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Abstract

This paper presents a test bed for rapid flight testing of control algorithms for unmanned aerial

vehicles (UAVs), framed in the Portuguese Research and Development Program on Unmanned Aerial

Vehicles (PITVANT). The test bed can be used to validate UAV control algorithms at the kinematic

level, being the aircraft dynamics controlled by commercially available autopilots. It supports all

stages from numerical simulations to flight testing (with control on the ground) using the same

framework. It allows testing multi-vehicle operations and the integration of on board systems with

data from and to those systems transmitted through a single communications data link. A common

console integrates all information and controls every aspect of multi-vehicle missions. The paper

describes the architecture of the test bed and its deployment, in particular its operational framework,

software and hardware components and user interaction.
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1 Introduction

The Portuguese Research and Development Program on Unmanned Air Vehicles (PITVANT), supported

by the Portuguese Ministry of National Defense, has been carried out since 2009 by the Portuguese Air

Force Academy (AFA) and the Faculty of Engineering of the University of Porto (FEUP). The main

objectives of this seven-year project are the exploration of small platforms and the development of new

technologies and new concepts of operation, with an emphasis on the exploration of cooperative control

systems for teams of autonomous aerial, marine and land vehicles. The envisioned applications of the

systems to be developed are forest and coastal patrolling, military aerial surveillance, search and rescue

and support/tracking of land or marine vehicles.

Currently, the AFA owns a variety of platforms with different wingspans (from 2 m to 7 m) and max-

imum takeoff weights (from 2Kg to 100Kg) built from scratch, allowing for the testing of technological

systems on board and different control algorithms.
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Given the early stage of the project, testing of the control algorithms has been carried out on

small platforms. Namely, the ANTEX-M X02 platforms (Figure 1) have been widely used due to their

convenient size/payload ratio Table 1).

Figure 1: ANTEX-M X02.

Maximum takeoff weight 10 Kg

Wingspan 2.415 m

Payload 4 Kg

Maximum Speed 100 Km/h

Autonomy 1.5 h

Table 1: ANTEX-M X02 - Main features.

The main goal of the work reported here was to develop a software and hardware architecture that

allows rapid hardware-in-the-loop simulations and subsequent flight tests of different high level multi-

vehicle control systems.

The standard approach with UAV control is to assume that the vehicle has an off-the-shelf inner loop

controller that accepts references at kinematic level (angular rates and linear velocities) and generates

the UAV control signals necessary to follow those references in the presence of model uncertainty and

external disturbances, like wind. See for example [1, 2, 3, 4, 5, 6, 7]. Outer loop control laws are thus

derived using a kinematic model of the vehicle and provide the references to the inner control loop.

This approach permits the development of control algorithms based on simpler models. The use of an

off-the-shelf autopilot also adds to the operational safety of the aircraft since it is always possible to

switch to autopilot control mode or even to remote control mode, if a potentially dangerous situation

is detected. The downside is that it usually complicates formal proofs of convergence and performance

analysis of the designed control algorithms, due to the inner-outer loop structure. Following the same

strategy, all the PITVANT platforms are equipped with a Piccolo II controller [8]. Within this R&D

project, the UAV control algorithms are usually developed and tested in simulation using Matlab [9].

Thus, one of the main features of the here reported test bed is that it provides a mean to rapid testing

of kinematic control laws running under Matlab, allowing for the validation and implementation of the

high level controllers in different controlled conditions before final implementation. Firstly, it provides

hardware-in-the-loop simulations, where the vehicle dynamics is simulated by software provided by

Piccolo. Secondly, it allows for control algorithm tests in real flight situations with the control loop

closed by a Matlab routine running on a PC on the ground. Thirdly, it is possible to close the control

loop with an embedded computational system (e.g. PC-104). The latter flight tests only differ from the

final application by the localization of the computational system (on ground instead of on on board the

aircraft). In fact, these flight tests are more demanding since with the on board software it is possible

to achieve faster sensor data and control updates. Finally, the presented architecture allows the fast

migration of the embedded system to the aircraft.

Test beds for UAV testing have been reported in the literature. They differ from each other essentially
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in the system architecture utilized. In [7], both high level planning strategies and low-level servo

commands are computed on the same hardware. Other research groups use a separate off-the-shelf

hardware to compute low-level control commands, such as aileron and elevator servo commands [1, 5].

For collaborative control applications, the high-level planning may occur on a ground station computer

[2], or onboard the aircraft [6]. The hardware and the software used for the flight tests may also be

commercial [5] or proprietary [3]. In these architectures, the telemetry from the on board systems

is usually transmitted to the ground using a dedicated wireless data link. For command and control

purposes, a second telemetry link operates between the autopilot and the ground control station.

In the here proposed test bed, the telemetry from all the on board systems and their control com-

mands can be performed through a single communications data link and a common command and

control console, shared by all the vehicles of the network. This feature enables testing missions with

multiple platforms saving hardware. The proposed test bed was successfully utilized to test several

different control algorithms designed for the PITVANT project, namely algorithms for target tracking

[10], obstacle avoidance [11] and thermals navigation [12].

The paper describes the hardware and software architecture of the PITVANT test bed and is orga-

nized as follows. Section 2 presents the basic control architecture used for the autonomous flights using

autopilot tools and the proposed test bed software and hardware architectures. Section 3 describes the

entire process of control algorithms validation and implementation, from numerical simulations to flight

tests, including hardware-in-the-loop validation. Finally, section 4 presents the main conclusions and

future work.

2 Test bed software and hardware architecture

2.1 Operation with a Piccolo autopilot

All PITVANT platforms are equipped with a Piccolo II controller that deals with the inner control loop

of the UAVs. It relies on a mathematical model parameterized by the aircraft geometric data and has

a built-in wind estimator. Several model and controller parameters can be set by the user [8]. The

ANTEX-M X02 model parameters were fine tuned in more than 30 hours of autonomous flights.

A Piccolo Ground Station and a Piccolo Command Center (PCC) can be used for basic UAV oper-

ation (see Figure 2). The Piccolo Command Center (PCC) is a graphical user-interface for operators

developed by Cloudcap that shows flight information and allows the operator to send waypoints, velocity,

bank or altitude references to the aircraft (Figure 3).

Telemetry data is transmitted to the ground station via a 2.4 GHz Piccolo link. If an on board

system is added (e.g. a video camera), another data link must be used to relay the video signal to a

different monitor on the ground. Although simple and easy to operate, this architecture does not allow

the control of the on board systems that are not compatible with the Cloudcap’s software. Additionally,

the PCC does not support the inclusion of command and control windows devoted to the operation
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with the control algorithms implemented. Next section describes the here proposed architecture that

overcomes the limitations of this basic setup.

Figure 2: Operation with a Piccolo autopilot. Figure 3: Piccolo Command Center.

2.2 Proposed test bed

All development and test stages within the PITVANT project share the software architecture depicted

in Figure 4. It has a layered structure, comprising network control modules, DUNE software tasks, and

physical or simulated hardware.

Figure 4: Software architecture.

Figure 5: Neptus command and control

console.

The physical hardware comprises Piccolo autopilots and ground stations. These may also be simu-

lated using software tools provided by Cloudcap.

DUNE is an embedded software platform used in several autonomous vehicles developed by the

Underwater Systems and Technology Laboratory (LSTS) at FEUP (please refer to [13] for an application

to autonomous underwater vehicles). DUNE provides programmers with a C++ abstraction of real-

time tasks, and runs on several heterogeneous operating systems (e.g., Linux or Windows) and hardware

platforms (e.g., Intel x86 or ARM). In this context DUNE is used to implement software tasks that:

• handle the physical/simulation connection to an autopilot or ground station;
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• provide a network gateway for that connection to Cloudcap software;

• decode and encode, respectively, telemetry and control packets [14], from Piccolo and other on

board systems (e.g. gimbal camera), from and to IMC packets [15];

• locally control on board systems and aircraft systems that can run independently from the ground

station.

IMC is a message-oriented interoperability protocol [15] that is used in all LSTS software deployments

of autonomous vehicles. When a new system is included on board (e.g. gimbal) the DUNE software is

used to convert its communication protocol to IMC, thus allowing its control from the ground, without

relying on the commercial software that comes with the equipment. Therefore, the telemetry from all

on board sensors and their control commands can be performed through a single communications link,

instead of using a particular control software and a dedicated communication link for each system.

Moreover, in the proposed architecture, IMC is shared by all vehicles, thus allowing the exchange of

information between heterogeneous systems (e.g., aerial and marine vehicles) and the use of a single

console for mission control.

Network modules may comprise instances of Matlab, Neptus [16], and GUI software from Cloudcap.

Cloudcap GUI applications can be used to operate UAVs equipped with the Piccolo autopilot, and

interface with DUNE’s gateway functionality for that purpose. Neptus is a command and control

infrastructure for autonomous vehicle missions, covering diverse aspects such as mission planning, online

vehicle control and monitoring, or data analysis (Figure 5) [16]. The Neptus console gives the operation

team the freedom to create a terminal suited to the needs of the mission and allows for the inclusion

of new command and control windows associated with the control algorithms implemented. Thus, the

proposed architecture enables the simultaneous use of Matlab, Cloudcap and Neptus consoles to control

the missions. This is useful since different stages of algorithm validation require different consoles. While

Matlab is in the loop, dedicated Matlab consoles can be used to monitor the algorithm performance, and

PCC provides the safety of an alternative way to monitor and control the aircraft. When the algorithms

migrate from Matlab to C++, everything can be monitored and controlled from Neptus, using again

the PCC as a redundant system.

Figure 6 presents the hardware architecture of the test bed. PCC, Matlab and/or Neptus can receive

telemetry data from the aircraft, and send commands to the aircraft using the DUNE gateway. When

the PCC is used to control the mission, commands to the aircraft are sent through the Piccolo Ground

Station. That is also the case when MATLAB is in the loop. An IMC data link is used when the mission

control is done through Neptus.
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Figure 6: Hardware architecture.

3 Implementation and validation process of control algorithms

Validation and implementation of control algorithms usually goes through the following steps: numerical

simulations, hardware-in-the-loop simulations, flight testing with the control algorithm implemented on

a computer on ground (standard PC and then a dedicated computational system), and finally imple-

mentation of the control algorithm on an on board embedded computational system. The here proposed

test bed supports all stages from numerical simulations to flight testing (with control on the ground)

using the same Matlab code.

3.1 Numerical simulations

The first phase of implementation and testing of the control algorithms is their numerical validation,

considering only the kinematics of the system (Figure 7). At this stage, the development team has the

freedom to choose the architecture and the syntax of the code being written, including a Matlab console

to monitor simulation data. In fact, different applications require different parameters and data, thus

different consoles to match each application needs are usually designed.

These consoles are often created utilizing GUIDE [9] to rapidly create a suitable Graphical User

Interface (GUI).

Figure 7: Numerical simulations structure.

Despite the freedom involved in this first stage, the code implementation should be done keeping in

mind its future hardware-in-the-loop and real flight tests. Thus, the control algorithm and its console

should be implemented independently of the vehicle kinematics.
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3.2 Hardware-in-the-loop simulations

Hardware-in-the-loop (HIL) simulations refer to simulations were the Piccolo autopilot and the Piccolo

Ground Station are included in the loop, replacing the model simulation used for numerical simulations

(Figure 8). A communication block to allow the exchange of data between the controller and the

Piccolo autopilot must be included. In the here proposed test bed, the UAV dynamics is simulated by

the Simulator software provided by Cloud Cap (Figure 9). It receives the commands from the Piccolo

autopilot and provides the UAV state information via a CAN bus interface. The communication between

the Piccolo and the algorithm implemented on Matlab is mediated by the Ground Station and DUNE.

The Ground Station is connected to the Piccolo autopilot via an UHF link, receiving the UAV state

and transmitting the control references, and to the PC that runs the algorithm through a serial cable

(Figure 9).

Figure 8: Hardware simulations and flight tests basic structure.

Hardware-in-the-loop simulations are instrumental in identifying interface problems between different

subsystems and in validating the control algorithm now including the dynamics inner loop closed by the

autopilot. The proposed setup still relies on a Matlab implementation of the control, thus facilitating

control algorithm modifications. Additionally, Matlab consoles can still be utilized to monitor the control

system’s performance.

Figure 9: Control system architecture used in the HIL simulations. Adapted from Piccolo Setup Guide

[8].
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Figure 10 presents a hardware-in-the-loop simulation of an obstacle avoidance algorithm [11]. The

usage of MATLAB at this stage enables an easy design of intuitive interfaces (left-hand side of Figure 10)

to tune the algorithm before testing it on a real flight. Theses interfaces provide a better understanding

of the system’s behaviour and can be used during the flight tests. From the Matlab routine point of view,

there is no difference between the hardware-in-the-loop and the real flights operations. After tuning the

algorithm, the user can evaluate its performance by using Matlab’s set of tools, as shown in right-hand

side of Figure 10.

Figure 10: Trajectory obtained in a obstacle avoidance test, using hardware-in-the-loop simulations.

This test bed was also used to perform hardware-in-the-loop simulations of target tracking [10]

multi-UAV missions, and thermal estimation algorithms [12].

3.3 Flight tests

For the flight tests, the Piccolo autopilot is on board the aircraft, along with a PC-104 and several

other systems, including video cameras and other sensors. The autopilot sends the telemetry data to

the ground station through a 2.4 GHz Piccolo protocol link. The data received can be used to close

the UAV control loop using a standard PC. This is useful for the first flight tests where the control

algorithms are still implemented in Matlab and run on a computer on ground.

Using DUNE software [16] and an ethernet connection, the computer running Matlab is enabled to

receive telemetry data, compute the new control references and send them to the aircraft via Piccolo

Ground Station (please refer to Figure 6). Using the Neptus console [16] is possible to monitor the

telemetry and video data.
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Figure 11: Fligth test operation frame for target tracking.

Figure 12: Aircraft’s trajectory following

a target on the ground.

The above described hardware architecture was successfully utilized to test a wide range of high-level

controllers within the PITVANT project, namely a ground target tracking algorithm, using a GPS in

the loop to provide the target state (Figures 11 and 12) [10], and a thermal estimation algorithm[12].

The following validation and implementation stages require the implementation of the control al-

gorithms in an embedded computational system. This can be done within the DUNE framework [13],

following specific rules and design methods still under development within the PITVANT project.

Figure 13: System’s final hardware architecture.

Figure 13 presents the envisioned system’s final architecture after the migration of the control algo-

rithms from Matlab to DUNE running at the on board computational system. Neptus console will be

used to send commands to the UAV and to on board systems. It will allow for the design of different

windows to control and monitor each system. Through the IMC data link, different vehicles will be able

to exchange information and thus high-level planning for cooperative missions may occur on board the

vehicles or on a ground station.
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4 Conclusions

The test bed for rapid flight testing of UAV control algorithms developed under the PITVANT research

project allows for validation and implementation of high level control algorithms, from hardware-in-

the-loop simulations to real flight tests with multiple vehicles. It provides a hardware and software

architecture to progressively test new control algorithms in controlled situations before the final im-

plementation on board the aircraft. Future work will include the definition of detailed operational

procedures for flight testing, the establishment of software rules and design methods to implement the

algorithms within the DUNE software to be run on an on board dedicated computational system, and

the development of software tools to include its consoles within NEPTUS.
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