NVL: a coordination language
for unmanned vehicle networks

Eduardo R. B. Marques!, Manuel Ribeiro?, José Pinto?, Jodo B. Sousa?, Francisco Martins!

! LASIGE/Departamento de Informatica,
Faculdade de Ciéncias, Universidade de Lisboa

ABSTRACT

The coordinated use of multiple unmanned vehicles over a net-
work can be employed for numerous real-world applications. How-
ever, multi-vehicle operations are often deployed through a patch-
work of separate components that informally “glue” together dur-
ing operation, as they are hard to program as a “whole”. With
this aim, we developed the Networked Vehicles’ Language (NVL)
for coordinated control of unmanned vehicle networks. A sin-
gle NVL program expresses an on-the-fly selection of multiple ve-
hicles and their allocation to cooperative tasks, subject to time,
precedence, and concurrency constraints. We present the language
through an example application involving unmanned underwater
vehicles (UUVs) and unmanned aerial vehicles (UAVs), the core
design and implementation traits, and results from simulation and
field test experiments.

1. INTRODUCTION

Unmanned vehicles are nowadays routinely employed for nu-
merous applications, many of which can benefit from the coordi-
nated behaviour of multiple vehicles over a network [1, 6]. More-
over, large systems are now being deployed with a massive inte-
gration of unmanned vehicles, sensors, and human user interac-
tion, that can also be spatially distributed across the globe, e.g.,
[11, 15] in the realm of oceanography. It is generally hard to pro-
gram the software components in these systems as a “whole”, so
that they work cooperatively towards a common goal. In particular,
coordinated vehicle operations often need to be carefully scripted
through human intervention, with low automation and informal-
ity in what concerns the specification of a “network program” that
implements a scenario of interest. The path from modelling ab-
stractions (e.g., [17, 18]) to their realisation, i.e., actual software
programs, is still in its infancy.

In this context, we introduce the Networked Vehicle’s Language
(NVL), a language for coordination of unmanned vehicle networks.
The idea is that a single NVL program specifies the coordination of
a global scenario involving multiple vehicles. At the basis of NVL,
we consider a resource-task model. A vehicle is seen as a resource
that is capable of accomplishing tasks on its own or cooperatively

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’15 , April 13-17 2015, Salamanca, Spain.

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-3196-8/15/04 ...$15.00
http://dx.doi.org/10.1145/2695664.2696029

331

2 Laboratério de Sistemas e Tecnologia
Subaquatica, Faculdade de Engenharia,
Universidade do Porto

with other vehicles. NVL takes the view that the resource (vehicle)
set changes over time, due to constraints of autonomy, mobility, or
connectivity in vehicle operation. As such, NVL programs select
the required vehicles for task execution on-the-fly from the “net-
work cloud”. A task, in turn, is modelled as an indivisible unit of
timed computation that requires one or more vehicles in order to ex-
ecute. Tasks can be composed in a sequential or concurrent manner
through a base primitive that instantiates the popular fork-join pro-
gramming model, with appropriate refinements for the definition of
timing constraints and explicit resource awareness. The language
is complemented with imperative programming constructs for pro-
gram control flow.

Related work. There are several heterogeneous approaches for
modelling the coordination of tasks in unmanned vehicle networks,
e.g., dynamic and hierarchical hybrid automata networks [18], “vi-
gnette scripts” that map onto abstract state machines [17], the use
of distributed deliberative planning using “timelines” [16], com-
bined bigraph/actor models [14], or dynamically-changeable Petri
nets [12]. The concerns of NVL are largely orthogonal to these
works. The language focuses on the low-level foundational pro-
gramming constructs that can be used as core building blocks for
coordinating unmanned vehicle networks. Our aim is that NVL
can either be used directly by a programmer, or as a backend lan-
guage by higher-level modelling frameworks or semantic abstrac-
tions. In programming language terms, NVL borrows the fork-
join programming model found in task-based concurrent program-
ming [3, 10]. The NVL constructs are also timed, an essential
trait of coordination languages for distributed cyber-physical sys-
tems [7, 9].

Paper outline. The rest of the paper provides an informal overview
of NVL. We present the language using an example scenario (Sec-
tion 2) involving unmanned underwater vehicles (UUVs) and un-
manned aerial vehicles (UAVs), the core design and implementa-
tion traits (Section 3), and results from simulation environments
and field tests with real vehicles (Section 4). We end the paper with
a discussion of future work (Section 5).

2. THE NVL LANGUAGE

Example scenario. We begin by describing an example scenario,
depicted in Fig. 1. Overall, common patterns of spatial task decom-
position and data muling in the operation of unmanned vehicles are
at stake [6, 8]. Three UUVs are used for environmental data sam-
pling (e.g., bathymetry measurements) across a given ocean region,
together with an UAV that acts as a “data mule” to collect the data
from the UUVs. As illustrated in Fig. 1 (a), the sampling region is
distributed evenly between the three UUVs, defining distinct areas
for operation and corresponding sampling tasks that take form as
“row pattern” maneuvers (area_1, area_2, and area_3). The UUVs

s
-
YR 0 TR
RV RV RV |
L area_1 L area_2 Y, L area_3

o, W

(a) Spatial distribution of tasks

ha

S)= (w —
\j uuv2

3 >
Ly
Vy\\A >
P /)/
uuvl

/—»-\

o A)= ()

(b) Task flow

Figure 1: Example scenario

emerge after data sampling and the UAV collects their data through
three instances of a cooperative rendezvous task (RV), involving the
UAV and each of the UUVs. A UAV-UUV rendezvous makes the
UAYV move close to the UUV operation area for improved connec-
tivity first, after which the actual data transfer proceeds.

The task execution flow is illustrated in Fig. 1 (b). The UUV

sampling tasks execute concurrently, and once they are over,the
rendezvous tasks execute in order between UAV and each UUV.
The “clouds” in the figure indicate that vehicles are selected on-
the-fly from the network cloud, rather than being defined a priori,
and, in symmetry, that a vehicle is released back to the cloud as
soon as its job is finished.
The NVL program. The NVL program for the example scenario is
shown in Fig. 2. A program consists of a set of task declarations and
a set of procedures. The example comprises four tasks (lines 2—6)
and two procedures (8—39). We consider some possible refinements
of the program later in this section, but in any case the code shown
illustrates the core traits of the language.

// Task declarations

task area_1 (vehicle uuv);

task area_2 (vehicle uuv);

task area_3 (vehicle uuv);

task RV (vehicle uav, vehicle uuv)
yields done, moreData;

// Main procedure

proc main() {
// Select UUVs. 9

0N oA WN =

select 5 m { 10
uuvl uuv2 uuv3 (type: "UUV") 1

} then { 12
// Execute sampling tasks. 13
step 60 m { 14
area_1(uuvl) 15
area_2(uuv2) 16
area_3(uuv3) 17

} 18

// Select UAV. 19
select 5 m { 20
uav (type: "UAV") 21

} then { 22

// Execute rendezvous tasks. 23

call rendezvous(uav, uuvl) 24

call rendezvous(uav, uuv2) 25

call rendezvous(uav, uuv3) 26
message "done" 27

} 28

} 29

} 30
// Rendezvous execution 31
proc rendezvous(vehicle uav, vehicle uuv) { 32
do { 33
step 15 m { 34
rvRes = RV(uav, uuv) 35

} 36

} 37
while (rvRes = moreData) 38

} 39

Figure 2: NVL program for the example scenario

332

Tasks are declared with a name, a set of required vehicles, and
optional completion results; they are called cooperative if they re-
quire more than one vehicle. In the example, the UUV sampling
tasks (area_1, area_2, and area_3, lines 2—4) require just one vehi-
cle (uuv) and declare no completion results. The cooperative ren-
dezvous task (RV, 5-6) requires two vehicles (uav and uuv) and de-
clares two completion results (moreData and done). The idea is that
a rendezvous may complete by signalling either an incomplete but
resumable data transmission (moreData) or full completion (done).

NVL procedures are sequences of instructions that express on-
the-fly selection of vehicles and subsequent allocation of selected
vehicles to tasks. The execution of a program starts with procedure
main by convention. In the example, main (lines 8-30) works as
follows:

— The procedure begins with a select instruction (line 10) to ac-
quire the UUVs for data sampling (uuv1, uuv2, and uuv3), with a
selection deadline of 5 minutes. The program stops if (any of) the
vehicles cannot be selected within this time, in line with the default
error handling mechanism discussed later in this section.

— If the UUVs are successfully selected, the then block associ-
ated to the select instruction is carried out (lines 12-29). The then
block begins by executing the three UUV data sampling tasks con-
currently through a step instruction (14-18), with a shared dead-
line of 60 minutes. The program will not advance until all tasks
in the step body (area_1, area_2, and area_3) complete. A UUV
may thus remain idle (i.e., executing some fallback behavior such
as loitering) after it completes its task, waiting for other UUV tasks
to also complete.

— After the data sampling step, a UAV is selected (line 20) to ex-
ecute the rendezvous tasks cooperatively with the UUVs, through
calls to procedure rendezvous (24-26). This procedure (32-39)
defines a do-while loop that executes the RV task until data trans-
mission is completed.

Fig. 3 depicts a possible execution for the program, identifying
time intervals for the execution of select and step instructions. Ob-
serve that, for a step instruction, network constraints may lead to
some delay in realising that tasks did complete by the NVL exe-
cution engine. In the worst case, these delays may lead to failure

network
delay

select step 1 select step = step

step

uuvl \ area 1 \

—~ —
Juuv2 (area2)

wuv3 \; area;/‘\
I e, N N
A % e A e N\
¢ vuav ((rv) [rv
~— 2~ AN S AN SN

v

< 60 m <5m <15m <15 m <15 m <15 m

Figure 3: Execution of the NVL program

in the execution of a step instruction. Regarding the rendezvous
stage, the figure illustrates that the rendezvous procedure may fire
the RV task more than once (shown for uuvi/uav).

Vehicle selection criteria. In the example program, the class of ve-
hicles is the single selection criterium: type: "UUV" (Fig. 2, line 11)
and type: "UAV" (21). Thus, any UUVs and UAV available in the
network can be selected by the program. NVL supports comple-
mentary selection criteria to attend to specific requirements of spa-
tial locality, vehicle payload, or a non-anonymous choice of vehi-
cle. For instance,

select ... {
uav (type: "UAV", id: "eagle_1",
area: (41.1830, —8.7000, 1.0),
hasPayload: "Camera")
} then { ... }

tries to select an UAV named eagle_1, located within a 1 km range
of latitude-longitude coordinates 41.1830 N 8.7 W, and with an
onboard camera as part of the payload.

Error handling. NVL supports or instruction blocks that are exe-
cuted in case of failure during the execution of select and step. The
general syntax is as follows: select ... then ... or { <instr>x }
and step ... { ... } or { <instr>x}. An or { exit } block is as-
sumed as default for both select and step. The exit instruction
releases all previously selected vehicles by the program from duty
and ends execution. Since the example program defined no or
blocks, it will then end execution if any of the select or step in-
structions fail. To handle an error due to the first select in the

example program, an or block could be used:
select
then { ... }
or {
delay 1h
continue main

}

In the variation above, the or block employs a delay instruction to
pause execution for one hour, and a continue instruction to subse-
quently restart executing the main procedure.

3. IMPLEMENTATION

Architecture. The architecture of the current NVL implementa-
tion is depicted in Fig. 4. Specific to NVL, there are three soft-
ware components: an integrated development environment (IDE)
for writing and validating NVL programs, a language interpreter
that executes programs, and NVL supervisors that run onboard un-
manned vehicles on behalf of program execution. The architecture
also employs three other components from the open-source soft-
ware toolchain for unmanned vehicles developed at Laboratdrio de
Sistemas e Tecnologia Subaquética (LSTS), described in [16] and
available from http:/github.com/LSTS: DUNE is the system used
to program the onboard software of unmanned vehicles; Neptus
is a command-and-control system for human operators to config-
ure, plan, and monitor unmanned vehicles using GUI consoles; and
IMC is an extensible message-based protocol for networked inter-

operability.
NVL
interpreter Neptus

NVL
program

Xtei
[NVL supervisor] [

7= DUNE J

NVLsupervisor] —

7= DUNE J;/"'

Figure 4: Implementation architecture

333

NVL IDE. The NVL IDE is employed by a user to write and val-
idate a program within the popular Eclipse environment for soft-
ware development. The tool is developed using Xtext [2], an open-
source toolkit for implementing domain-specific languages. Xtext
provides convenient support for typical tasks in language design
and implementation, such as the definition of the language gram-
mar or semantic validation.

Execution environment. The execution of a program comprises
the interaction between the interpreter and the supervisors onboard
each NVL-enabled vehicle. The code of both these components
is written in Java, and executes using the low-footprint Java SE
Embedded runtime environment. Supervisors attend to the inter-
preter’s orders for task execution, and report back related state,
mediating access to the local DUNE instance that directly controls
the vehicle. Supervisors also launch controllers for tasks (that run
within the supervisor) to interface with that DUNE instance. When
cooperative tasks are at stake (like the rendezvous in our running
example), controllers in distinct vehicles also interact among them-
selves through supervisor-to-supervisor communication. The Nep-
tus system is used to design maneuver plans triggered by task con-
trollers and to monitor the progress of these plans during execution.
All communication between components in this environment takes
form through IMC messages transmitted over the network.

4. EXPERIMENTS

Simulation of the example program. To simulate the execution
of NVL programs, the software architecture described previously
can be configured to use physical simulation engines within DUNE
in place of actual vehicles [16]. Using this setup, we ran our ex-
ample program at the simulated physical location of the Leixdes
harbour near Porto, where we also conducted subsequent field tests
described below. Data sampling tasks were defined by row-pattern
maneuver plans designed using Neptus. These plans were fired di-
rectly by NVL supervisors to DUNE instances. For the rendezvous
tasks, we also employed maneuver plans that were fired by ren-
dezvous controllers running within the NVL supervisors. Fig. 5

(a) Data sampling stage

(b) Rendezvous stage

Figure 5: Example scenario — simulation plots

shows plots of the resulting execution, comprising the data sam-
pling stage by the three UUVs (a) and subsequent rendezvous with
the UAV (b). The simulation took 45 minutes to complete, split
between 29 minutes for the data sampling tasks and 16 minutes for
the rendezvous tasks.

Field tests. We conducted preliminary field tests at the Leixdes
harbour in a single day of September 2014. We had two LAUV-
Seacon [13] UUVs (Fig. 6) from LSTS available. Given the tight
schedule, there was only time to reproduce the UUV sampling step
plus individual rendezvous steps from the example program, along
with a series of prior sanity checks. The NVL interpreter ran on a
laptop computer, and the NVL supervisors ran onboard the UUV
vehicles using Beagle Bone devices equipped with a 1 GHz ARM
CPU and 512 MB of RAM. For the data sampling step, we em-
ployed a third simulated UUYV, running on another laptop com-
puter together with the corresponding NVL supervisor. The data
sampling took 20 minutes, quite less than in the simulation setup
(29 minutes), as we had to constrain the operation area for harbour
security reasons, but both simulation and field test executions were
otherwise similar. For the individual rendezvous steps we used the
two (real) UUVs, with one of the UUVs acting as the data mule.

Figure 6: LAUV-Seacon vehicle
S. FUTURE WORK

We now discuss a few key items for future work.

Regarding the NVL resource-task model and associated seman-
tics, there is a need for more flexibility and expressiveness. In a
variation of the example scenario, for instance, one could wish for
the UAV to opportunistically engage in rendezvous with each UUV,
and doing so in any order as each terminates their data sampling
operation without waiting for the other UUVs. In contrast, the ex-
ample program waits for completion of the data sampling step in all
UUVs, before executing the three rendezvous in a strict order. For
this goal, refined synchronisation constructs from fork-join based
programming languages can be particularly relevant [3, 4, 10]. We
are also interested in extensions for supporting vehicle “teams” and
associated dynamics [17, 18].

In a second line of work, NVL programs can potentially be anal-
ysed formally in respect to timing constraints, resource (vehicle)
requirements and allocation, and environmental constraints. The
following general problem of feasibility may be stated: can pro-
gram P accomplish its tasks in ¢ time with a vehicle set V' under
constraints C' ? In relation, we are interested in establishing design
contracts [5] for programs and their formal verification.

Finally, we are considering a tighter integration with the LSTS
toolchain, including the development of a Neptus NVL plugin, and
using NVL as a backend language for deliberative planning [16].
For these purposes, the language also needs to contemplate aspects

334

like fine-grained error handling, human operator inputs, and more
programmer-friendly language constructs.

6. REFERENCES

[1] J. Bellingham and K. Rajan. Robotics in remote and hostile
environments. Science, 318(5853):1098-1102, 2007.

L. Bettini. Implementing Domain-Specific Languages with
Xtext and Xtend. Packt Publishing, 2014.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An
Object-oriented Approach to Non-uniform Cluster
Computing. In Proc. OOPSLA. ACM, 2005.

T. Cogumbreiro, F. Martins, and V. T. Vasconcelos.
Coordinating phased activities while maintaining progress.
In Proc. COORDINATION. Springer, 2013.

P. Derler, E. Lee, S. Tripakis, and M. Torngren.
Cyber-physical system design contracts. In Proc. ICCCPS.
ACM, 2013.

M. Dunbabin and L. Marques. Robots for environmental
monitoring: Significant advancements and applications.
IEEE Robotics Automation Magazine, 19(1):24-39, 2012.

J. Eidson, E. Lee, S. Matic, S. Seshia, and J. Zou. Distributed
Real-Time Software for Cyber—Physical Systems. Proc.
IEEE, 100(1):45-59, 2012.

M. Faria, J. Pinto, F. Py, J. Fortuna, H. Dias, R. Martins,

F. Leira, T. Johansen, J. Sousa, and K. Rajan. Coordinating
UAVs and AUVs for Oceanographic Field Experiments:
Challenges and Lessons Learned. In Proc. ICRA, 2014.

T. Henzinger, C. Kirsch, E. Marques, and A. Sokolova.
Distributed, modular HTL. In Proc. RTSS. IEEE CS, 2009.
S. Imam and V. Sarkar. Habanero-Java Library: A Java 8
Framework for Multicore Programming. In Proc. PPPJ.
ACM, 2014.

A. Isern and H. Clark. The Ocean Observatories Initiative: A
continued presence for interactive ocean research. Marine
Technology Society Journal, 37(3):26-41, 2003.

J. Love, J. Jariyasunant, E. Pereira, M. Zennaro, K. Hedrick,
C. Kirsch, and R. Sengupta. CSL: A Language to Specify
and Re-Specify Mobile Sensor Network Behaviors. In Proc.
RTAS. IEEE, 2014.

L. Madureira, A. Sousa, J. Braga, P. Calado, P. Dias,

R. Martins, J. Pinto, and J. Sousa. The Light Autonomous
Underwater Vehicle: Evolutions and networking. In Proc.
Oceans. IEEE, 2013.

E. Pereira, C. Kirsch, R.Sengupta, and J. Sousa. BigActors -
A Model for Structure-aware Computation. In Proc. ICCPS.
ACM, 2013.

C. Petrioli, R. Petroccia, J. Potter, and D. Spaccini. The
SUNSET framework for simulation, emulation and at-sea
testing of underwater wireless sensor networks. Ad Hoc
Networks and Physical Communication, 2014.

J. Pinto, P. Dias, R. Martins, J. Fortuna, E. Marques, and

J. Sousa. The LSTS Toolchain for Networked Vehicle
Systems. In Proc. Oceans. IEEE, 2013.

H. Shabhir, U. Glisser, R. Farahbod, P. Jackson, and H. Wehn.
Generating test cases for marine safety and security
scenarios: a composition framework. Security Informatics,
1(1):1-21, 2012.

J. Sousa, T. Simsek, and P. Varaiya. Task planning and
execution for UAV teams. In Proc. CDC. IEEE, 2004.

2

—

3

[

(4]

[5

—

(6]

[7

—

(8

—_—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

