
Cooperari: A Tool for Cooperative

Testing of Multithreaded Java Programs

Eduardo R. B. Marques Francisco Martins Miguel Simões
Large-Scale Informatics Systems Laboratory (LASIGE), Departamento de Informática, Universidade de Lisboa, Portugal

Abstract

Bugs in multithreaded application can be elusive. They are often
hard to trace and replicate, given the usual non-determinism and ir-
reproducibility of scheduling decisions at runtime. We present Co-
operari, a tool for deterministic testing of multithreaded Java code
based on cooperative execution. In a cooperative execution, threads
voluntarily suspend (yield) at interference points (e.g., lock acquisi-
tion), and code between two consecutive yield points of each thread
always executes serially as a transaction. A cooperative scheduler
takes over control at yield points and deterministically selects the
next thread to run. An application test runs multiple times, until it
either fails or the state-space of schedules is deemed as covered by a
configurable policy that is responsible for the scheduling decisions.
Beyond failed assertions in software tests, deadlocks and races are
also detected as soon as they are exposed in the cooperative exe-
cution. Cooperari effectively finds, characterizes, and determinis-
tically reproduces bugs that are not detected under unconstrained
preemptive semantics, as illustrated by standard benchmark exam-
ples.

Categories and Subject Descriptors D2.5 [Testing and Debug-
ging]: Testing Tools; D3.3 [Language Constructs and Features]:
Concurrent programming structures

General Terms Languages, Reliability

Keywords concurrency, threads, software testing, cooperative ex-
ecution

1. Introduction

Multithreaded programs are hard to test. A multithreaded sys-
tem’s scheduler typically performs context switches in a non-
deterministic and irreproducible manner. As a result, it becomes
impossible to control and observe thread interleaving appropriately.
At the same time, multithreaded bugs are typically manifested only
for a subset of all possible schedules, frequently relying on a very
particular thread interleaving, that also tends to be hard to trace
through debugging (“heisenbugs” are common). Even simple bug
patterns [8, 9] may be elusive to detect and replicate precisely.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPPJ’14, September 23 - 26 2014, Cracow, Poland.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2926-2/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647523

instrumented
bytecode

cooperative
scheduler

cooperative
threads

cooperative
execution layer

yield resume

AspectJ yield
point specs.

AspectBench
 Compiler (abc)

OFFLINE
INSTRUMENTATION

COOPERATIVE
EXECUTION

ENVIRONMENT

JUnit test runner

test
failure

OR
full

coverage
?

NO: repeat YES:
proceed

to next test

execution
completed

JUnit test code

test execution

yield point handling

 TEST
ENVIRONMENT

coverage
policy

application
bytecode

Figure 1: The Cooperari framework

The relevant context switches in a program are those that cause
thread interference, e.g., access to shared data or lock operations.
Under cooperative semantics [18, 19], context switches occur only
at yield points that induce thread interference. A program’s execu-
tion is cooperative if the code between two yield points of the same
thread executes serially as a transaction without any interference
from other threads. In the context of software testing, cooperative
execution may be exploited to attain a reproducible and systematic
coverage of the state-space of thread schedules, e.g., [4, 7, 15]. The
idea is to schedule threads cooperatively, such that (deterministic)
context switches are only done at yield points. Repeated executions
of a program (test) may then potentially explore the state-space of
thread schedules in a customized manner. We implemented a tool
called Cooperari that enables this type of methodology for Java
programs (https://bitbucket.org/edrdo/cooperari). To the best of our
knowledge, it is the first of the kind for Java.

Cooperari works on top of an unmodified Java Virtual Machine
(JVM) and employs offline instrumentation of JVM bytecode, cou-
pled with cooperative execution and test environments at runtime.
Its overall framework is illustrated in Fig. 1. Cooperari defines
the interception of yield points using AspectJ (Fig 1, top-right).
The yield points comprise Java monitor operations, thread lifecy-
cle methods, and field and array data accesses. The AspectJ code
is fed together with application bytecode to the AspectBench com-
piler (abc) [1] to produce instrumented bytecode that is loaded by a
cooperative execution environment (Fig 1, top-left). When a thread
reaches a yield point, the instrumented bytecode is executed, dele-
gating control to a cooperative execution layer that ends up causing
a voluntary thread yield. A cooperative scheduler becomes aware of
this event, and deterministically decides the thread to run in succes-
sion. The cooperative scheduler has full control over the resumption

200

of threads, ruling out interference from the built-in JVM scheduler.
For this scheme to work, we resort to a cooperative implementation
of monitor and thread primitives, invoked at yield points in place
of the built-in, non-deterministic JVM support, e.g., for lock ac-
quisition or condition-based notifications [14]. The final trait of the
cooperative execution layer is the on-the-fly detection of deadlocks,
signaled for lock acquisition cycles or blocked program states, and
data races, signaled when a write yield point refers to the same data
of a simultaneous write or read yield point of another thread.

The framework is completed by a testing environment (Fig. 1,
bottom) that integrates with the popular JUnit testing library for
Java (http://junit.org). Each test in a given suite may be executed
several times, in the manner dictated by a configurable coverage
policy. A test executes until it fails, presumably meaning that a bug
has been found, or the coverage policy in place deems the state-
space exploration of thread schedules as concluded. At this point,
we implemented two policies: a pseudo-random (and deterministic)
choice of thread to run coupled with a bound on the number of
test executions, and a history-dependent policy that tries to avoid
repeated scheduling decisions.

Cooperari is able to effectively detect, characterize, and deter-
ministically reproduce bugs that are elusive or difficult to replicate
in a preemptive execution. We demonstrate this with an evaluation
of standard benchmark examples taken from the ConTest [8] and
SIR [16] suites. In the rest of the paper, we begin by surveying
related work (Section 2). We then describe Cooperari by example
(Section 3), its implementation (Section 4), and benchmark eval-
uation (Section 5). We conclude with a short discussion of future
work (Section 6).

2. Related work

A number of tools employ cooperative execution for determinis-
tic testing of multithreaded applications. CHESS [15] is a tool for
multithreaded Windows programs. It operates as a stateless model
checker, enumerating all possible thread schedules, while a test re-
peatedly executes. CHESS relies on thin wrappers for multithread-
ing primitives to identify non-deterministic choices at yield points,
and various techniques to curb state-explosion such as iterative pre-
emption bounding. Cloud9 [4] is a parallel symbolic execution en-
gine for multithreaded C POSIX programs. During state-space ex-
ploration for symbolic assertion checking, Cloud9 relies on coop-
erative scheduling and a cooperative/symbolic implementation of
a portion of the POSIX system calls, in particular for the pthreads
API. CONCURRIT [7] is a tool for C++ multithread programs,
employing a DSL for imposing thread schedule constraints. Tests
execute repeatedly, with the guidance of a model checker that cov-
ers all schedules defined by the DSL constraints. The execution is
cooperative, relying on yield calls at execution points in user-level
code specified by the DSL (specific details are given in [5]). Com-
pared with these tools, Cooperari works for Java programs, and al-
lows a partial exploration of possible thread schedules through a
deterministic pseudo-random search and a structural program cov-
erage criterion. Like CHESS and Cloud9, Cooperari enables coop-
erative execution of multithreading primitives.

The use of cooperative execution rests on the premise of seman-
tics preservation. The execution of a program under cooperative
semantics should be equivalent to that obtained using a traditional
preemptive scheduler. This happens if the considered yield points
characterize all possible thread interference, a property Yi et al.
call cooperability [18, 19]. The authors define a formal framework
to reason on cooperative semantics of Java programs, plus tools for
inference of yield points and assertion of cooperability. The yield
point types we consider are in line with these works, and the dis-
cussion of synchronization coverage criteria in [3].

Beyond cooperative execution, a number of approaches can be
considered in relation to thread scheduling and bug detection. Basic
scheduling constraints for program events may be specified, e.g.,
as in [12]. Thread interference points may be instrumented with
“noise” to induce random context switches [6, 17], and expose bugs
effectively [9], though in non-deterministic manner. Active testing
techniques, e.g., [13], employ biased random scheduling to cause
cause thread yields at pre-determined program locations with high
probability.

3. Cooperari by example

We illustrate the main features of Cooperari using two examples
in this section: the classic dining philosophers problem, and a
semaphore implementation.

Dining philosophers The dining philosophers problem is well-
known. A group of N philosophers sits at a round table where
N forks are placed in between each plate. To eat, a philosopher
first grabs his left fork and then his right one. After eating, he puts
both forks down. The philosophers get stuck if they all simultane-
ously grab the left fork, leaving no right fork available to be picked
by anyone. The code in Fig. 2 (a) defines a Philosopher Java class.
A Philosopher object is created using supplied left and right fork
objects, and the run() method defines the behaviour of the philoso-
pher. During execution, exclusive access to the forks is ensured by
acquiring the corresponding locks using Java synchronized blocks,
lines 12–16 for the left fork and 13–15 for the right fork. If no
deadlock occurs in run(), the thoughts and food fields, initially set
to false, will both be true at the end. From a cooperative execu-

(a) Philosopher code

1 package ph i losophers ;
2 class Phi losopher implements Runnable {
3 private Object l e f t , r i g h t ; / / f o r ks
4 private boolean thoughts = fa lse ;
5 private boolean food = fa lse ;
6 Phi losopher (Object l e f t , Object r i g h t) {
7 th is . l e f t = l e f t ;
8 th is . r i g h t = r i g h t ;
9 }

10 public void run () { / / 1 . t h i n k
11 thoughts = true ;
12 synchronized (l e f t) { / / 2 . get l e f t f o r k
13 synchronized (r i g h t) { / / 3 . get r i g h t f o r k and eat
14 food = true ;
15 } / / 4 . re lease r i g h t f o r k
16 } / / 5 . re lease l e f t f o r k
17 }
18 boolean hadThoughts () { return thoughts ; }
19 boolean hadFood () { return food ; }
20 }

(b) Dining philosophers test

1 @RunWith (CTestRunner . class)
2 @CTestOptions (coverage=RANDOM,
3 i ns t rument= " ph i losophers ")
4 public class TestPhi losophers {
5 s t a t i c f i n a l i n t N = . . . ;
6 @Test public void t es tD inne r () {
7 Object f [] = new Object [N] ;
8 for (i n t i = 0 ; i < N; i ++)
9 f [i] = new Object () ;

10 Phi losopher [] p = new Phi losopher [N] ;
11 for (i n t i =0; i < N; i ++)
12 p [i] = new Phi losopher (f [i] , f [(i +1) runThreads (p) ;
13 for (i n t i =0; i < N; i ++) {
14 asser tTrue (p [i] . hadThoughts ()) ;
15 asser tTrue (p [i] . hadFood ()) ;
16 }
17 }
18 }

Figure 2: Dining philosophers example

201

tion perspective, the beginning of each serial code transaction is
marked 1 to 5 in the run() method, in line with the thread interfer-
ence (yield) points defined by fork acquisition and release.

Fig. 2 (b) shows a JUnit test class, TestPhilosophers, with a
test method, testDinner. The test defines the usual round table
setup comprising N forks and N philosophers (lines 7–12). In
the code, runThreads(p) (13) abstracts the launch of N philoso-
pher threads, followed by a wait for the termination of all of
them. When the threads complete, a sequence of JUnit-style as-
sertions (14–17) verifies that each philosopher had a round of
thought and food. The test almost always passes when executed
under normal conditions: on a standard JVM, we observed a
deadlock roughly once in 20000 test trials for N=2 philosopher
threads, and we failed to observe the bug at all for a higher num-
ber of threads. In alternative to a standard test execution, the
@RunWith(CTestRunner.class) annotation tells JUnit to use Co-
operari’s custom test runner (CTestRunner) to enable cooperative
execution. In complement, the @CTestOptions annotation defines
options for cooperative execution: the coverage=RANDOM option
specifies that pseudo-random, deterministic scheduling decisions
should be made at yield points, and the instrument="philosophers"
option indicates the Java package whose classes should be instru-
mented for cooperative execution. The Cooperari test runner will
repeatedly execute each test in the suite, testDinner alone in this
case, until it either fails or reaches a maximum number of trials (by
default 1000). The output of an execution is as follows, considering
N=3 in the test code.

Instrumented code must be generated , please wa i t .
Changes have been detected .
Ins t rumen ta t i on completed i n 5486 ms.
tes tD inne r : executed 3 t imes i n 68 ms [f a i l e d]
F a i l u r e t race f o r tes tD inne r w r i t t e n to

’ log / Tes tPh i losophers_ tes tD inner . t race . t x t ’
There was 1 f a i l u r e :
1) tes tD inne r (TestPhi losophers)
DeadlockError : L0 / T0 / Phi losopher . java :13

> L1 / T2 / Phi losopher . java :12
> L2 / T0 / Phi losopher . java :12
> L0 / T1 / Phi losopher . java :12

In the execution, bytecode instrumentation takes place (done just
once). The actual test execution then proceeds and reports a fail-
ure after three executions of method testDinner (taking 68 millisec-
onds). Information is given regarding the location of a coopera-
tive trace file, shown in Fig 3, where the actual thread schedule
can be inspected, but the test output already allows for a partial
understanding of the failure. All three threads are stopped with a
DeadlockError exception. The error refers to a lock acquisition cy-
cle found at line 13 in Philosopher during the execution of one of
the threads (T0), at a time where every thread (T0/1/2) had each
previously acquired a lock for the left fork (line 12 in Philosopher);
the locks are identified as L0, L1, and L2, each referring to a distinct
fork object. The same outcome will be reproduced the next time the
test suite is executed, but without instrumenting code again, as long
as the Philosopher code is not changed.

<step > <thread > < y i e l d po in t >
1 0 [begin]
2 1 [begin]
3 2 [begin]
4 1 mon i to ren te r (L0) Phi losopher . java :12
5 1 mon i to ren te r (L2) Phi losopher . java :13
6 2 mon i to ren te r (L1) Phi losopher . java :12
7 2 mon i to ren te r (L0) Phi losopher . java :13
8 0 mon i to ren te r (L2) Phi losopher . java :12
9 0 mon i to ren te r (L1) Phi losopher . java :13

L0

L1

L2T0

T1

T2

(4) (5)

(6)

(7)

(8)

(9)

Figure 3: Cooperative execution for the dining philosophers

The cooperative trace of Fig. 3 provides more detail. In the fig-
ure, lock acquisition yield points are identified by monitorenter, the
name of the corresponding JVM bytecode instruction. All threads
are initially suspended at startup (steps 1–3). After startup, thread 1
is allowed to run for two steps (4–5): the first step takes the thread
to the point of left fork acquisition, and the second one (with the
left fork lock now effectively acquired) to the point of right fork
acquisition. Thread 1 then yields, and the same pair of steps is al-
lowed in succession for threads 2 (6–7) and 0 (8–9). A deadlocked
state is thus reached, as every philosopher holds the left fork, but
neither is able to acquire the right one. For deadlock detection, Co-
operari progressively builds a resource graph [11], as lock-related
yield points are intercepted. The graph ends up having a cyclic con-
figuration, shown right in the figure, in significance of a deadlock.

Semaphore example Our second example concerns a semaphore
implementation and an associated test, shown in Fig. 4. The ex-
ample illustrates different types of yield points and deadlocks, as
well as data race detection by Cooperari. In line with the tradi-
tional formulation, a semaphore represents a non-negative integer
that can only be atomically incremented or decremented, using
up() and down(), respectively. Whenever a thread tries to down() a
zero-valued semaphore, it blocks until the semaphore is increased
by a call to up() by another thread. The test shown in Fig. 4 (b)
creates a semaphore with an initial value of N�1, shared by N
Client threads. Each thread proceeds (in the run() method) by decre-
menting the semaphore, doing some work, and incrementing the
semaphore back before terminating. At the end, the test passes if
the semaphore’s value is equal to the initial one, N�1.

(a) Semaphore code

1 class Semaphore {
2 private i n t value ;
3 Semaphore (i n t i n i t i a l) { value = i n i t i a l ; }
4 i n t getValue () { return value ; }
5 void down () throws I n te r rup tedExcep t i on {
6 synchronized (th is) {
7 while (value == 0) { wa i t () ; }
8 value��;
9 }

10 }
11 void up () {
12 synchronized (th is) { value ++; }
13 i f (value == 1) {
14 synchronized (th is) { n o t i f y () ; }
15 }
16 }
17 }

(b) Semaphore test

1 s t a t i c class C l i e n t implements Runnable {
2 private Semaphore sem;
3 C l i e n t (Semaphore sem) { th is . sem = sem; }
4 public void run () {
5 t ry {
6 sem. down () ;
7 / / do some work
8 sem. up () ;
9 }

10 catch (I n te r rup tedExcep t i on e) { }
11 }
12 }
13 s t a t i c f i n a l i n t N = . . . ;
14 @Test public f i n a l void t e s t () {
15 Semaphore sem = new Semaphore (N�1);
16 C l i e n t [] c = new C l i e n t [N] ;
17 for (i n t i =0; i < N; i ++) c [i] = new C l i e n t (sem) ;
18 runThreads (c) ;
19 asser tEquals (N�1, sem. getValue ()) ;
20 }

Figure 4: Semaphore example

202

The semaphore class employs the condition-based wait () and
notify () methods associated to Java monitors, the core synchro-
nization primitives used by Java applications and thread-safe Java
API classes [14] (along with notifyAll ()). The wait () call in down()
causes the calling thread to block until it receives: (1) a notifica-
tion from another thread through notify , called within up(); (2) a
spurious wakeup, an odd but possible event, and the reason for the
standard wait-loop pattern shown [14]; or (3) an interrupt resulting
from a call to Thread.interrupt () , a case not exercised by the code
at stake. To resume from wait () , the thread then needs to compete
with other threads to reacquire the lock.

In the semaphore code of Fig 4 (a), the up() operation only calls
notify () when the semaphore increments to 1 (lines 13–14). The
code would be correct if a single synchronized block covered all
instructions in up(). Instead, two blocks of the kind are used, a “two-
stage access” pattern [9]. Moreover, the notification event relies
on an unsynchronized read access to value (line 13), which may
race with simultaneous write accesses. It is then possible that two
or more increments in up() take the semaphore value from 0 to a
value greater than 1. A required notification, in case some thread is
blocked in down(), may be skipped and, as a result, a waiting thread
may block forever. Skipped notifications would also be possible if
the read access to value was part of the second synchronized block,
but the purpose of the example is also to illustrate data races.

Cooperari detects the race condition and the wait deadlock,
considering the yield points defined by lock acquisition and release,
wait () , notify () , and the read/write accesses to the semaphore value.
The output of an execution for N=3 is as follows:

Race : T0 at Semaphore . java :12 over Semaphore . value
Race : T1 at Semaphore . java :13 over Semaphore . value
F a i l u r e t race f o r t e s t w r i t t e n to

’ log / examples . semaphore . TestSemaphore_test . t race . t x t ’
t e s t : executed 36 t imes i n 578 ms [f a i l e d]
1) t e s t (examples . semaphore . TestSemaphore)

WaitDeadlockError : { T2 / Semaphore . java :7 }

The output reports a race over the semaphore field and a test
failure due to a WaitDeadlockError for a thread identified as T2.
A fragment of the cooperative trace is shown in Fig. 5, where
each step is annotated with pending reads and writes (r/w) for the
semaphore value. In the execution at stake, thread 0 and 1 (T0, T1)
completed down(), thus value will be 0, and began executing up(),
whilst thread 2 (T2) is executing down(). At step 23, T0 and T1
are suspended at the first lock acquisition point in up(), and T2 is
blocked at the call to wait () in down(). In steps 23–27 and 28–31,
T0 and T1 are in succession able to acquire the lock, increment
the semaphore value, relinquish the lock, and suspend again before
reading value. When they do, just before terminating (steps 32 and
33), value is 2, hence they fail to deliver the notification to T2. Thus,
T2 will block forever on wait () . The deadlock is detected at this
point. As for the race, it is signaled at step 29, for a pending write
by T0 and a pending read by T1.

<step > <thread > < y i e l d po in t > # r /w
15 0 mon i to ren te r (L0) Semaphore . java :12 # { } / { }
. . .
22 1 mon i to ren te r (L0) Semaphore . java :12 # [value =0]
23 2 wa i t (L0) Semaphore . java :7 #
24 1 get (Semaphore . value) Semaphore . java :12 # 1 / { }
25 1 set (Semaphore . value) Semaphore . java :12 # { } / 1
26 1 m o n i t o r e x i t (L0) Semaphore . java :12 # [value =1]
27 1 get (Semaphore . value) Semaphore . java :12 # 1 / { }
28 0 get (Semaphore . value) Semaphore . java :12 # 0 , 1 / { }
29 0 set (Semaphore . value) Semaphore . java :12 # 1/0 [race]
30 0 m o n i t o r e x i t (L0) Semaphore . java :12 # [value =2]
31 0 get (Semaphore . value) Semaphore . java :13 # 0 , 1 / { }
32 0 <end> # { } / { } ; read 2; no c a l l to n o t i f y ()
33 1 <end> # read 2; no c a l l to n o f i t y ()

Figure 5: Cooperative execution for the semaphore test

4. Implementation

Yield point instrumentation Cooperari employs AspectJ to in-
strument yield points. An aspect (on what concerns Cooperari) is a
collection of pointcuts and advices. A pointcut is an expression that
describes well-defined program execution points (e.g., a method
call), called join points. An advice defines code that is executed
when the instrumented program reaches a join point that matches
the advices’ pointcut. We use the AspectJ abc compiler [1] that
supports lock() and unlock() pointcut extensions [2] for intercept-
ing the execution of the JVM lock acquisition (monitorenter) and
release (monitorexit) instructions.

Presently, Cooperari defines aspects for specifying yield points
related to: (1) lock acquisition, release, and condition-based syn-
chronization through wait () , notify () , and notifyAll ()); (2) thread
interruption, sleep, join, yield hints, startup, and termination [14];
(3) object field reads and writes; and, finally, (4) array reads and
writes. The time-based primitive Thread.sleep() and the time-based
variants of Object.wait () and Thread.join() are executed within
the cooperative framework, but not deterministically, since their
completion depends on the elapse of time measured by the JVM
and, obviously, on all program/JVM actions within that inter-
val. In complement, the tool intercepts thread state methods, like
Thread.holdsLock() or Thread.getState(), to attain a coherent coop-
erative semantics, even if these calls are not yield points.

1 void around (Object o) : lock () && args (o) {
2 CThread t = getCThread (thisJoinPoint , o) ;
3 i f (t != nul l) t . cMoni torEnter (o) ;
4 else proceed (o) ;
5 }
6 void around (Object o) : unlock () && args (o) {
7 CThread t = getCThread (thisJoinPoint , o) ;
8 i f (t != nul l) t . cMon i to rEx i t (o) ;
9 else proceed (o) ;

10 }
11 boolean around (Object o) :
12 c a l l (boolean Thread . holdsLock (Object)) && args (o) {
13 CThread t = CThread . i n t e r c e p t (thisJoinPoint , o) ;
14 i f (t != nul l) return t . cHoldsLock (o) ;
15 else return proceed (o) ;
16 }

Figure 6: Sample AspectJ instrumentation code

Fig. 6 presents the general pattern of instrumentation we fol-
low. It contains three advices: the first (lines 1–5) associates
code that is executed upon lock acquisition, specified by point-
cut lock(); the second (6–10) intercepts lock release, described
by pointcut unlock(); finally, the third (11–16) associates with a
Thread.holdsLock() method call pointcut. The around keyword in
the code specifies that these advices run in place of the join point.
Looking at the first advice, the code starts by determining if the cur-
rent thread is subject to cooperative execution semantics, through
a call to getCThread() (the thisJoinPoint and o arguments are used
to initialize profile information for the yield point). If so, the exe-
cution is diverted to the cMonitorEnter() method of the cooperative
thread to run in place of JVM lock acquisition. Otherwise, the
proceed AspectJ keyword specifies normal execution of the join
point instead, i.e., lock acquisition proceeds normally; note that
instrumented code may run in non-cooperative manner in the JUnit
runner thread before or after the invocation of method runThreads()
that creates the cooperative threads. The other two advices in the
figure are defined similarly, and so is the remaining Cooperari in-
strumentation.

The cooperative scheduler We now turn to the essential traits
of the implementation of cooperative scheduling. The scheduler
runs in its own thread and only one cooperative thread is active at
any time. A cooperative thread voluntarily suspends its execution

203

(a) Thread yield and resumption

private boolean y i e l d ;
public void cY ie ld () {

. . . / / y i e l d i n g
y i e l d = true ;
syncYie ld () ;
while (y i e l d) {

LockSupport . park () ;
}
syncResume () ;
. . . / / resumed

}
public void cResume () {

. . .
y i e l d = fa lse ;
LockSupport . unpark (th is) ;

}

(b) Scheduler step

CoveragePolicy p o l i c y ;
L i s t <CThread> ready ;
. . .
public void cStep () {

. . .
syncYie ld () ;
CThread t =

p o l i c y . dec is ion (ready) ;
t . cResume () ;
syncResume () ;
. . .

}

Figure 7: Implementation of cooperative scheduling

when it reaches a yield point. The cooperative scheduler assumes
control at this point, deciding the next thread to run, and resuming
the execution of the chosen thread. The built-in JVM scheduler
is conditioned in this process by the actions of the cooperative
scheduler and cooperative threads. The implementation is outlined
in Fig. 7, comprising the definition of the two core primitives for
thread yield and resumption, cYield() and cResume() methods in a
CThread class (a), and for the scheduler step, method cStep() in a
CScheduler class (b).

During the yield procedure (Fig. 7 (a)) a thread starts by en-
abling the yield condition, and synchronizes with the scheduler
with a call to syncYield(), a barrier handshake. The thread then
suspends execution using the LockSupport.park() Java API call that
disables the thread for execution by the JVM scheduler. In symme-
try, during a scheduling step (b), the cooperative scheduler begins
by acknowledging a thread yield (syncYield()). It then employs the
coverage policy in place (policy) to select the next thread t to run
amongst the ready thread set (ready), and executes t .cResume(),
disabling the yield condition for t and unblocking it through the
unpark() call (a). The JVM scheduler may now consider t for exe-
cution. The resumption process ends with a handshake between the
cooperative scheduler and t , syncResume() in (a) and (b).

Cooperative implementation of multithreading primitives The
implementation of multithreading primitives is defined in class
CThread, helped by a CMonitor class for representing monitors, and
a COperation base class that implements the behavior of primitives.
Each primitive executes an action before thread suspension and an-
other after resumption. For instance, the CThread.cMonitorEnter()
method (Fig. 6) for lock acquisition is implemented by: (1) initial-
izing a COperation object for the pending monitor acquisition; (2)
yielding (invoking cYield()); and (3) completing the lock acquisi-
tion when resumed (through cResume()).

Fig. 8 outlines part of the support for monitor operations. The
CMonitor data (a) is manipulated for distinct types of COperation
corresponding to monitor acquisition, release, notification, and wait
wakeup. The support for lock acquisition is shown as an example
in (b). As illustrated, each operation comprises initialization, state
report, and completion methods. Only ready-state (CREADY) oper-
ations enable resumption for the associated thread. The lock acqui-
sition operation is implemented as follows:
— A monitor for o is created by getMonitor(o) for the first pending
lock on o, in the initialization step of lock acquisition, otherwise
the reference count for the existing monitor object is incremented.
Symmetrically, the reference count will be decremented in the
completion of the mirror operation of lock release, and the monitor
will be disposed at that time if the reference count reaches 0.
— A CREADY state is signaled when the monitor has no owner
(is null), letting the thread be considered for execution. The thread

(a) Monitor data

class CMonitor {
/ / Reference count .
i n t refCount ;
/ / Owner thread
CThread owner ;
/ / Wait count
i n t waitCount ;
/ / N o t i f i c a t i o n epoch
long nEpoch ;
/ / N o t i f i c a t i o n queue
Queue< In teger > nQueue ;

}

(b) Lock acquisition

void i n i t (Object o) {
m = getMoni tor (o) ;
m. refCount ++;

}
CState getSta te () {

return

m. owner == nul l ?
CREADY : CBLOCKED;

}
void complete (CThread t) {

m. owner = t ;
}

Figure 8: Implementation of monitor operations

may go back to a CBLOCKED state, if a competing thread is chosen
instead by the scheduler and acquires the lock.
— If the scheduler lets the thread run, the completion stage of the
operation marks the monitor as owned by the thread.

Test execution and state-space exploration The cooperative
scheduler uses a coverage policy to determine the next thread to
run at each step. The coverage policy is also responsible for track-
ing state-space exploration and bounding the required number of
test trials. After executing each test, the test runner evaluates if
the test failed. If so, no more trials are executed. Otherwise, the
runner asks the coverage policy if more test trials are required. If
so, the test is repeated. At this point we implemented two cover-
age policies: a memoryless pseudo-random choice of threads, and
a history-dependent one that seeks to avoid repeated scheduling
decisions for the same program state.

The random policy is implemented using a pseudo-random
number generator, always initialized with a fixed seed for repro-
ducible test sessions, and a bound on the number of test trials.
The history-dependent policy improves on the latter, by trying
to avoid repeated scheduling decisions. To implement this pol-
icy, the state of running threads is abstracted as a set of the form
s = {(n1, pc1), . . . , (nk, pck)}. Each (n, pc) 2 s defines n > 0
threads suspended at location pc, where pc corresponds to the stack
trace information obtained via Thread.getStackTrace() augmented
with information for the current yield point. History is maintained
as a set of pairs (s, pc), where s is a state abstraction and pc is a
program location representing a past scheduling decision. At each
step, for state s, the policy deterministically tries to find a thread t
at location pc such that (s, pc) is not part of the history set. If
so, it decides on scheduling t. If no such thread can be found, the
selection is random as in the first policy.

The aim of the program state abstraction scheme is to curb state-
space explosion by avoiding sequences of scheduling decisions
that commute [10]. However, it may rule out relevant schedules
as it only accounts for simple structural program information (the
stack trace, and yield point information). In any case, the history-
dependent policy cannot guarantee an enumeration of all thread
schedules, as no backtracking mechanism ensures a visit to states
where past unexplored scheduling decisions lie. A model checker
can be considered in principle to address this issue, and integrate
orthogonally with the remaining infrastructure of Cooperari, e.g.,
see [7, 15].

Deadlock detection Cooperari employs two mechanisms for
deadlock detection. The first monitors if all threads are blocked on a
multithreaded synchronization primitive. This means alive threads
are unable to progress. The second uses a resource graph [11] to
keep track of cyclic dependencies through lock acquisitions. Edges
are added to the graph in the initialization stage of lock acquisi-
tions, and removed in the completion stage of lock releases. The
graph works in tandem with a chain of lock acquisitions maintained

204

Example LOC
Inst.
Time

hist. dep. coverage random coverage unconstrained execution
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Alarm Clock [16] 210 18.9
1000 7 3 1 2 1000 8 13 8 6 1000 ——– 1000 ——–
64.9 1.4 1.1 0.7 1.2 62.3 1.4 2.2 1.9 1.8 51.0 51.4 51.6 52.0 52.7

Apache Common
Lang [16]

398 26.0
1 1 1 1 1 1 1 1 1 1 ——– 1000 ——–

0.2 0.3 0.4 0.6 0.8 0.2 0.2 0.4 0.5 0.8 0.3 0.6 0.9 1.4 2.2

Bank [8] 77 11.7
1 1 1 3 1 1 1 1 2 1 ——– 1000 ——–

0.1 0.2 0.4 1.0 1.0 0.1 0.2 0.3 1.1 1.0 1.4 1.5 1.9 2.6 3.7

Clean [8, 16] 63 11.4
3 4 2 1 1 21 2 1 1 1 25 3 1 1 1

0.4 2.0 1.7 1.4 1.6 2.9 0.9 1.1 1.3 1.6 0.1 0.1 0.1 0.1 0.1
Dining

Philosophers
29 5.6

2 9 48 581 1000 4 13 165 1000 1000 ——– 1000 ——–
0.1 0.2 1.0 18.8 189.4 0.1 0.2 2.4 23.8 46.2 0.3 0.4 0.8 1.3 2.3

Linked List [8, 16] 150 13.3
2 1 1 1 1 2 4 1 1 1 ——– 1000 ——–

0.1 0.2 0.4 1.0 1.2 0.1 0.2 0.1 0.2 0.4 0.1 0.6 0.9 1.4 1.7

Merge Sort [8] 98 12.1
99 117 95 54 4 99 11 51 14 35 ——– 1000 ——–
4.6 6.8 17.7 26.9 3.2 4.2 2.5 4.6 3.5 9.5 0.3 0.4 0.7 1.3 2.3

Piper [8, 16] 102 14.0
1000 2 2 1 1 1000 3 1 1 1 1000 2 1 1 1
7.7 0.3 0.3 0.6 0.8 7.2 0.1 0.2 0.4 0.7 0.7 0.1 0.1 0.1 0.1

Reorder [8, 16] 48 11.0
50 13 4 7 20 2 23 26 17 10 ——– 1000 ——–
0.4 0.2 0.2 0.5 1.5 0.1 0.3 0.7 0.8 0.9 0.3 0.4 0.8 1.4 2.3

Semaphore 29 5.6
1000 37 137 1000 1000 1000 8 249 1000 1000 1000 ——– 1000 ——–
6.5 0.7 2.7 34.4 73.1 6.0 0.2 2.4 32.1 63.0 0.3 0.5 0.8 1.2 1.9

Two Stage [8, 16] 70 13.3
52 57 11 15 28 324 141 157 92 46 ——– 1000 ——–
1.1 1.9 1.1 0.3 3.2 3.6 2.5 3.6 0.3 4.0 0.3 0.4 0.7 1.3 2.4

Wrong Lock [8, 16] 63 12.5
5 1 2 7 1 5 1 2 3 1 ——– 1000 ——–

0.1 0.1 0.2 0.9 0.5 0.1 0.1 0.2 0.5 0.5 0.3 0.4 0.8 1.3 2.2

Table 1: Benchmark results

for each thread. Edges are added to the graph for a thread t locking
monitor m in the following cases: (1) t ! m for a thread t and
monitor m if t owns no locks (the lock chain of t is empty) in the
current state; or (2) m’ ! m, if m’ is the last lock acquired by t (the
lock chain of t ends with m’) before trying to acquire m. In both
cases, m is appended to the lock chain of t . When t releases m,
in reverse manner, the edge and the lock chain’s tail are removed.
Deadlocks are easily monitored by checking for the existence of
cycles in the graph.

Race detection Cooperative scheduling naturally exposes race
conditions, as illustrated for the semaphore example in Section 3,
enabling a simple detection scheme. Cooperari records informa-
tion about pending read and write yield points for each data item.
Just before a thread yields on a data access, we increment a read
or write counter for the data item, and the same counter is decre-
mented when the thread resumes. A race is signaled whenever a
completing write detects a pending read or write, or when a com-
pleting read detects a pending write. The read-write information
is discarded if both read and write counters reach 0, meaning that
there are no pending operations for the data item. The race detec-
tion scheme is costly in the sense that every field or array access
is instrumented and monitored in the current implementation, and
only a small portion of them may refer to effectively shared data.
To deal with this issue, thread-locality static analysis [2] and yield
point inference [19] can potentially be employed. In any case, the
shortcomings are partially mitigated by the simplicity and precise-
ness of race detection, which can otherwise be more complex and
imprecise in other approaches, e.g., see [2, 13].

5. Evaluation

We conducted an evaluation over 12 multithreaded program exam-
ples, with results given in Table 1. The examples are from the Con-
Test suite [8] and the SIR repository [16], plus the dining philoso-
phers and semaphore examples of Section 3. Some ConTest ex-
amples are also in the SIR repository, and we used the SIR ver-
sions in those cases. The SIR/Contest test subjects’ original code
was used, and associated test programs were converted into JUnit
tests. The bugs at stake comprise deadlocks for Bank, Clean, Din-
ing Philosophers, Piper, and Semaphore, and failed test assertions

for the remaining examples. Monitor-based synchronization is em-
ployed in all cases except for Apache Common Lang, Merge Sort,
and Reorder, where plain data races lead to failed test assertions.
All examples are parametric in the number of threads.

We ran the tests using a standard Java 7 JVM on a lightly loaded
Linux machine with a dual-core 3 GHz CPU and 4 GB of RAM.
For each example, we indicate in Table 1 the lines of code (LOC)
in the test subject, roughly 30 to 400 LOC, and the execution time
for bytecode instrumentation in seconds (Inst. time), less than 30
seconds in all cases. The remaining columns compare coopera-
tive test execution, using the history-dependent or random cover-
age policies, versus unconstrained execution, with varying number
of threads from 2 to 32. For each test setting, the results indicate
the number of test trials executed, on top for each entry, and the ex-
ecution time in seconds, at bottom. The maximum number of trials
considered was 1000. The times and test trials in the unconstrained
execution are the average of 10 executions for each setting. En-
tries in italic for some 2-thread settings (Alarm Clock, Piper, and
Semaphore) indicate that the bug at stake is guaranteed not to oc-
cur, hence 1000 test trials are expected. Bold entries indicate that
the bug may occur but is not reproduced after 1000 trials.

In all but two cases, Clean and Piper, cooperative execution
exposes bugs that unconstrained execution cannot. Moreover, co-
operative executions require a small number of trials in many of
the examples. The bugs fail to reproduce after 1000 trials only
for the dining philosophers’ 32-thread setting and the semaphore’s
16/32 thread settings. These two examples require a very precise
schedule for deadlock, as discussed in Section 3. We can also ob-
serve that the history-dependent policy is more effective in expos-
ing them by avoiding repeated scheduling decisions, but otherwise
the random policy has comparable performance. The overhead im-
posed by cooperative execution is noticeable in the 1000-trial runs,
e.g., approximately 20 times slower for the 2-thread setting in the
semaphore example, an issue that is mitigated by the execution of
a smaller number of trials in all other cases.

6. Conclusion

We presented Cooperari, a tool for reproducible, deterministic test-
ing of multithreaded Java software, with the following core traits:

205

the instrumentation of thread interference points for cooperative
execution; an execution environment established by a cooperative
scheduler, a cooperative implementation of multithreading primi-
tives, and runtime detection of deadlocks and races; and an envi-
ronment for reproducible tests, in association to custom coverage
policies for the exploration of the state-space of thread schedules.
In the future, we plan on covering a wider set of multithreading
Java primitives, e.g., atomic operations or barrier synchronization.
For systematic state-space coverage, we wish to embed a model
checker in the framework, along with other features for robust test-
ing, such as yield point inference. We wish to drive these efforts
with larger, real-world applications in mind.

References

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Abc:
An Extensible AspectJ Compiler. volume 3880 of LNCS, pages 293–
334. Springer-Verlag, 2006.

[2] E. Bodden and K. Havelund. Racer: Effective Race Detection Using
AspectJ. In Proc. 2008 International Symposium on Software Testing
and Analysis, ISSTA ’08, pages 155–166. ACM, 2008.

[3] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of
synchronization coverage. In Proc. 10th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’05,
pages 206–212. ACM, 2005.

[4] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic
execution for automated real-world software testing. In Proc. 6th
European Conference on Computer Systems, EuroSys ’11, pages 183–
198. ACM, 2011.

[5] J. Burnim, T. Elmas, G. Necula, and K. Sen. CONCURRIT: Testing
concurrent programs with programmable state-space exploration. In
Proc. 4th USENIX Conference on Hot Topics in Parallelism, HotPar
’12. USENIX, 2012.

[6] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur.
Framework for testing multi-threaded Java programs. Concurrency
and Computation: Practice and Experience, 15(3–5):485–499, 2003.

[7] T. Elmas, J. Burnim, G. Necula, and K. Sen. CONCURRIT: a domain
specific language for reproducing concurrency bugs. In Proc. 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 153–164. ACM, 2013.

[8] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-
threaded bugs. In Proc. 18th International Parallel and Distributed
Processing Symposium, IPDPS ’04, pages 266–273. IEEE Computer
Society, 2004.

[9] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to
test them. In Proc. 17th International Symposium on Parallel and
Distributed Processing, IPDPS ’03, pages 286.2–. IEEE Computer
Society, 2003.

[10] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for
model checking software. In Proc. 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’05,
pages 110–121. ACM, 2005.

[11] R. C. Holt. Some deadlock properties of computer systems. ACM
Computing Surveys, 4(3):179–196, 1972.

[12] V. Jagannath, M. Gligoric, D. Jin, Q. Luo, G. Rosu, and D. Marinov.
Improved multithreaded unit testing. In Proc. 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE ’11, pages 223–233. ACM, 2011.

[13] P. Joshi, M. Naik, C. Park, and K. Sen. CalFuzzer: An extensible
active testing framework for concurrent programs. In Proc. 21st
International Conference on Computer Aided Verification, CAV ’09,
pages 675–681. Springer-Verlag, 2009.

[14] D. Lea. Concurrent programming in Java: design principles and
patterns, 2nd edition. Addison-Wesley, 1999.

[15] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing Heisenbugs in concurrent pro-

grams. In Proc. 8th USENIX Conference on Operating Systems Design
and Implementation, OSDI ’08, pages 267–280. USENIX, 2008.

[16] SIR. Software-artifact Infrastructure Repository. http://sir.unl.edu.
[17] D. Stoller. Testing Concurrent Java Programs using Randomized

Scheduling. In Proc. 2nd Workshop on Runtime Verification, RV ’02,
pages 142–157. Elsevier, 2002.

[18] J. Yi, C. Sadowski, and C. Flanagan. Cooperative reasoning for
preemptive execution. In Proc. 16th ACM Symposium on Principles
and Practice of Parallel Programming, PPoPP ’11, pages 147–156.
ACM, 2011.

[19] J. Yi, T. Disney, S. N. Freund, and C. Flanagan. Cooperative types for
controlling thread interference in Java. In Proc. 2012 International
Symposium on Software Testing and Analysis, ISSTA ’12, pages 232–
242. ACM, 2012.

206

