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Abstract

Indoor Positioning Systems (IPSs) are essential for applications requiring accurate location
awareness in indoor environments. However, achieving high precision remains challenging
due to signal interference and environmental variability. This study proposes a multimodal
IPS that integrates Bluetooth Received Signal Strength Indicator (RSSI) measurements and
video imagery using machine learning (ML) and ensemble learning techniques. The system
was implemented and deployed in the Hall of Biodiversity at the Natural History and
Science Museum of the University of Porto. The venue presented significant deployment
issues, namely restrictions on beacon placement and lighting conditions. We trained
independent ML models on RSSI and video datasets, and combined them through ensemble
learning methods. The experimental results from test scenarios, which included simulated
visitor trajectories, showed that ensemble models consistently outperformed the RSSI-based
and video-based models. These findings demonstrate that the use of multimodal data
can significantly improve IPS accuracy despite constraints such as multipath interference,
low lighting, and limited beacon infrastructure. Overall, they highlight the potential of
multimodal data for deployments in complex indoor environments.

Keywords: indoor positioning system; machine learning; ensemble learning; multimodal
data

1. Introduction

Indoor Positioning Systems (IPSs) aim to determine the positions of people or objects
inside buildings. They have numerous applications in the management and safety of
residential, commercial, and industrial infrastructures. Current IPS implementations use a
variety of technologies, including Inertial Measurement Units (IMUs), Radio-Frequency
Identification (RFID), Near-Field Communication (NFC), Wi-Fi, Bluetooth, UWB, Visible
Light Communication (VLC), and cameras, complemented by algorithms that estimate
positions from the hardware-generated data [1,2]. Recently, there has been considerable
interest in using multimodal data and machine learning (ML) techniques to process sensor
data and produce models that serve as the core components of an IPS [3-5].

Here, we present a proof of concept for an Indoor Location-Based System (ILBS)
developed for the Hall of Biodiversity (hereafter, the Hall), shown in Figure 1, part of the
Natural History and Science Museum of the University of Porto (https://mhnc.up.pt/
galeria-da-biodiversidade/, accessed on 18 July 2025). The system is designed to accurately
predict visitors’ locations and suggest additional experiences such as videos, augmented
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reality, games, or targeted content for the museum store. ILBS aims to predict the region
of interest (ROI) where a visitor is located, a room in the museum, or a subsection of a
room, using RSSI signals from Bluetooth beacons and video feeds, with both types of data
captured using smartphones as users roam the museum space. The building where the
Hall is located is an architectural landmark of the city. Therefore, the IPS that supported the
ILBS was designed to be non-intrusive, easy to deploy, and low-cost. The setup includes
a mesh of Bluetooth beacons deployed in the rooms on the first floor of the building.
These are managed through a software platform that processes beacon telemetry and
enables bidirectional communication. This was an evolution of previous work, in which

we utilized the Hall and its gardens—the Botanical Garden of the University of Porto—as a
test bench [6-8].

Figure 1. Panoramic view of the atrium at the Hall of Biodiversity. Credits: Ecsite/Ciéncia
Viva/MHNC-UP. Courtesy of the Natural History and Science Museum of the University of Porto.

In this setting, we used a prototype mobile application to register the Received Signal
Strength Indicator (RSSI) data from the Bluetooth beacons. The application also recorded
video data, from which frames were later extracted. The RSSI and video data were anno-
tated with the ground truth ROI labels, the required granularity for the ILBS. The data
were collected by visiting the premises and walking around the rooms in predefined pat-
terns to acquire sufficient RSSI and image data for each ROL The raw data were stored
on the device’s local disk and later transferred to cloud storage for further processing and
construction of the datasets.

We extend preliminary work [9] by using the scikit-learn toolkit to derive several
ML models (AdaBoost, Decision Tree, Gradient Boost, k-Nearest Neighbors, Linear SVM,
Multi-layer Perceptron, Random Forest, and Radial Basis Function) for the RSSI dataset.
For video data, we employ transfer learning to derive deep learning models from the image
dataset, based on state-of-the-art pre-trained TensorFlow CNN architectures. Finally, we
combined the best RSSI and CNN models using ensemble techniques.

This paper presents the complete process—f{rom beacon deployment and data collec-
tion to dataset construction, model derivation, and evaluation. The main contributions of
this paper can thus be summarized as follows:

1. The RSSI and video datasets;

2 ML models based on RSSI data;

3. ML models based on video data and using transfer learning;

4. Hybrid ML models combining RSSI and video models using ensembles;



Sensors 2025, 25, 6640

30f23

5. A comprehensive evaluation of all models;

o

The datasets and Python notebooks used in the analysis [10];

7. A demonstration that the use of multimodal data improves the accuracy of positioning
models in contexts where control of the environment and deployment strategies are
significantly constrained.

The remainder of the paper is structured as follows. Section 2 describes the current
state of the art in IPS, focusing on ML techniques. Section 3 details our materials and meth-
ods concerning the deployment of the Bluetooth beacon mesh at the Hall, the construction
of the RSSI and video datasets, and finally the generation of the models from the datasets
using scikit-learn and TensorFlow. Section 4 presents the results obtained with the ML
models for the RSSI, video, and hybrid models. Finally, Section 5 discusses the main results
and suggests some directions for future research.

2. Related Work

The field of Indoor Positioning Systems (IPSs) has experienced significant advance-
ments over the past 20 years, driven by the increasing demand for accurate indoor nav-
igation solutions across various areas [1,2]. This progress is the result of technological
developments at both the hardware and software levels. Most early systems were based
on Radio-Frequency Identification (RFID) for tracking resources in indoor environments.
Inertial Measurement Units (IMUs), typically employed in the context of Dead—Reckoning
methods, were also used. Later systems progressively used existing Wi-Fi infrastructures
to determine location by employing RSSI and trilateration techniques. Other systems
relied on application-specific infrastructures, such as Bluetooth Low Energy (BLE) and
Ultra-Wideband (UWB), to improve accuracy. Some of these IPSs use Time-of-Flight (ToF)
techniques to achieve centimeter-level accuracy [11]. A key milestone in the field was the
realization that multimodal sensor fusion techniques, which combine data from different
sensors (e.g., Bluetooth RSSI and video from CCTV or smartphones) [12,13], can further
refine accuracy. The introduction of video as an extra input then led to the application of
existing computer vision techniques to IPS. Another major research milestone was demon-
strating the positive impact of machine learning techniques (e.g., k-Nearest Neighbors
(kNN), Random Forests, neural networks) and, more recently, deep learning, on the devel-
opment of accurate IPSs [3,4,14]. In this context, machine learning is combined with existing
hardware technologies such as Wi-Fi [15-19], Bluetooth [20,21], UWB [22,23], Visible Light
Communication (VLC) [24], video [25,26], or multimodal combinations of these. Lately,
machine learning techniques such as attention-based mechanisms and multimodal learning
have also been shown to be effective for use in IPSs [27-30].

Closer to our case study, the literature provides examples of IPSs designed for muse-
ums. Koniusz et al. [31] present an artwork identification system based on a CNN-derived
model. The model was trained with a dataset composed of images of different art pieces.
Each piece identified by the model implicitly provides the application with the user’s
position. Majd and Shafabakhsh [32] demonstrate how ML-derived indoor positions can
positively impact visitor experience, e.g., by providing automatic guide methods. Girolami,
La Rosa, and Barsocchi [33] built a dataset based on RSSI collected during 32 museum
visits of 10 artworks with different smartphones and visiting paths. The same authors [34]
present two proximity detection algorithms calibrated using data crowd-sourced from the
mobile phones of museum visitors. The devices gather RSSI readings from Bluetooth tags
and relay them to a back-end server, where the data is used to calibrate the algorithms.
The authors note the clear improvement in positioning accuracy using this crowd-sourcing
architecture. Ferrat et al. [35] create a dataset spanning 90 objects distributed over 13 rooms
in a museum. The dataset is based on RSSI measurements with no multimodal data. Asso-
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ciated with the dataset, they also provide proximity- and kNN-based models for position
prediction.

While there are several important contributions to developing IPSs for real-world
applications in the literature, many assume freedom to control environmental variables (e.g.,
lighting) and to deploy infrastructure at will (e.g., Bluetooth beacons). This is hardly the
case with many museum installations, such as the one we present. Given these constraints,
we demonstrate that using multimodal data, such as that gathered from visitors” ubiquitous
mobile phones, can help improve the accuracy of positioning models. Moreover, as can be
verified from recent work [33,35], the field lacks datasets based on real-world scenarios that
can be used to develop and test positioning algorithms and IPSs. This work contributes
to this effort by building and providing a new multimodal dataset based on the Hall of
Biodiversity, along with all associated processing scripts.

3. Materials and Methods

We now describe the deployment of the Bluetooth beacon mesh at the Hall, the
construction of the RSSI and video datasets, and finally the generation of the models from
the datasets using scikit-learn and TensorFlow.

RSSI (Received Signal Strength Indicator) is a measure of the quality of the received
radio signal by a device. RSSI measurements are obtained by radio transceivers whenever
they scan the medium for other devices. In the context of Bluetooth, RSSI values are
measured in decibels (dBm) on a logarithmic scale. Values typically range from 0 (strong
signal) down to a protocol-defined minimum (weak or undetectable signal). The RSSI for a
device is affected not only by the distance to the receiver but also, and—most importantly—
by the phenomenon of multipath propagation; that is, the possibility that a radio signal
may reach the receiver by following two or more paths. Inside buildings, radio signal
propagation is influenced by walls and objects. These reflect, refract, or diffract radio
waves in varying amounts, distorting signals and enabling multipath propagation. Signals
following different paths can interfere destructively, negatively impacting RSSL

3.1. Beacon Deployment

The first step towards building the RSSI and video frame datasets involved planning
and deploying the Bluetooth beacon infrastructure. The following prerequisites guided the
choice of hardware:

e Using low-cost, off-the-shelf devices;

e Using well-established protocols such as Eddystone or iBeacon;
e Compatibility with most mobile devices;

. Low maintenance;

*  Long battery life.

The setting for the experiments was the first floor of the Hall. The floor has an area of
30 m x 30 m (900 m?), divided into 15 rooms (plus stairs and elevator) of various sizes and
a central open area we call the atrium (c.f. Figure 2). The smallest rooms (SN and DC in
Figure 2) measure 3.6 m x 7.3 m, while the largest (DF in Figure 2) spans 7.3 m x 12.5 m.
The atrium is the main contributor to the total area, measuring 14.6 m x 14.6 m. Each of the
rooms contains installations designed to provide innovative sensorial experiences while
simultaneously conveying information on biodiversity and evolution. We installed beacons
in 13 of these Regions of Interest (ROIs). The central atrium is the largest space and was
further subdivided into 8 different ROIs, for a total of 21 ROIs. We used 27 out of 31 installed
beacons (4 malfunctioned during the experiments) from three different manufacturers:
Gimbal, Estimote, and Nordic, using either Google’s Eddystone Bluetooth or Apple’s
iBeacon protocols. Figure 2 shows the floor layout and the Bluetooth beacons’ positions.
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The figure also shows the ROI labels used in the datasets to identify the corresponding
areas on the floor.
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Figure 2. Beacon deployment and ROIs on the first floor of the Hall. Each ROI has a theme and
is named accordingly. Their names are as follows: A3—What'’s that smell?; A6—Ethical Principle;
Al—Dilution as a show; A5—Diversity of Sizes; A2—Scientific principle; A7—Spherical egg, ovoid
egg; A8—Aesthetic principle; A4—Economic principle; AH—Analogy and homology; CN—To eat
and not be eaten; DC—Diversity of colors; DF—Diversity of shapes; DG—Genetic diversity versus
uncertainty; ES—Speciation; G—Biodiversity that speaks portuguese; H—Entrance; SA—Artifical
selection; SN—Natural selection; SS—Sexual selection; TS—Theatre of senses; TMA—DBy land, sea,
and air. The odd-looking object in the center of the atrium is a complete whale skeleton suspended
from the ceiling, spanning the ground and first floors.

Figure 3 shows the beacons used (a) and deployment details (b). To improve the SNR
of the RSSI data, we developed a partially shielded capsule to enclose the beacons so that
the native isotropic signal was made more directional. These capsules had the additional
goal of making the beacons inconspicuous. Figure 3b shows a Nordic beacon in a prototype
capsule made from cardboard—a definitive version could use 3D-printed plastic—and the
Raspberry Pi-based telemetry gateway and beacon capsules deployed over doors between
rooms in the Hall.

The deployment architecture (Figure 4) comprises a backend server (at our depart-
ment) that hosts management software, including a web interface for administration and
monitoring, and (at the Hall of Biodiversity) Bluetooth beacons, a telemetry gateway, mo-
bile devices, and a local server that feeds extra content to the mobile devices based on
their positions.

The physical deployment of the beacons presented some challenges due to the build-
ing’s nature; in addition to having restricted access to electrical outlets, the Hall building
is classified as being of architectural and cultural interest. Therefore, beacons had to be
installed so that they were nearly invisible. The rooms also have high ceilings, so that,
on average, beacons were positioned in high places, e.g., over passages between rooms,
resulting in lower RSSI values. On the positive side, this placement reduced interference
from visitors and museum installations.

The backend server maintained a map of the beacon deployment in an internal
database. The map associates beacons with specific ROIs in the Hall and allows for the
seamless addition of new beacons or the removal of malfunctioning or redundant ones.
Physically, the server was installed on a remote virtual machine with 4 GB of RAM and
2 CPUs running Linux, and was connected to the telemetry gateway located in the Hall
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building. From there, it received real-time data from the beacons (e.g., battery charge,
microcontroller temperature), allowing an administrator to monitor deployment status and
send commands to the beacons using a graphical interface, as depicted in Figure 5.

(b)

Figure 3. Beacons, capsules, and deployment. (a) Qualcomm, Estimote, and Nordic beacons. (b) A
beacon capsule, the telemetry gateway, and beacon placement.
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Figure 5. A snapshot of the ILBS’s administrative interface.
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3.2. Datasets

We describe the data acquisition process and the construction of the datasets for
BLE RSSI (hereafter BRSSI) and video data. Data collection was conducted in accordance
with the museum’s guidelines and respecting the building’s historical and architectural
classification. In addition to the beacon positioning restrictions already mentioned in
Section 3.1, the lighting in each ROI was adapted for the installations therein and remained
constant throughout the day; some ROIs had bright light, while others had a penumbral
ambiance. It was not possible to collect data under varying lighting conditions. Moreover,
data gathering could only be performed during periods when the Hall had no visitors to
minimize disruption (typically after closing time).

3.2.1. Data Acquisition

The data acquisition was performed using a custom smartphone app written in
Kotlin and running on the Android operating system, developed with Android Studio.
The app is capable of recording video frames and BRSSI measurements simultaneously.
All BRSSI measurements were recorded (no sampling took place), while the video was
captured at 30 frames per second. For each recording session, two files were written
to disk: (1) an MP4 format file containing the recorded video frames, and (2) a CSV
file containing BRSSI measurements over the same period with records of the form:
[timestamp, beacon-id, brssi]. Using the two files after data acquisition, we cross-
referenced video frames and BRSSI measurements within the same time frame, i.e., by
aligning timestamped BRSSI measurements with the corresponding video frame.

We performed two types of data acquisition using two smartphones: a Google Pixel
4 and a Xiaomi Redmi 9T. We first acquired data in individual ROIs for model training,
consisting of circular movements around each ROI lasting approximately 2 min. The
purpose was to define a base dataset used for training and a base test set. Every room and
installation therein was carefully recorded on video. We also acquired data spanning all
ROIs with a walking pattern simulating more realistic visits to the Hall. This spiral-like
pattern is illustrated in Figure 6. First, the lateral rooms were traversed starting from SS
and ending in H, followed by the atrium areas from Al to A8. Unlike the base test dataset,
there was no fixed pattern of movement within each ROI, and no attempt was made to
record every installation on video. Two independent test sets were defined, one walk per
device model.
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Figure 6. The ROI traversal pattern used for simulated visitor walks.
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3.2.2. Dataset Construction

To build the datasets, we first conducted a pre-processing step on the acquired raw
data. RSSI and video data were first annotated with the ground truth ROI labels, which
are the required granularity for the ILBS. For the video data, we then picked one frame
per second of recording. For the same 1 s time window and for each beacon detected, we
averaged all corresponding BRSSI values. Beacons not detected during these 1-s periods
were assigned a BRSSI default value of —200 dBm, a value well below the standard range
of BRSSI measurements, typically between —30 and —120 dBm. Beyond this scheme of
averaging RSSI values over 1-s periods and default value assignments for absent beacon
signals, no other type of feature engineering was employed.

The resulting distilled data provided our training and test datasets. First, the data for
individual ROI defined two different datasets, the base training set (TR) and the base test
set (TS), with an 80-20% train—test split. As for the data from the walks, they were divided
into two test sets according to the device used: Google Pixel (PW) and Xiaomi Redmi (RW).

The characteristics of these datasets are summarized in Table 1. For each dataset, the
time span of the data acquisition is indicated, along with the number of data items. Note
that the time span is the same for TR and TS, since both are splits of the same base dataset.

Table 1. Datasets considered for model training and testing.

Id Description Time-Span (min:s) #Items
TR Base training data 94:12 4710
TS Base test data 94:12 942
PW Walk data (from Google Pixel) 6:04 364
RW Walk data (from Xiaomi Redmi) 7:22 445
3.3. Models

Using the datasets mentioned above, we derived three types of models using BRSSI
readings and/or video frames: (1) models trained only with BRSSI data, using the scikit-
learn API [36] and standard classification approaches; (2) CNN models trained with video
frames, using the TensorFlow API [37] and a CNN transfer learning approach, and (3) hy-
brid models that combined the outputs of BRSSI and CNN models using ensemble meth-
ods [38].

3.3.1. BRSSI Models

For the BRSSI models, we considered several types of established classifier models and
their corresponding core parameters available through the scikit-learn API. The models are
listed in Table 2. The set of models considered includes some of the most common types for
classification and regression tasks in the scikit-learn API. The various classifier types may
capture different traits in the data, for details see [39]. For instance, tree-based ensembles
(AdaBoost, Decision Trees, Gradient Boost, Random Forests) are good at modeling non-
linear relationships and interactions, SVM-based methods (linear and RBF SVM) can handle
high-dimensional state spaces but may have issues handling non-linear relationships, and
the other models (kNN and multi-layer perceptrons) are well-suited to capture complex
patterns. At this stage, we aim to identify which model types may be more adequate
for the problem at stake without prior assumptions on or analysis of the data, seeking to
establish baseline results. A grid-search is performed for each model type, using different
values for the core parameters. The parameters are also listed in Table 2, and the values
can be found in our supplementary material [10] (see the BRSSI_train.ipynb notebook).
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Grid-search exhaustively combines values for all search parameters, looking for the best

possible model.

Table 2. BRSSI model types and parameters considered during grid-search.

Model

Grid-Search Parameters

AdaBoost

number of estimators (n_estimators), learning
rate (Learning_rate)

Decision Tree

max. features for node split consideration
(max_features), min. samples for node split
(min_samples_split)

Gradient Boost

number of estimators (n_estimators), learning
rate (Learning_rate)

K-Nearest Neighbors (kNN)

number of neighbors (n_neighbors), weight
function used in prediction (weights), algorithm
used to compute the nearest neighbors
(algorithm).

Linear SVM

regularization parameter (C), max. iterations
(max_iter)

Multi-layer Perceptron (MLP)

number of layers and per-layer configuration
(hidden_layer_sizes), L2 regularization term
(alpha)

Random Forest

number of estimators (n_estimators), max. tree
depth (max_depth)

Radial Basis Function (RBF) SVM

regularization parameter (C), max. iterations
(max_iter)

The overall grid-search process is illustrated in Figure 7. For each parameter value

combination, a 4-fold cross-validation strategy is used to measure accuracy, i.e., the data is

partitioned into 4 equal splits, such that a different model was derived using 3 of the splits

as proper training data and the remaining split was used as test data to evaluate accuracy

(as illustrated also in the notebook). The average accuracy of the 4 splits is used as the

overall score for the parameter combination at stake. For instance, in the case of Random

Forest, we derived 24 = 4 x 2 x 3 different models accounting for 4 splits, 2 grid-search

parameters, and 3 values for each grid-search parameter. The best-performing model for

each classifier type is chosen using this grid-search process. Each derived model takes a

vector of 27 BRSSI measurements (one from each beacon in the venue) and outputs a vector

of 21 probabilities (one for each ROI in the venue).

0. rss
training data

4-fold
split

parameter
grid

% 4
rid —p Dbest-performing l BRSSI output
sgarch ‘ eea}tn model [T1°I] probabilities

values
(27x1)

@1x 1)

Figure 7. BRSSI models derived with scikit-learn.
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3.3.2. CNN Models

For models that process video frames, we employ convolutional neural networks
(CNNs). CNNs are a widely used class of neural networks, particularly effective for
image recognition and related tasks. As an illustrative example, consider fragments of the
MobileNetV1 architecture [40] shown in Figure 8, one of the models we use, as described
further below. The figure displays three fragments of the CNN: the input/initial layers
(a), intermediate layers (b), and final /output layers (c). Each box represents a neuron type
within the CNN, functioning as a mapping from an input tensor (a multi-dimensional
array) to an output tensor. These functions are parameterized by internal weights, which
are iteratively optimized through backpropagation during training. A defining feature of
CNN:s is their use of convolutional functions, which are very effective for capturing image
patterns such as edges. In the simplest case—convolutions over 2D matrices—each element
of the output (the feature map) is computed as the dot product between a sliding input
window and a filter determined by the neuron’s weights. In later stages, CNNs typically
produce a compact feature vector, which is passed to the final output layer through fully
connected weights, as shown in (c). The output layer is an array of probabilities assigned
to each label of the training domain (one value per label). For further details, see Chapter 9
of [41].

For the derivation of CNN models, we resort to transfer learning instead of the
standard CNN training process from scratch. In this approach, a pre-trained CNN is reused
in a different domain by replacing only the final output layer with a new one specific to
that domain. This is illustrated in Figure 9. If the CNN has been pre-trained on a large
and general dataset, it will capture generic features encoded in a feature vector, a level
above the output layer. The feature vector often captures generic representations that can
adapt to new domains. Only the weights of the fully connected interconnection between
the feature vector layer and the domain-specific output layer need training, resulting in a
small computation time; all other layers and corresponding interconnection weights are
frozen. In a variation known as fine-tuning, which we did not employ, the remaining CNN
layers can also be adjusted.

Conv2D

Reshape
224x224x3 filter (64x1x1x32)
bias (64) shape (2)
Relu6
B=2 112x112x64
FullyConnected
224x224x3 DepthwiseConv2D v
weights (1x3x3x64) weights (21x1024)
bias (64) bias (21)
B=1 Relu6
21
224x224x3 56x56x64

21

Conv2D Conv2D

filter (128x1x1x64)
bias (128)
Relu6
label probabilities
112x112x32 56x56x128

(a) (b) (c)
Figure 8. Layers of the MobileNetV1 CNN (fragments). (a) Initial (including input layer). (b) Inter-
mediate. (c) Final (including output layer).

filter (32x3x3x3)
bias (32)

Relué
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Figure 9. CNN models trained using transfer learning.

For our models, we consider transfer learning based on trained instances of some of
the most popular state-of-the-art CNN architectures, listed in Table 3. For homogeneity,
all CNNs obey the following conditions: all were obtained from Google’s Kaggle repos-
itory [42]; all were pre-trained on the ImageNet ILSVRC-2012 dataset [43]; and all have
a 224 x 224 x 3 input shape dimension. Images are resized to a size of 224 x 224 and the
third dimension relates to the Red—Green—Blue RGB color values for each image pixel. As
shown in Table 3, these CNNss differ in their internal architecture (e.g., depth, layer types)
and in the size of their feature vectors (i.e., number of features captured by the model). The
transfer learning process was programmed using the TensorFlow Keras AP], as defined in
the CNN_Train. ipynb notebook of the supplementary material [10]. We follow a standard
programming recipe for transfer learning using the TensorFlow API (cf. [44]). Essentially,
a pre-trained CNN is loaded without its output layer, and a new output layer is defined
with a shape that accounts for the new domain at stake (there are 21 ROIs in our case), and
(only) the weights between the feature vector and new output vector are trained (all others
are frozen/reused). This basic strategy is refined in our case by a dropout layer between
the feature vector and output layer to prevent overfitting, as also shown in Figure 9. This
is a standard technique by which a fraction of the weights is randomly disabled during
training. All CNNs were retrained for 25 epochs, and a dropout factor of 0.2 was used.

Table 3. Architectures considered for CNN models using transfer learning (T: number of tensors;
FV: feature vector dimension; P: total CNN parameters, including pre-trained parameters, in millions).

Model T FV P
InceptionV1 86 1024 5.6
InceptionV2 100 1024 10.1
MobileNetV1 34 1024 3.2
MobileNetV2 69 1280 23
MobileNetV3 113 1024 1.5
NasNet Mobile 568 1056 43
ResNetV1 84 2048 23.5
ResNetV2 118 2048 23.6

3.3.3. Hybrid Models

We consider hybrid models that receive BRSSI measurements and camera images
using ensemble methods [38,45]. These combine the outputs of the BRSSI and CNN models,
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as illustrated in Figure 10. Specifically, for simultaneous BRSSI and image data, we first feed
each type of data to one of the BRSSI models and one of the CNN models. The two outputs
obtained, each a probability score for the museum room labels, are fed to the hybrid model
to produce a new probability score. In summary, using the notation in the figure, given
BRSSI values vp and image data v¢, the output of a hybrid model H is H(B(vg), C(vc)),
where B and C are the BRSSI and CNN models, respectively. We considered two approaches
to implement H: (1) soft voting, which works by simply averaging the outputs of the BRSSI
and CNN models, i.e., the outputs are combined with equal weights of 0.5, and (2) stacking,
which trains a meta-model using the outputs of the BRSSI and CNN models. For the
latter approach, we considered meta-models using three approaches: logistic regression,
which tends to be simple and efficient but may not capture non-linear relationships among
the base model outputs; K-nearest neighbors, which may capture structural relationships
among the base model predictions; and Random Forest, which may capture non-linear
relationships between the base model predictions.

—
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RssI [ v Y%

sampled image

values 224 x224x 3
(27x1) v v ( X x3)
BRSSI| B C| CNN
model model
BRSSI output -— CNN output
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@1x1) H @1x1)
hybrid
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output l
probabilities (1111
@1 x1)

Figure 10. Synthesis of a hybrid model from the BRSSI and CNN models.

4. Results

In this section, we present the results obtained for the BRSSI, CNN, and hybrid models.
The metric used for performance analysis is accuracy, defined as the fraction of correct
predictions output by a model:

accuracy = TP + TN
Y = TP+ IN<+FP+EN

where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false
negatives, respectively. A prediction for a given input data is the label with the highest
output score returned by the model, and is correct if it matches the ground truth associated
with that data item. Beyond these baseline results, we also analyze the behavior of the mod-
els as a function of the ROIs and the devices used for capturing data. The former analyzes
the sensitivity of BRSSI models in the presence of multipath signals and Bluetooth coverage,
and of CNN models in open areas, where multiple installations may be visible and induce
confusion. The latter highlights the impact of device-specific technology, such as transduc-
ers and photographic sensors, on the performance of the models. Finally, we also report on
the models’ footprint in terms of disk storage and prediction latency, providing insight into
their computational requirements for future use in concrete application deployments.
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4.1. BRSSI Model Results

Accuracy results for the BRSSI models over the test datasets are shown in Figure 11. We
first observe that, except for AdaBoost, the accuracy for TS is consistently higher than for the
RW and PW walk datasets. This is unsurprising since TS data corresponds to data acquired
under the same conditions as the model training data, which is not the case for PW and RW
(cf. Section 3.2). Moreover, comparing PW and RW, the accuracy for PW is always higher,
with a very significant difference except in the case of the GradientBoost and RandomForest
models, where this difference is only of 0.03 (0.79 vs. 0.76 for GradientBoost, and 0.85 vs.
0.82 for RandomForest). These two models also yield the best overall performance. Their
accuracy values exceed 0.75 in all cases and reach 0.90 or higher for TS, with RandomForest
outperforming GradientBoost slightly in all datasets. The remaining models tend to have
significantly lower accuracy, ranging from 0.59 to 0.80 for TS, 0.55 to 0.74 for PW, and 0.41
to 0.60 for RW.
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Figure 11. Accuracy of the BRSSI models over the test datasets.

4.2. CNN Model Results

Accuracy results for the CNN models over the test datasets are shown in Figure 12.
Compared to the BRSSI models, the results for the CNN models are more homogeneous,
especially considering each dataset individually. Despite the different CNN network archi-
tectures, the underlying abstractions and model capabilities are similar (cf. Section 3.3.2).
The overall accuracy ranges from 0.83 to 0.91 for TS, 0.62 to 0.68 for PW, and 0.72 to 0.79 for
RW. The best-performing models are MobileNetV1 and MobileNetV3, but only by a small
margin. For all models, the accuracy is highest for TS, as expected and consistent with the
BRSSI models’ results. Interestingly, all models performed better for RW than for PW. This
behavior is exactly the opposite of that of the BRSSI models.



Sensors 2025, 25, 6640

14 of 23

_-----0-88

InceptionV1 4 0.65
0.76

| | _[BJ

InceptionV2 0.62
0.74

A N N N 0 o

MobileNetV1 1 0.67
0.79

|

MobileNetV2 1 0.62
0.75

e

MobileNetV3 1 0.
0.78

| [&¥

NasNetMobile A 0.62
0.72

| &

ResNetV1 A 0.65
0.76

| Ik

ResNetV2 1 0.66

I TS PW RW 0.7y

03 0.4 05 06 07 08 0.9 1.0

Figure 12. Accuracy of the CNN models over the test datasets.

4.3. Hybrid Model Results

Accuracy results for the hybrid models over the test datasets are shown in Figure 13.
The hybrid models are defined using ensemble methods (cf. Section 3.3.2), combining
the RandomForest BRSSI model and the MobileNetV1 CNN model, the best-performing
models for BRSSI and image data, respectively. The accuracy results for these baseline
models are repeated at the bottom of the figure for easy comparison. First, we observe that
the results are quite homogeneous across the hybrid models, with differences in accuracy
across datasets not exceeding 0.05 (the largest being 0.91 vs. 0.86 for RW). Moreover, the
accuracy is at least 0.96 for TS, 0.82 for PW, and 0.86 for RW. Compared to the baseline
BRSSI and CNN models, their hybrid counterparts show clear improvements, except in
the case of PW /BRSSI (baseline accuracy of 0.85), where the accuracy is slightly worse for
RandomForest (0.84) and for SoftVoting (0.82).

To assess the improvement introduced by the hybrid models, we consider a statistical
significance analysis. The analysis code is provided in the HM_SSAnalysis.ipynb of the
supplementary material [10]. First, a Friedman omnibus test is performed, considering
the accuracies of all models over all test datasets in Figure 13. The Friedman test yields a
p-value lower than 0.5 (p = 0.041), indicating there is a statistically significant difference
among models. We then conducted post hoc pairwise Wilcoxon tests and derived the
corresponding critical difference diagram shown in Figure 14. As shown in the diagram,
there is no statistically significant difference between the LogisticRegression, SoftVoting,
and kNN models (they form the cluster indicated by the bottom line connecting them).
Otherwise, there are statistically significant differences between models, i.e., between the
clustered models and all others, and all others pairwise. In particular, and this is a core
aspect, the improvements observed for the hybrid models relative to the singleton BRSSI
and CNN models are statistically significant.
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Figure 13. Accuracy of the hybrid models over the test datasets.
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Figure 14. Critical difference diagram assessing the statistical significance of hybrid models.

4.4. Complementary Results
4.4.1. Model Accuracy vs. Device Type

During the analysis above, we observed significant differences between the results
obtained using data from the two smartphones at hand: the Google Pixel and Xiaomi
Redmi. To study this effect, we derived models using data from each device individually.
For these models, we measured accuracy over the partitions of the base test dataset that
pertain to each device (PTS and RTS), as well as for the walk datasets that are already
device-specific (PW and RW). The derived BRSSI, CNN, and hybrid models are instances
of the best-performing variants reported in previous sections: RandomForest for BRSSI,
MobileNetV1 for CNN, and LogisticRegression for hybrid. Figure 15 shows the results for
the three test datasets, as in previous sections, but also for the Pixel TS (PTS) and Redmi
TS (RTS) partitions of the base test set (TS). In each plot, the accuracy of three models for
all datasets is shown: (top) for the model created with both Pixel and Redmi training data;
(middle) a model created using Pixel data only; and (bottom) a model created using Redmi
data only.
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Figure 15. Results as a function of device and test datasets. (a) BRSSI models. (b) CNN models.
(c) Hybrid models.

Observing the results for PTS and RTS, the models trained only with Pixel data have
much better accuracy for PTS (the Pixel partition of TS) than for RTS: 0.95 vs. 0.49 for the
BRSSI model (RandomForest_Pixel), 0.92 vs. 0.73 for the CNN model (MobileNetV1_Pixel),
and 0.98 vs. 0.81 for the hybrid model (LogisticRegression_Pixel). A similar situation is
observed for models trained only with Redmi data, where the accuracy is much better
for RTS than PTS: 0.90 vs. 0.62 for the BRSSI model (RandomForest_Redmi), 0.90 vs.
0.71 for the CNN model (MobileNetV1_Redmi), and 0.99 vs. 0.82 for the hybrid model
(LogisticRegression_Redmi).

The observed patterns in the results for the Pixel and Redmi datasets likely stem from
differences in the hardware components, namely, the radios and imaging sensors. To ana-
lyze if this is the case, we conducted an analysis of RSSI and image data, with results shown
in Figure 16; the corresponding code can be found in the BRSSI_DataAnalysis.ipynb and
CNN_DataAnalysis.ipynb notebooks of the supplementary material [10].
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Figure 16. Test data quality indicators as a function of the test dataset. (a) BRSSI data. (b) Image data.

The box plots in Figure 16a (left) examine RSSI data samples in terms of the distribu-
tions of RSSI signal received (top), number of beacons detected per data sample (middle),
and the frequency of individual beacon detection (for each of the 27 beacons) in samples
(bottom). We observe that the Pixel device (PTS and PW datasets) performs worse than the
Redmi device (RTS and RW datasets) when detecting Bluetooth beacons. The detected RSSI
signal strength tends to be lower, whereas the number of beacons detected per sample and
the frequency per individual beacon are visibly lower. The distinct data patterns explain
why BRSSI models created using only Pixel or Redmi data, as illustrated for the BRSSI
models in Figure 15a, perform much worse on data originating from the other device.

Regarding the image data feeding the CNN models, Figure 16b (right) presents the
distribution of values regarding image exposure (top), noise (middle), and sharpness
(bottom). The results show that images acquired with the Pixel device (PTS and PW
datasets) tend to have longer exposures, less noise, and better sharpness when compared
to those from the Redmi device (RTS and RW datasets). The Pixel 4’s camera, unlike the
Redmi’s, features built-in optical image stabilization, which enables longer exposures to be
taken, especially with a moving device, resulting in crisper and cleaner (less noisy) images.
CNN-based image classification algorithms are known to be sensitive to noise levels in
the training and input images [46,47]. Thus, as in the BRSSI models, CNN models created
using only Pixel or Redmi data will tend to perform worse over data originating from the
other device, as illustrated in Figure 15b.
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4.4.2. Model Accuracy vs. Location in the Hall

We now measure the accuracy of the models in the ROIs we defined. For each of
the datasets in Figure 17, we consider two cases: the atrium ROIs vs. other (non-atrium)
ROIs. Recall that (cf. Figure 2) the A1-A8 ROIs are co-located in a large atrium room,
while the other ROIs are each located in their own rooms. In the absence of obstacles, the
accuracy of the atrium ROIs may thus be affected by similarities in Bluetooth RSSI signals
and background /foreground objects captured in video. Indeed, we find that the accuracy
is lower in the atrium ROIs for all datasets in the BRSSI and hybrid models (Figure 17a and
Figure 17c, respectively). As for the CNN model (Figure 17b), the results are less clear-cut:
the accuracy is higher for the atrium labels for the TS and RW datasets, and lower only in
the case of the PW dataset.

atrium ROIls
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03 0.4 05 06 07 08 09 1.0
[ PW RW
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03 0.4 05 06 07 08 09 1.0
[ PW RW

(b)
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()
Figure 17. Results for atrium and non-atrium ROIs. (a) BRSSI (RandomForest). (b) CNN model
(MobileNetV1). (c) Hybrid model (LogisticRegression).

Figure 18 shows the confusion matrices for each model-dataset combination. For each
matrix, the x-axis indicates the predicted ROI, the y-axis indicates the ground truth ROI,
and the diagonal square for each ROI indicates the fraction of correctly classified items. For
the TS dataset (confusion matrices shown in the left column), the performance is relatively
uniform with only slight dispersion from the diagonal.
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Figure 18. Confusion matrices for model/test-dataset combinations. (Top row): BRSSI model,
(middle row): video model, and (bottom row): hybrid model. Boxes: (1) atrium labels, (2) non-atrium
labels, and (3) CN ROI.

For the PW dataset (middle column), we observe significant confusion in the atrium
labels (box #1). For the BRSSI model (top row, middle matrix), the confusion in the atrium
mostly stems from cells adjacent to the diagonal. These cells correspond to installations
that are in the immediate vicinity of the ground truth. We attribute this to the difficulty of
the BRSSI model in pinpointing the installation at stake, as its neighbors are very close by.
In the case of the video model (middle row, middle matrix), this effect is also seen; however,
confusion also extends to other installations in the atrium. Because the atrium is an open
area, images of installations feature elements in the foreground or background that the
model can identify and sometimes confuse with the ground truth. This confusion is partly
inherited by the hybrid model, which performs slightly worse than the BRSSI model.
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For the RW dataset (right column), while the atrium (box #1) remains problematic, but
to a lesser degree than for PW, there is still some dispersion due to other ROIs (e.g., CN, ES,
SS, TMA—Dbox #2). This dispersion is also visible for the PW dataset using the video model.
For RW, the hybrid model nicely handles these cases and significantly improves accuracy.
The lower performance of the models for the PW and RW datasets compared to TS was
expected, considering the way the datasets were produced, as explained in Section 3.2.1.

Finally, there is some confusion with respect to the ROI CN in the PW test set, as it
is misclassified in images from the atrium (box #3). We checked the video frames for PW
and RW to investigate this anomaly and noticed that, in PW, the door connecting CN to
the atrium was open. Objects from that room were visible in those frames, which caused
the CNN model to misclassify them. This effect was then inherited, but diminished, by the
hybrid model. The anomaly is not detected for RW.

4.4.3. Storage and Latency Footprint

Table 4 presents data on the computational footprint for the RandomForest BRSSI,
MobileNetV1 CNN, and hybrid LogisticRegression models. It lists the disk storage required
by the models in MB, and the prediction latency in milliseconds (ms) per input sample
evaluated over the TS dataset on a Linux machine with two cores and 8 GB of RAM; these
characteristics are an approximation of the characteristics of low-end smartphones found
in the market. In terms of disk space, the RandomForest and MobileNetV1 models have a
non-negligible size, but one that is still perfectly manageable for modern embedded devices
and smartphones (less than 100 MB). Regarding prediction latency, while the values for
RandomForest and LogisticRegression are negligible (<1 ms), the MobileNetV1 model has
a latency of 493 ms. This translates to a data processing frequency of approximately two
images per second, which we consider adequate for future deployment of the models in a
concrete museum setting.

Table 4. Storage and latency footprint.

Model Storage (MB) Latency (ms)
RandomForest (BRSSI) 51.1 <1
MobileNetV1 (CNN) 13.8 493
LogisticRegression (hybrid) <1 <1

5. Conclusions

Using RSSI and video frame datasets, we generated multiple models for an IPS at the
Hall of Biodiversity, a unit of the Museum of Natural History and Science of the University
of Porto. The RSSI data originated from a deployment of Bluetooth beacons on one of the
building’s floors. The video data were obtained using the cameras on mobile phones in the
same locations. Both were collected and timestamped using a custom Android application.
This raw data, after refinement and further processing, resulted in several training and
test datasets that were used to generate the ML models with the help of scikit-learn and
TensorFlow. We then tested the models to determine their predictive power and properties.
The video and the best-performing RSSI models were then combined into an ensemble-
based hybrid model using different fusion strategies. The RSSI dataset, the video dataset,
and the Jupyter notebooks used in training and evaluating the models are available from a
public repository registered at Zenodo [10].

All models provide high accuracy, typically above 0.9 for TS, the base test set, and
0.6-0.9 for PW and RW, the complementary test sets that simulate user walks and are
therefore noisier. We observe clear differences in model accuracy originating from the
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Bluetooth and video data collected by the two devices. Our analysis reveals that this is due
to variations in the hardware components, specifically the radios and cameras, resulting
in differing patterns in the data used to derive models. Moreover, the results confirm the
atrium as the most problematic space in the Hall for both the RSSI and video models. To a
lesser degree, other ROIs were identified where one of the models struggles to produce
an accurate prediction due to factors such as multipath propagation and insufficient light-
ing. Overall, we observe that the hybrid models consistently show statistically significant
improvements in accuracy compared to the RSSI and CNN models. This highlights the
benefits of multimodal data integration solutions in venues where there are major restric-
tions on deploying a beacon infrastructure and controlling environmental conditions such
as lighting.

For this work, we were only allowed to gather RSSI and video information when no
visitors were present in the Hall. One important research question concerns the behavior of
the models when the Hall has visitors. Intuitively, their presence will impact radio-signal
propagation and the quality of video taken on the premises. We aim to quantify the effect
of such crowded environments on the accuracy of the models as a function of the number
of visitors and their spatial distribution within the Hall.

Furthermore, we intend to experiment with more advanced state-of-the-art algorithms,
especially using multimodal data. Another concern is to improve the granularity of the
output, so that instead of obtaining the name of the room, we can obtain a definite Cartesian
position inside the Hall. This might be interesting for situations where multiple installations
are located in the same RO, and extra spatial resolution is required. For this, alternative
technologies to Bluetooth, such as Wi-Fi RTT or UWB, might be required. To mitigate
the problems arising from heterogeneous hardware configurations of mobile devices, our
methodology can be improved with techniques for data normalization and the use of
more devices as sources of training data. Finally, we consider the use of these models
in a future museum smartphone app. For this purpose, our results demonstrate that the
models require modest storage space and exhibit low latencies even in devices with limited
computational capabilities. An app deployment, however, raises other concerns such as
user experience and security.
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