further applied to the continuation of the protocol
(cf. MPI_Init above). In this case, the macro expands to the
following code.

ghost Cons c = cons(p, rank)
ghost IntPred pred = intValPred(head(c))
ghost IntAbs abs = intValAbs(head(c))
assert pred[NUM_ITER]
ghost p = seq(abs[NUM_ITER],tail(c))

As an example of a foreach protocol that must be matched
against a for loop, consider the code in Figure 1, line 9,

for(iter=1; iter <= NUM_ITER; iter++)

matched against the foreach protocol in Figure 2, line 5:

foreach iter: 1 .. nIterations
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We again start by using function cons to extract from
protocol p a pair c composed of the head and the tail of the
protocol. The head of c is now supposed to be a foreach type.
We use the deconstructors—foreachLower, foreachUpper,
and foreachBody— to extract the three components. We
assert the loop boundaries 1 and NUM_ITER against the cor-
responding values of foreachLower and foreachUpper. For
the body of the loop we set p to foreachBody and, at loop
exit, assert that the protocol must have been reduced to skip.
Finally, for the loop continuation we set p to the tail of the
original protocol. All this is rendered as follows.
_(ghost Cons c = cons(p, rank))
_(assert 1 == foreachLower(head(c)))
_(assert NUM_ITER == foreachUpper(head(c)))
for(iter=1; iter <= NUM_ITER; iter++) {
_(ghost p = foreachBody(head(c)[i]))
...
_(assert isSkip(p, rank))

}
_(ghost p = tail(c))

Finally, as an example of a foreach protocol that is
supposed to be matched against an if-else conditional,
consider the fragment of our running example where each
process sends a message to its right and left process, that is,
lines 10–25 in Figure 1. The type is in Figure 2, line 6:

foreach i: 0..size-1

The general outline is as above: extract from p the head
and the tail, and, at the end of the conditional, set p to the tail
of the original protocol. The difference is that in the above
case we have a loop body, whereas now, instead, there are
several conditional branches. They are all treated alike. In
each branch we, intuitively, unfold the foreach and take into
account (in sequence) only the foreach body terms that are
different from skip. At the end of each branch we assert that p
has reduced to skip, and that all other foreach body terms
are equivalent to skip. For example, in the first branch, the
non-skip elements in the sequence are when i is rank (that
of the two MPI_Send, lines 11 and 12), right (that of the first
MPI_Recv, line 13), or left (that of the second MPI_Recv,
line 14), in this order. We set p as the sequence of applying
the foreachBody body to these three values and, at the end,
check that p is equivalent to skip. Additionally, we assert
that the only non-skip terms in the foreach expansion are
exactly when i is rank, right, and left. The annotated code
is as follows.
_(ghost Cons c = cons(p, rank))
_(ghost fb = foreachBody(head(c)))
if (rank == 0) {
_(ghost p = seq(fb[rank],

seq(fb[right],
fb[left])))

MPI_Send(&local[1],1,MPI_FLOAT, left,...);
MPI_Send(&local[n/procs],1,MPI_FLOAT,...);
MPI_Recv(&local[n/procs+1],1,MPI_FLOAT,...);

MPI_Recv(&local[0],1,MPI_FLOAT,left,0,...);
_(assert isSkip(p, rank))
_(assert \forall \integer i; i>=0 && i<size &&
(i!=rank && i!=left && i!=right) ==>
isSkip(fb[i], rank))

} else {...}
_(ghost p = tail(c))

6. Evaluation
This section provides an evaluation of the ParTypes approach.
We performed a comparative analysis of ParTypes against
state-of-the-art MPI verifiers with similar safety guarantees,
by measuring the verification times of all tools with varying
parameterizations, under a similar environments. We also pro-
vide complementary results regarding the ParTypes protocol
compiler.

Tools under Test For a comparative analysis we considered
the following tools:

TASS A model checker which uses symbolic execution [35];

ISP A dynamic verifier that employs dynamic partial order
reduction to select the relevant process schedules [28];

MUST A dynamic verifier that employs a graph-based dead-
lock detection approach [13].

Even though all these tools are able to check deadlocks
and type/communication problems, they address the problem
of software verification in very distinct ways. Our tool and
TASS statically verify source code, while ISP and MUST
monitor program execution. TASS relies on model checking
and symbolic execution to prove (or disprove), for instance,
program deadlock situations, while our tool uses deductive
program verification. ISP and MUST both use PnMPI [32]
to intercept MPI calls and build a state that allow them to
identify deadlocked situations (among others).

The Benchmark Suite We consider programs taken from
textbooks [8, 12, 26] and the FEVS suite [37], usually used in
MPI benchmark analysis: 1-D heat diffusion simulation [37],
finite differences [8], N-body simulation [12], parallel Jacobi
equation solver [26], parallel dot product [26], and pi calcu-
lation [12]. All programs are iterative except for the parallel
dot example, that is, they have a core computation/commu-
nication loop that is repeated for a number of iterations. We
changed of the parallel dot program to be iterative as well
for benchmarking purposes. The protocols for five of the six
programs are given below; the sixth is the finite differences
in Figure 2.

The Diffusion 1-D program calculates the evolution of
the diffusion (heat) equation in one dimension over time.

protocol Diffusion1D {
broadcast 0 n: {x: positive | x % size = 0}
broadcast 0 nIterations : positive
broadcast 0 integer
foreach i: 1 .. size-1
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message 0 i float[n/size]
foreach iter: 1 .. nIterations {
foreach i: 1 .. size-1
message i i-1 float

foreach i: 0 .. size-2
message i i+1 float

}
}

The N-body simulation program simulates a dynamic
system of particles under the influence of physical forces.

protocol NbodySimulation {
val n: {x: natural | x % size = 0}
val nIterations: positive
foreach iter: 1 .. nIterations {
foreach pipe: 1 .. size-1
foreach i: 0 .. size-1
message i (i+1 <= size-1 ? i+1 : 0)
float[n*4]

allreduce min float
}

}

The Parallel Dot program calculates the dot product of
two vectors.

protocol ParallelDot {
val nIterations: positive
foreach iter: 1 .. nIterations {
broadcast 0 n: {x: positive | x % size = 0}
foreach i: 1 .. size-1
message 0 i float[n/size]

foreach i: 1 .. size-1
message 0 i float[n/size]

allreduce sum float
foreach i: 1 .. size-1
message i 0 float

}
}

The Parallel Jacobi program solves linear systems of
equations using Jacobi’s method. 2

protocol ParallelJacobi {
val n: {y: positive |
y % size = 0 and y*y % size = 0}

val nIterations: positive
scatter 0 float[n*n]
scatter 0 float[n]
allgather float[n]
foreach i: 1 .. nIterations
allgather float[n]

gather 0 float[n]
}

Finally, the Pi program approximates π through numerical
integration.

2 SMT solver Z3, used by the ParTypes protocol compiler and VCC,
cannot infer y∗y%size=0 from y%size=0. Thus we need to state the second
condition explicitly.

protocol Pi {
val nIterations: positive
foreach i: 1 .. nIterations {
broadcast 0 integer
reduce 0 sum float

}
}

Experimental Setup For each benchmark program, we
stripped all computation code that does not affect the pro-
gram’s behavior in terms of MPI calls made or their argu-
ments. In this manner, we can measure the verification effort
strictly in terms of MPI interactions. This approach rules out
the overhead associated with computation code that comes
from actual execution in the case of ISP and MUST, symbolic
execution in the case of TASS, and verification of memory
accesses by VCC for ParTypes. We fixed buffer sizes used by
programs in communication to the minimum value necessary
for the programs to work correctly. We then prepared two
annotated versions of each program, one for ParTypes and the
other for TASS. TASS requires annotations for the input pa-
rameters of a program, including the number of processes and
the number of loop iterations. No annotations are required for
ISP and MUST, since both tools execute the target program
directly.

For benchmarking we use a Ubuntu 14.04 Linux machine
with 64 GB of RAM and 4 AMD Opteron 6376 processors,
each with 16 cores, totalling 64 cores. The MPI runtime
(required for ISP and MUST) is MPICH 3.0 and the Java
runtime (for TASS) is Oracle’s JRE 1.8. Tools ISP 0.3,
MUST 1.4, and TASS 1.2 all run natively in this machine.
VCC 2.3, supported by Z3 3.2 [4], runs on a hosted Windows
7 virtual machine using a KVM/QEMU 2.0 hypervisor. Note
that VCC runs only on Windows platforms; in spite of the
virtualisation overhead, we tried to make the VCC setup as
close as possible to that used for all other tools.

We run each tool varying the number of processes or
the number of iterations for ISP, MUST, and TASS. These
variations are not required for ParTypes. The first set of results
resulted from varying the number of processes from 2 to 32.
We do not consider 64 processes (the number of available
cores in the host machine) since ISP and MUST use an
extra process for runtime monitoring in addition to one MPI
process per core. In conjunction, the number of iterations
is fixed to 28 for ISP and TASS, and 48 for MUST. For the
second set of results, we fix the number of processes to 32,
and let the number of iterations range from 20 to 28 for ISP
and TASS, and from 40 to 48 for MUST. The higher values for
MUST are necessary in order to obtain a reasonable analysis
of the scalability trend.

Under this setup, verification times are taken following
the start-up performance methodology of [9]. For each bench-
mark and configuration of parameters, we took 31 samples
of the verification time. We discard the first sample, and com-
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Figure 11. Results for the experiments varying the number of loop iterations
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pute the average verification time using the remaining 30
samples.

Results The results are depicted in Figure 10 (for a variable
the number of processes) and Figure 11 (for a variable number
of iterations). All plots in each figure, one per benchmark
program, have a linear scale for the x axis (process or iteration
count) and a log-2 scale for the y axis (verification time
in seconds). Each plot shows the verification times of ISP,
MUST, and TASS versus ParTypes. The ParTypes verification
time is shown constant, since it does not depend on the
choice of values for the number of processes or the number
of iterations.

As the number of processes and iterations grow larger, the
ParTypes verification time can be (sometimes several) orders
of magnitude lower than that of the other tools (particularly
TASS). This trend is observable in all results, except for ISP
in the case of ParallelJacobi and Pi, two programs that only
use collective communication primitives. Our approach is
immune to the growth of the number of processes or the
number of iterations, in clear contrast with the remaining
tools under test.

Evaluating the Protocol Compiler Table 1 presents results
regarding the protocol compiler that is embedded in the
ParTypes Eclipse plugin [27]. We evaluated the command-
line version of the tool on the machine described above,
by measuring the time it takes to validate a protocol and
translate it to VCC form. For each protocol in our benchmark
suite the table lists the total execution time, the protocol’s
validation time, the portion of time spent executing the
Z3 SMT solver for proof discharges during validation, and
the time elapsed in the final stage of VCC translation. All
times are in milliseconds and represent the average of 30
measurements. The results show that the performance is
essentially dominated by the time spent in Z3.

Table 1. Protocol compiler – execution times (ms)

Total Validation (Z3) VCC translation
Diffusion1D 332 320 (309) 12
FDiff 314 304 (290) 10
NbodySimulation 185 178 (167) 7
ParallelJacobi 229 219 (206) 10
ParallelDot 313 304 (291) 9
Pi 136 131 (122) 5

7. Related Work
Tools for the Verification of MPI Programs A recent sur-
vey covers the state-of-the-art in MPI program verifica-
tion [10], providing a comprehensive overview of the di-
verse dimensions of verification and of the methodologies
employed. Verification may target the validation of argu-
ments to MPI primitives as well as resource usage [40], en-
suring interaction properties such as the absence of dead-
locks [28, 35, 40], or asserting functional equivalence to

sequential programs [35, 37]. Methodologies range from tra-
ditional static and dynamic analysis up to model checking and
symbolic execution. In comparison, our novel methodology
is based on type checking and deductive program verification.

TASS [37, 38] employs model checking and symbolic
execution techniques in order to verify a number of safety
properties such as deadlock detection, buffer overflows and
memory leaks, plus user-specified assertions about the inter-
active behavior of processes in a MPI program. TASS also
also checks functional equivalence between MPI programs
and sequential counterparts [37]. CIVL [39], the recent suc-
cessor to TASS, employs the same sort of techniques, but uses
a unified intermediate verification language that handles not
only MPI, but also code written using other popular standards
for parallel programming like OpenMP or CUDA.

ISP [28] is a deadlock detection tool that explores all
possible process interleavings using a fixed test harness. Other
runtime verifiers such as DAMPI [40] or MUST [13], also
allow for the detection of deadlocks. MOPPER [6] is a verifier
that detects deadlocks by analyzing execution traces of MPI
programs. The concept of parallel control-flow graphs [1]
provides for the static and dynamic analysis of MPI programs,
e.g., as a means to verify sender-receiver matching in MPI
source code.

Session Type Theories Among all theoretical works on ses-
sion types, the closest to ours is probably that of [5], intro-
ducing dependent types and a form of primitive recursion
into session types. ParTypes provides for various communi-
cation primitives (in contrast to message passing only) and
incorporates dependent collective choices. On the other hand,
we do not allow session delegation. At the term level, we
work with a while language, as opposed to a variant of the
the π-calculus. Kouzapas et al. introduce a notion of broad-
cast in the setting of session types [19]. A new operational
semantics system provides for the description of 1-to-n and
n-to-1 message passing, where n is not fixed a priori, mean-
ing that a non-deterministic number of processes may join
the operation, the others being left waiting. Types, however,
do not distinguish point-to-point from broadcast operations.
We work on a deterministic setting and provide a much richer
choice of type operators.

Scribble Based on the theory of multiparty session types
[14], Scribble [15, 17, 33, 43] is a language to describe
protocols for message-passing programs. Protocols written in
Scribble include explicit senders and receivers, thus ensuring
that all senders have a matching receiver and vice versa.
Global protocols are projected into each of their participants’
counterparts, yielding one local protocol for each participant
present in the global protocol. Developers can then implement
programs based on the local protocols and using standard
message-passing libraries, as in Multiparty Session C [24].

Pabble [23] is a parametric extension of Scribble, which
adds indices to participants and represents Scribble protocols
in a compact and concise notation for parallel programming.
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Pabble protocols can represent interaction patterns of MPI
programs where the number of participants in a protocol is
decided at runtime. Pabble was applied to generate communi-
cation safe-by-construction MPI programs [25], leveraging
the close affinity between Pabble protocols and MPI pro-
grams. These works show how protocol languages can be
used for verifying or constructing MPI programs.

In ParTypes we depart from multiparty session types
along two distinct dimensions: 1) our protocol language
is specifically built for MPI primitives, and 2) we do not
explicitly project a protocol nor generate the MPI code but
else check the conformance of code against a global protocol.
In contrast to ParTypes, works on parameterised session types
[23, 25] cannot deal with:

• Protocols where a given communication (say the source
or the target) depends on the contents of previously
exchanged data;

• Protocols whose behaviour does not depend directly on
message passing, but else on a data-dependent common
agreement among all processes (what we call collective
operations); and

• Most of the collective operations (broadcast, gather, scat-
ter, reduce) primitives, as well as general and array pass-
ing.

• We address the verification of real world code, while [5]
works on the π calculus and is not implemented, and [23]
does not check existing code.

Dependent Type Systems Following Martin-Löf’s works
on constructive type theory [22], a number of programming
languages have made use of dependent type systems. Rather
than taking advantage of the power of full dependent type
systems (that brings undecidability to type checking), Xi and
Pfenning [42] introduce a restricted form of dependent types,
where types may refer to values of a restricted domain, as
opposed to values of the term language. The type checking
problem is then reduced to constraint satisfiability, for which
different tools nowadays are available. Our language follows
this approach. Xanadu [41] incorporates these ideas in a im-
perative C-like language. Omega [34] and Liquid Types [30]
are two further examples of pure functional languages that
either resort to theorem proving or type inference. All these
languages are functional; their type systems cannot abstract
program’s communication patterns.

Previous Work on ParTypes We initially formulated the
problem of verifying C+MPI programs using a type-based ap-
proach in [16]. Subsequent work proposes a preliminary eval-
uation of the approach and experiments [21], where we did
not make use of a protocol language, verification did not scale
and also required an a priori defined number of processes. We
also considered the type-based verification of WhyML paral-
lel programs [31] and the synthesis of correct-by-construction
C+MPI programs from protocol specifications [20].

8. Conclusion and Future Work
We presented a type-based methodology to statically verify
message-passing parallel programs. By checking that a pro-
gram follows a given protocol, we guarantee a set of safety
properties for the program, in particular that it does not run
into deadlocks. In contrast to other state-of-the-art approaches
that suffer from scalability issues, our approach is insensitive
to parameters such as the number of processes, problem size,
or the number of iterations of a program.

The limitations of ParTypes can be discussed along two
dimensions:

• ParTypes addresses the core messaging primitives in
MPI, namely: send/receive, broadcast, scatter/gather, re-
duce, and allreduce/allgather. Notable exceptions are non-
blocking operations and wildcard receive (the ability to
receive from any source). State-of-the art static verifiers
for MPI (see Section 7) roughly deal with this core. On
what concerns control primitives, ParTypes include primi-
tive recursion and collective choice, a novel primitive.

• Our VCC methodology is sound but not complete with
respect to the core programming language set forth in
Section 3.

In view of these limitations, we plan to address further
MPI communication primitives, including non-blocking mes-
sage passing (the “immediate” operations of MPI) and non-
determinism in the form of accepting messages from any
source. Furthermore, we plan to take advantage of the rich no-
tion of type equivalence to allow for programs with different
control flows to be matched against the same protocol.

The idea of a global protocol that governs a parallel
program offers further interesting applications, including
support for correct-by-construction code generation, test suite
generation, and runtime verification.
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