
NVL : A Coordination Language For Unmanned Vehicle Networks

E. R. B. Marques1, M. Ribeiro1,2, J. Pinto2, J. B. Sousa2, F. Martins1

1LaSIGE/FCUL, Universidade de Lisboa 2LSTS/FEUP, Universidade do Porto

example scenario
Three UUVs (unmanned underwater vehicles) are used for environmental
data sampling (e.g., bathymetry measurements) across a given ocean re-
gion, together with an UAV (unmanned aerial vehicle) that acts as a “data
mule” to collect the data from the UUVs. The sampling region is dis-
tributed evenly between the three UUVs, corresponding to three distinct
tasks that take form as “row pattern” maneuvers.

area_1 area_2 area_3

RV RV RV

Spatial distribution of tasks

The UUVs emerge after data sampling and the UAV collects their data
through three instances of a cooperative rendezvous task, each of which
involving the UAV and each of the UUVs. A UAV-UUV rendezvous
makes the UAV move close to the UUV operation area for improved con-
nectivity first, after which the actual data transfer proceeds. The rendez-
vous may loop if a single round of data transfer is insufficient.

area_1

area_2

uuv3 area_3

uuv2

uuv1
RV

RV

RV

Execution flow

nvl program
A program is defined by task dec-
larations, placeholders for exter-
nal implementation, plus proce-
dures made up of instruction se-
quences. A program’s execution
comprises the dynamic selection of
vehicles from the network “cloud”
through select instructions, and
vehicle bindings to task execution
through step instructions. Vari-
ables and imperative-like con-
structs (e.g., do-while) structure a
program’s control and data flows.
In the example program (right), the
UUVs are first selected from the
network. The following step then
fires the data sampling tasks con-
currently, one per UUV. When the
data sampling step terminates for
all of the UUVs, the UAV is se-
lected and engages in rendezvous
with each of the UUVs. For each
UUV-UAV rendezvous, the ren-
dezvous procedure fires the coop-
erative RV task once or more (exe-
cution loops if the task yields out-
put moreData). At the end of the
program, the vehicles are released
back to the network cloud.

/ / Task declarations
task area_1 (vehicle uuv) ;
task area_2 (vehicle uuv) ;
task area_3 (vehicle uuv) ;
task RV (vehicle uav ,

vehicle uuv)
yields done , moreData ;

/ / Main procedure
proc main () {

/ / Select UUVs.
select 5 m {

uuv1 uuv2 uuv3
(type : "UUV")

} then {
/ / Data sampling tasks .
step 60 m {

area_1 (uuv1)
area_2 (uuv2)
area_3 (uuv3)

}
/ / Select UAV.
select 5 m {

uav (type : "UAV")
} then {

/ / Rendezvous
c a l l rvproc (uav , uuv1)
c a l l rvproc (uav , uuv2)
c a l l rvproc (uav , uuv3)

}
}

}
/ / Rendezvous procedure
proc rvproc
(vehicle uav , vehicle uuv) {
do {

step 15 m {
rvRes = RV(uav , uuv)

}
}
while (rvRes = moreData)

}
NVL program listing

area_1

area_2

area_3

uuv1 RV

uuv2

uuv3

RV

RV RV

RV

uav RV

select step select step step step

< 5m < 60 m < 5 m < 15 m < 15 m < 15 m

 network
delay

RV

RV

< 15 m

step

Program execution

experiments

We conducted simulation and
field tests for the NVL prototype.
The field tests took place at the
Leixões harbour near Porto and
involved LAUV Seacon vehicles
developed at LSTS [1].

LAUV Seacon

Monitoring task execution using Neptus
We used the Neptus system
for the specification of tasks
as IMC maneuver plans [2].
During program execution, the
progress of tasks could also be
monitored using a Neptus con-
sole.

Plots for the example scenario (simulation environment)

implementation

Implementation architecture

The prototype implementation of NVL
consists of an Eclipse IDE plug-in for
program edition and validation, an inter-
preter for program execution, and super-
visor modules that run onboard each ve-
hicle. The implementation builds on top
of the open-source LSTS toolchain [2]
(http://github.com/LSTS) compris-
ing: IMC, a message-based interop-
erability protocol; DUNE: a platform
for onboard software; and the Neptus
command-and-control infrastructure.

references
[1] L. Madureira, A. Sousa, J. Braga, P. Calado, P. Dias, R. Martins, J. Pinto, and J. Sousa. The Light

Autonomous Underwater Vehicle: Evolutions and networking. In Proc. Oceans. IEEE, 2013.

[2] J. Pinto, P.S. Dias, R. Martins, J. Fortuna, E.R.B. Marques, and J. Sousa. The LSTS Toolchain for
Networked Vehicle Systems. In Proc. Oceans. IEEE, 2013.

