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Abstract
We present Jay, a software framework for offloading applications in hybrid edge
clouds. Jay provides an API, services, and tools that enable mobile applica-
tion developers to implement, instrument, and evaluate offloading applications
using configurable cloud topologies, offloading strategies, and job types. We start
by presenting Jay’s job model and the concrete architecture of the framework.
We then present the programming API with several examples of customiza-
tion. Then, we turn to the description of the internal implementation of Jay
instances and their components. Finally, we describe the Jay Workbench, a tool
that allows the setup, execution, and reproduction of experiments with networks
of hosts with different resource capabilities organized with specific topologies.
The complete source code for the framework and workbench is provided in a
GitHub repository.
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1 INTRODUCTION

With the advent of the smartphone, IT infrastructures were gradually flooded with requests from huge numbers of these
ubiquitous, resource-limited devices. The increase in numbers was staggering, from only a few million in 2008 to 1.06
billion in 2012 and up to more than 6 billion users worldwide in 2021. This number is estimated to grow to more than 7.7
billion by 2026 according to a report by Ericsson.1 This growth in numbers has been accompanied by a remarkable increase
in computational capabilities, storage, communication interfaces, and energy efficiency. Newer models are provided with
special-purpose cores for graphics and for artificial intelligence applications such as speech recognition and computer
vision.

As is usual with new technology, developers pushed the limits of hardware by implementing more and more demand-
ing applications. However, given the processing and battery life limitations of the devices, sometimes local computation
was not an option. Infrastructure clouds came to the rescue and provided the non-local computational and storage
resources required to run more demanding applications and/or to store overwhelming large data volumes produced at
the edge, a technology that became known as mobile cloud computing (MCC).2

With MCC, mobile devices offload applications or jobs therein to remote cloud servers where they are executed and the
results returned. MCC is not without drawbacks, however. When using an infrastructure cloud, a stable, high-bandwidth
Internet link is usually required. Also, geography implies that communication latency may be considerable and this may

Abbreviations: CO, computation offloading; EC, edge computing; HEC, hybrid edge clouds; MEC, mobile edge clouds.
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not be acceptable for some applications. Events such as a super bowl can lead to tremendous pressure on the network
and cloud infrastructure due to the enormous number of simultaneous users connecting to the cloud simultaneously
using the same network infrastructure.3 This saturation leads to a marked decrease in QoS. And then there is also the
cost associated with renting a cloud server, a value that can easily reach hundreds of dollars a month for an average VM.
Most cloud providers do not provide a fixed price. They usually charge cloud server owners per data usage, computing
usage, data storage, and other features.

In order to address these limitations researchers proposed several models to bring computation and data storage closer
to the edge of the Internet, where the data sources are often located. One of the first such proposals was that of Cloudlet
servers.4 Cloudlets are dedicated servers placed right at the edge of the network, allowing for content caching and some
computation. Cloudlet servers vary significantly in their capabilities, ranging from simple single-board computers such as
a Raspberry Pi, which can be used as an excellent caching server at the edge, to full-fledged dedicated servers that perform
demanding computations. Cloud servers are still present in most of these models and more demanding computations can
still be offloaded to this infrastructure.

More recently, taking into account the extreme mobility and possible lack of Internet connectivity of mobile devices,
proposals to form mobile edge clouds (MEC) have been put forward.5 These clouds are formed by mobile devices, using
D2D communication technologies, such as Bluetooth or Wi-Fi Direct. Often MEC are useful for data sharing. Applications
such as Firechat and Bridgefy, for example, make use of MEC for communication in situations where internet access is
cut-off (e.g., in the Hong Kong Protests in 20146,7 and in the Myanmar coup in 20218,9).

A device that is part of an edge cloud can divide a demanding computational job and offload it to neighbour
devices for execution, speeding up its completion and averaging battery impact among the devices. Several systems
have been proposed as proof of concept for such untethered computational platforms. With the rise of the 5G and
IOT, the need for efficient computation offloading is more than ever necessary according to an ETSI 2015 report.10

Pressure is also mounting for handling data at the edge, for example, to preprocess it before sending it to cloud
infrastructures.

To deal with these challenges, mixing MEC, cloudlets and MCC is currently a hot topic of research known as hybrid
cloud computing. Hybrid clouds are networks of heterogeneous devices composed of three network tiers (Figure 1):
infrastructure clouds, cloudlets, and mobile edge devices. The basic idea is that all devices in any of the three tiers can
communicate between themselves and work together most efficiently. While the goal is easy to state, getting there is
another issue. With hybrid clouds, one needs to address a whole new set of issues that arise with these infrastructures.
Hybrid clouds have to weigh the cost/benefit factor of using each tier for a specific operation. Energy consumption,
latency, and computational power are key factors in making decisions on such clouds, for example, job offloading deci-
sions. Another complex aspect of hybrid clouds is resource management and network formation, as the pool of devices

F I G U R E 1 Network Tiers: Cloud, cloudlet, and edge.
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and servers that compose such a cloud can be highly heterogeneous and use different hardware and software technologies
for communication.

In such a complex setting, implementing and testing offloading applications that run over hybrid clouds involves con-
siderable effort from the developer. The strategy used by the application to offload jobs over the tiers should, in principle,
optimize runtime metrics such as total execution time, global energy consumption, and fulfilment of QoS requirements.
To make a decision, a strategy relies on knowledge of observables such as available network bandwidth, the computa-
tional load of devices and servers, and the battery status of devices. This information must be generated at the devices
and servers in the different tiers and disseminated throughout the network to provide each application instance with
a snapshot (albeit incomplete) of the network status. Naturally, experimenting with different strategies to fine-tune the
offloading decisions of the application so that they take the most advantage from the hybrid cloud topology and from
the available computational and storage resources at any given instant would go a long way to produce an efficient
and robust application. Unfortunately, current hybrid cloud systems do not make this testing and fine-tuning easy for
developers.

To address this problem, we designed and developed Jay, a software framework for prototyping and testing offload-
ing applications over hybrid cloud topologies. Jay provides an API and tools that enable developers to implement and
test offloading applications using different hybrid cloud topologies, kinds of jobs, and offloading strategies. In previous
work,11 we used Jay to evaluate distinct offloading strategies in different hybrid cloud configurations for a real-world
machine learning application. The hybrid clouds were based on combinations of Android devices, cloudlet servers, and
Google Cloud servers. Later,12 we used it to introduce energy-aware adaptive offloading of soft real-time jobs in hybrid
clouds.

This article presents Jay in terms of its user API, internal implementation, and support for reproducible experiments.
We begin by revising the main traits of Jay in terms of abstract job model and overall architecture,11,12 then put forward
the following main contributions:

• a description of the extensible Jay API with use case examples;
• an overview of the main aspects of Jay’s implementation, and;
• the Jay Workbench, a companion tool for automated testing through reproducible experiments.

The article is complemented by the open-source code for the Jay framework and Workbench, available via Github.13,14

The remainder of this article is organized as follows. Section 2 presents Jay’s job model followed by the architecture
we adopted for Jay instances to implement the model. Section 3 describes the Jay API with examples. Section 4 describes
the internal implementation of Jay. Section 5 describes the Jay workbench that allows for the specification and testing of
application scenarios. Section 6 gives an overview of the state-of-the-art with a focus on comparing Jay to related systems.
Finally, Section 7 states the final conclusions and puts forward several ideas for future developments in Jay.

2 OVERVIEW OF JAY

2.1 Job model

Jay is a framework for implementing and testing job offloading strategies in hybrid clouds. The job model that constitutes
its foundation can be described as follows. We consider a set of hosts connected over a network. Each host executes soft
real-time jobs that have deadlines, indicating the maximum tolerable completion time for good QoS. The jobs running
on a host may be local, spawned by an application running on the host itself, or offloaded, spawned by an application
running on another host. The decision to offload jobs to other hosts can be influenced by job-specific requirements and
runtime variables such as the availability of adequate CPU, storage, and energy resources, expected deadline fulfilment,
available network bandwidth, and estimated financial cost. We assume that a job’s code is locally available to all hosts
so that, when a job is offloaded, only its inputs must be provided to the executing host. Later, after the job is finished, its
outputs must be sent from the executing host to the originating host.

Every job has a deadline (d), a completion time (T) and a energy cost (E). The latter two are estimated at runtime.
Offloading policies rely on determining the necessary estimates for T and E. Jay’s job model breaks down time (T) and
energy (E) costs in terms of three components, illustrated in Figure 2: TI and EI, the time and energy costs for transmitting
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F I G U R E 2 Time and energy costs for a job.

F I G U R E 3 Example offloading policies.

the job input data from the originating host to the executing host; TC and EC, the costs of actually executing the compu-
tation associated with the job, and; TO and EO, the costs of transmitting the job outputs (results) from the executing host
back to the originating host. Considering the three factors, the overall time and energy cost estimates per host h required
by offloading policies can be formulated as Th = Th,I + Th,C + Th,O and Eh = Eh,I + Eh,C + Eh,O.

Energy-wise, this formulation accounts for the energy consumption at the originating host hL of a job and in the
executing host hC. The energy spent in network I/O expressed by EI accounts for the energy consumed by hL in uploading
the inputs, and hC to download them, and vice-versa for EO in the case of outputs. Another subtle aspect is that the EC
term reflects the energy of executing the job remotely at hC, but (as explicitly illustrated in Figure 2) only the energy
corresponding to the fraction of time that hC is effectively performing the computation, discarding energy consumption
due to the period when the job is pending, for example, when the job is queued due to the existence of other jobs that
have precedence over it. In contrast, the total time spent at hC must be fully accounted for in the case of TC.

2.2 Offloading policies

Different offloading policies can be considered, some of which are illustrated in Figure 3 for a network comprising 4
hosts running Jay: hL = h0, the originating (“local”) host, and other hosts h1, h2, and h3. We assume that, for each job, Th
and Eh estimates for each candidate executing host h are available: Th and Eh. These, respectively, represent the expected
completion time and energy consumption of running the job at host h.

Within this framework, one of several offloading policies may be defined to compute hC, the host chosen to run the
job. For instance, as illustrated in the figure: TMIN is a policy that chooses the host that is estimated to minimize exe-
cution time, without regard for energy consumption; EMIN, inversely to TMIN, chooses the host that minimizes energy
consumption, but does not account for completion time, thus, has no concern also for the job’s deadline; HYBRID adopts
a compromising strategy as it chooses the host with lower energy cost, but only among those which can fulfil the job’s
deadlines, or; finally, LOCAL, the void offloading strategy that always chooses hC = hL, that is, all jobs execute locally. The
corresponding mathematical formulations for these example offloading strategies are quite simple:

TMIN ≡ hC = argminh Th,

EMIN ≡ hC = argminh Eh,

HYBRID ≡ hC = argminh ∶ Th≤d Eh,

LOCAL ≡ hC = hL.
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F I G U R E 4 Jay architecture.

Note that, each host can run a different offloading strategy, effectively allowing hosts in a hybrid cloud to decide on
the best strategy to offload jobs, based on their network context and dynamic estimates for time and energy. Moreover,
Jay is agnostic with respect to the type of local scheduler used by hosts that receive offloaded jobs. We assume only that
when a job is offloaded to hC it is executed therein together with a mix of other jobs.

2.3 Architecture

We now describe the architecture for our concrete implementation of the model described in the previous section. As
shown in Figure 4, each Jay instance takes the form of a set of interacting services running on the same host. An instance
gets requests from local applications to execute computational jobs. It is up to Jay to decide whether to execute a job locally
or offload it to a remote instance. The process should be transparent to a client application only requiring a job’s output
to be made available once it is completed. When offloading, Jay instances possibly interact across different cloud tiers.

A Jay instance may offload or locally execute jobs. The Scheduler and Worker services within each instance are kept
active for being invoking and taking decisions. The Scheduler is responsible for scheduling decisions, that is, to decide
whether to run the job at the local instance, the one invoking the service or to offload it to a remote instance, following
a configurable offloading strategy that assesses in runtime the conditions for all instances with an active Worker service.
The Worker service manages the actual execution of jobs, regardless of whether they are local or incoming from other
hosts through offloading requests. Jay instances running only one of the Scheduler or Worker services merely act as job
execution clients or servers, respectively.

To allow for offloading strategies that operate dynamically and adaptively according to runtime conditions, the inter-
nal state of each Jay instance is continuously monitored by the Profiler service to reflect aspects such as instance energy
consumption, job workload, and network transmission times. In addition, the Profiler gets similar state updates from all
other Jay instances in the network, Hence, it is then able to construct a global snapshot of the state of all Jay instances
in the network at any given time and supply that information to the local Scheduler service.

Broker service is responsible to glue the global operation in each instance. It acts as a network mediator between an
instance and local applications and remote instances, abstracting any interactions with other services on the same local
instance.

Summarizing the role of each service during the execution of a job, from release to completion, as indicated by the
stage numbers in Figure 4: job release (stage 1)—a job is released when an application requests the local Broker service
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to execute it; job scheduling (stages 2 and 3) – the Broker forwards the job to the local Scheduler service (2), which in
turn informs back the instance that should run the job (3); local execution (stages 4a to 6a)—if the Scheduler’s decision is
that the job must execute locally, the Broker instructs the local Worker to execute it (4a). When the job completes (5a), its
outputs are delivered to the application (6a), and; offloaded execution (stages 4b to 8b)—on the other hand, the Scheduler’s
decision may be to offload the job to a remote instance. In this case, it is necessary to transmit the job’s inputs over the
network (4b). At some point, the remote instance will handle the execution of the job (5b) to produce the job outputs (6b).
The outputs are returned back to the originating host (7b) and, finally, delivered back to the application (8b).

3 JAY PROGRAMMING

We now illustrate the use of Jay in practice, together with the main aspects of the Jay API. Jay is written in the Kotlin
programming language,15 and runs on Android devices or standard computers running Linux. Kotlin may in principle be
ported also to other operating systems, as Kotlin compiles to Java bytecode, if some platform-specific modules (e.g., for
power estimations) are appropriately implemented for the operating system at stake as it happens already for Android
and Linux.

Jay does not restrict the kind of application that can take advantage of job offloading. However, in the contexts
described in this article, and in the literature, the most common scenario is that of applications that may be split into
multiple independent jobs each requiring significant computational or storage resources.

3.1 Main API

We illustrate the use of the main Jay API with a simple example concerning the calculation of the Mandelbrot set. Listing 1
shows the steps necessary for an application to start a Jay instance, set up particular offloading strategies and job code,
and finally define jobs and execute them.

1 // Start Jay instance
2 val jay = Jay()
3 jay.startProfilerService()
4 jay.startWorkerService()
5 jay.startSchedulerService()
6

7 // Configure offloading strategy and task executor
8 val strategy = HybridScheduler()
9 val executor = MandelbrotTaskExecutor()

10 jay.setScheduler(strategy)
11 jay.setTaskExecutor(executor)
12

13 // Define a job
14 val deadline = 4000
15 val job = TaskExecutorManager.generateTask (
16 MandelbrotTask(1920, 1080, 0, 1080, 100),
17 deadline
18 )
19

20 // Execute a job synchronously
21 val result = jay.scheduleTask(job)
22

23 // Execute a job asynchronously
24 jay.scheduleTask(job) {
25 asyncResult -> doSomethingWith(asyncResult)
26 }

Listing 1: Example use of Jay.

The initialization of a Jay instance involves the creation of Jay object and starting up the required services, as shown
in lines 1–5 of Listing 1. The broker service is launched implicitly with the creation of the Jay object, and the three
other services (worker, scheduler, and profiler) are started manually in the example. Given that the worker and scheduler
services are activated, this means that the local Jay instance will be able to execute both local and remote jobs (i.e., received
from other hosts).



SILVA et al. 7

We then configure the active offloading strategy, and the executor for jobs, that is, the code that will be executed for a
job (Listing 1, lines 7–11). In the example, we set the active offloading strategy toHybridScheduler, which corresponds
to a Jay built-in class for the HYBRID time/energy-aware strategy discussed earlier, and the active executor to an instance
of a user-defined class called MandelbrotTaskExecutor (more on this below).

After proper initialization of a Jay instance, jobs can be defined and executed (Listing 1, lines 13–26). A job is defined
by an instance of an application-defined class MandelbrotTask, and a relative deadline for execution in the scale of
milliseconds (lines 13–18). In the example, the deadline is set to 4 s. The job can then be executed synchronously or
asynchronously (lines 21 and 24), and the application can retrieve the job’s output results in either case. In a synchronous
execution, the caller application thread blocks until the job completes. Alternatively, in an asynchronous execution, the
application is notified of the job’s completion through a user-defined callback. In any case, the job may either execute
locally or remotely through offloading in a transparent manner to the application code.

3.2 Coding jobs

The well-known Mandelbrot Set16 calculation involves the calculation of the set of complex numbers z for which the
sequence fc(z) = z2 + c does not diverge when iterated from z = 0, that is, for which the sequence fc(0), fc(fc(0)) and so
forth remains bounded in absolute value. When adapting this problem to a computational job, a possible solution is to
use the standard escape time algorithm that performs a repeating calculation for each (x, y) point in the region of interest
of the complex plane. Points in the plane are assigned colors that indicate whether they are members of the set (usually
the color is set to black) or the number of iterations after which the orbit of the point exceeds a threshold and diverges to
infinity.

1 // Mandelbrot task specification
2 class MandelbrotTask (
3 val width: Int, val height: Int,
4 val startLine: Int, val endLine: Int,
5 val maxIter: Int ) : Serializable {
6 ...
7 }
8 // Definition of concrete task executor
9 class MandelbrotTaskExecutor (name: String = "Mandelbrot set") : TaskExecutor(name) {

10 override fun executeTask(rawtask: Task, callback: ((Any) -> Unit)?) {
11 val obj = ObjectInputStream(ByteArrayInputStream(rawtask.data))
12 val task = obj.readObject() as MandelbrotTask
13 obj.close()
14 callback?.invoke{ calcMandelbrot(task) }
15 }
16 // Mandelbrot set calculation
17 private fun calcMandelbrot(task: MandelbrotTask): Array<IntArray> {
18 val matrix = arrayOf(intArrayOf())
19 for (col in 0..task.width) {
20 for (row in task.startLine..task.endLine) {
21 val cRe: Double = (col - task.width / 2.0) * 4.0 / task.width
22 val cIm: Double = (row - task.height / 2.0) * 4.0 / task.width
23 var x = 0.0, y = 0.0, iter = 0
24 while (x * x + y * y <= 4.0 && iter < task.maxIter) {
25 val xNew = x * x - y * y + cRe
26 y = 2 * x * y + cIm
27 x = xNew
28 iter++
29 }
30 matrix[row][col] = iter
31 }
32 }
33 return matrix
34 }
35 ...
36 }

Listing 2: Computing the Mandelbrot Set.
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The code for implementing the Mandelbrot set computation is shown in Listing 2. It involves the definition of inputs
for the job through class MandelbrotTask (lines 2–7) and the code for execution through class MandelbrotTaskEx-
ecutor (lines 9–36). An instance of MandelbrotTask defines a job’s input data, which Jay supplies to the code in
MandelbrotTaskExecutor to obtain the job’s output data, a matrix of integers (defined as an Array<IntArray>)
as defined by the signature of calcMandelbrot (line 17). The core of the Mandelbrot computation, shown in cal-
cMandelbrot (lines 17–34), essentially applies the traditional escape time algorithm for a region of the complex
plane. Each output position in the integer matrix of a given width and height, both specified as part of the input,
indicates the number of iterations after which divergence was detected, up to the task.maxIter iteration limit
(also an input).

For offloading, Jay requires thatMandelbrotTask is aSerializable object, that is, can be serialized into an array
of bytes, sent over the network and then deserialized through the Java serialization API (line 7). Moreover, in Mandel-
brotTaskExecutor, the glue code required by Jay is defined by the executeTaskmethod (lines 10–15), which every
TaskExecutor subclass must define. This method contains the logic for deserializing a MandelbrotTask instance
and subsequently using it in a call to calcMandelbrot.

3.3 Definition of offloading strategies

Applications have accessible for use a number of built-in offloading strategies in Jay, but they can also define custom
ones. Offloading strategies are provided as schedulers in the Jay API. Listing 3 illustrates code snippets for the main pro-
grammatic support required for the implementation of offloading policies. As shown, AbstractScheduler (lines 2–5)
defines the abstract scheduleTask() methods that are required to be implemented in subclasses. Types TaskInfo
(lines 7–10) and WorkerInfo (lines 12–24) are used in the input and output types of scheduleTask respectively.
TaskInfo provides information regarding the general characteristics of a job to be scheduled: the size of data to be trans-
mitted, the deadline, and the creation time.WorkerInfo instances contain runtime information about available workers
(those reported as available by the Jay runtime as in the example of Listing 4). This information—for example, compu-
tation state, bandwidth estimates, and power consumption estimates—can be used by the scheduler to make offloading
decisions.

1 // Abstract class for defining a scheduler
2 abstract class AbstractScheduler(private val name: String) {
3 ...
4 abstract fun scheduleTask(taskInfo: TaskInfo): WorkerInfo?
5 }
6 // Information about a job
7 data class TaskInfo(
8 val dataSize: Long,
9 val deadline: Long?,

10 val creationTimeStamp: Long = 0L ) { ... }
11 // Information about the worker
12 data class WorkerInfo( ... ) {
13 var queueSize
14 var queuedTasks
15 var avgComputingEstimate
16 var bandwidthEstimate
17 var powerEstimations: PowerEstimations?
18 ...
19 }
20 // Power estimation values associated with a worker
21 data class PowerEstimations(
22 val idle: Float, val compute: Float, val rx: Float, val tx: Float,
23 val batteryLevel: Int,
24 val batteryCapacity: Float ) { ... }

Listing 3: Base definitions and attributes used in the implementation of offloading policies.



SILVA et al. 9

1 // Concrete implementation of scheduler
2 class LFHybridScheduler : AbstractScheduler("LFHybrid Scheduler") {
3 ...
4 internal fun expectedCompletionTime(t: TaskInfo, worker: WorkerInfo?): Long {
5 // Account both for computation time and transmission time estimates
6 return (w.getQueuedTasks() + 1) * w.getAvgComputingTimeEstimate()
7 + w.bandwidthEstimate * t.dataSize
8 }
9 internal fun expectedEnergySpent(t: taskInfo, worker: WorkerInfo?): Float {

10 // Account both for computation and transmission energy overheads
11 var estimate = worker.getPowerEstimations()
12 return (w.bandwidthEstimate * t.dataSize) * estimate.tx
13 + w.getAvgComputingTimeEstimate() * estimate.compute
14 }
15 override fun scheduleTask(taskInfo: TaskInfo): WorkerInfo? {
16 // Check if local worker can meet deadline
17 val localWorker = SchedulerService.getLocalWorker()
18 if (expectedCompletionTime(localWorker) < taskinfo.deadline)
19 return localdWorker // local worker can meet deadline
20 var selectedWorker = null
21 var minEnergy = Float.MAX\_VALUE
22 // Offload to deadline-compliant worker that consumes the least energy
23 for (w in SchedulerService.getWorkers(WorkerType.REMOTE)) {
24 if (expectedCompletionTime(w) < taskinfo.deadline) {
25 var energyCost = expectedEnergySpent(w)
26 if (energyCost < minEnergy) {
27 minEnergy = energyCost
28 selectedWorker = w
29 }
30 }
31 }
32 // Default to localWorker if no remote workers are suitable
33 return selectedWorker != null ? selectedWorker : localWorker
34 }
35 }

Listing 4: Implementation of the “local-first” HYBRID offloading strategy.

We provide an example of such an (adaptive) offloading strategy in Listing 4. It corresponds to a variant of the
HYBRID strategy discussed earlier in Section 2.2. Recall that HYBRID picks the worker for which the estimated job
completion time is the lowest and that complies with the job deadline. The variant considered in the code, as expressed
by scheduleTask (lines 15–34), is a “local-first” offloading strategy that offloads to a remote worker if the local
worker cannot meet the job deadline. The offloading decision is informed by estimates of the time and energy costs,
as expressed by methods expectedCompletionTime (lines 4–8) and expectedEnergySpent (lines 9–14). Both
estimates in turn take into account both computation and network transmission overheads measured adaptively at run-
time by the Jay profiler. The time estimate in expectedCompletionTime is calculated from the remote worker’s
current queue size and average job completion time, while the network transmission overhead is calculated from
the bandwidth estimate between the local instance and remote worker instance and the data payload size associated
with the job. The energy estimate in expectedEnergySpent is very similar but also includes the measured energy
spent by the remote worker while computing and receiving data while discarding the energy cost associated with
job queuing.

At this stage, we did not experiment with fault tolerance mechanisms in Jay. If required, these mechanisms can be
implemented at the application level feeding on the job completion/failure notifications delivered by Jay. However, within
Jay, custom offloading policies for fault tolerance can be implemented through the extensible API just described. These
could handle aspects such as automated job retries/re-offloading in reaction to errors. Other aspects, such as offloading
the same job to multiple hosts to cope with host errors or to increase performance, are possible in principle but require a
generalization of the job model.
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4 IMPLEMENTATION

In a typical runtime scenario, a Jay instance runs on each host in a hybrid cloud. Communication between the instances
happens when offloading a job or receiving results from a previously offloaded job. It is not necessary to create a new Jay
instance to run new jobs, locally or offloaded. Additional messages are exchanged between the hosts to provide the local
profilers at each host with runtime information such as CPU loads, memory and storage availability, and battery status.

We now turn to the description of the implementation of a Jay instance as defined in Section 2, with a special emphasis
on its four core services: Broker, Scheduler, Worker, and Profiler.

4.1 Overview

The Broker, Scheduler, Worker, and Profiler components are implemented as independently running services within
a Jay instance, as illustrated in Figure 5. For each component, a corresponding service is accessible through remote
procedure calls (RPC). This modularity allows for different configurations to be defined. For example, Jay instances
that act only as workers will not require a running service for the Scheduler component. Similarly, Jay instances that
only offload jobs will not require a service for the Worker component. The broker component is the most complex
in terms of interactions, given that it acts as a mediator between the local Jay instance and applications or other
Jay instances. Moreover, to fulfil these roles, and in line with the job lifecycle described earlier in Figure 4, the Bro-
ker communicates as necessary with all the other architectural components in the local instance (Scheduler, Worker,
or Profiler). As for the other components, they have an internal logic closely related to their functionality: a set of
offloading policies in the case of the Scheduler (as exemplified in Section 3.3), a set of monitoring subsystems in
the case of the Profiler (discussed below in this section), and a job queue in the case of the Worker (also discussed
below).

F I G U R E 5 Jay components.
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These services can have custom, application-specific, modules added. In Section 3, we described how to program-
matically add job executors and schedulers to the Worker and Scheduler services, using registerTaskExecutor and
registerScheduler.

Finally, while the Broker service does not allow additions, it is responsible for host discovery in the hybrid network.
This is implemented as a mixed static and dynamic decentralized discovery scheme. It uses UDP multicast to find mobile
hosts in a network neighbourhood and, in its current incarnation, static URLs/IPs, provided via configuration files from
the workbench, to locate cloudlet and cloud servers.

4.2 Inter-component communication

Jay components interact via gRPC,17 a very popular framework developed by Google. gRPC is open-source, interoperable
in heterogeneous environments (e.g., server machines and Android devices), and has bindings for multiple programming
languages (e.g., Kotlin, C/C++, Java, or Python). The HTTP/2 protocol is employed for communication and Protocol
Buffers18 (also by Google) are used as the Interface Definition Language (IDL) to describe the RPC endpoints along with
associated data types for call arguments and results. From an IDL description, the Protocol Buffers compiler generates
the necessary code for client and server implementation, plus the data structures at stake and the associated support for
serialization. We should also note that gRPC supports service discovery but, as mentioned above, we employ our own
UDP multicast for dynamic host discovery. The reason is that gRPC requires a centralized registry which is less convenient
than UDP multicast for a local mobile edge cloud with high device churn.

A Protocol Buffers IDL fragment for the Broker service is given in Listing 5. It comprises the definitions of datatypes
used in RPC calls (lines 15–38) and the actual RPC call signatures (lines 40–49). The message types lead to the gener-
ation of data classes that, in addition to their use as RPC call arguments, are used in the Jay API implementation. For
instance, the definition of TaskInfo shown leads to the data class by the same name illustrated earlier in Listing 3. The
service section illustrates a subset of the possible RPC interactions with the Broker service: scheduleTask can be
used by an application to release a job for execution, asking it to be scheduled and later executed; executeTask is used
between brokers to offload jobs; setScheduler sets the active scheduler for the Jay instance; and stopService dis-
ables the Broker service. Calls like scheduleTask can be invoked synchronously, causing the caller to block until the
call completes, or, as it happens more often in Jay’s implementation, asynchronously through a callback scheme. gRPC
also provides for (client-side, server-side, and bidirectional) streaming RPC calls as in the case of executeTask.

1 // Protobuffer datatypes used by remote API
2 enum StatusCode { Success = 0; Error = 1; Waiting = 2; ... }
3

4 message Status {
5 StatusCode code = 1;
6 }
7

8 message Response {
9 Status status = 1;

10 bytes bytes = 2;
11 string id = 3;
12 }
13 ...
14

15 message TaskInfo {
16 string id = 1;
17 int64 dataSize = 2;
18 int64 deadline = 3;
19 int64 creationTimeStamp = 5;
20 }
21

22 message Task {
23 TaskInfo info = 1;
24 bytes data = 2;
25 }
26

27 message TaskStream {
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28 Action status = 1;
29 Task task = 2;
30 ...
31 }
32

33 message Scheduler {
34 string id = 1;
35 ...
36 }
37

38 ...
39 // gRPC remote API
40 service BrokerService {
41 // Application interface - job release
42 rpc scheduleTask (Task) returns (Response) {};
43 // Broker interaction for offloading requests
44 rpc executeTask (stream TaskStream) returns (stream Response) {};
45 // Configuration and life-cycle
46 rpc setScheduler (Scheduler) returns (Status) {};
47 rpc stopService (google.protobuf.Empty) returns (Status) {};
48 ...
49 }

Listing 5: Fragment of gRPC interface for JAY’s broker.

4.3 Job execution

The worker executes jobs in order of arrival, one at a time, and non-preemptively until completion. Pending jobs are kept
on hold in a FIFO queue. In principle, a job execution policy could also be provided as a parameter, as opposed to this
fixed scheme, in the same vein as offloading policies. Various aspects could motivate it, for example, the consideration of
job deadlines in addition to arrival time as in earliest-deadline-first scheduling, the use of job preemption provided that
jobs implement some sort of checkpointing and different queues per job type.

On the other hand, this scheme allows a simple estimation of a job’s execution time as (n + 1) × ̃t where n is the
number of currently queued jobs and ̃t is a moving average of job execution times. This approximation is used in the
method expectedCompletionTime from Listing 4, where (n + 1) × ̃t is expressed by (w.getQueuedTasks() +
1) * w.getAvgComputingTimeEstimate(). This is important, for example, in the context of experiments (see
Section 5) that focus on evaluating offloading policies at the job’s originating host.

4.4 Profiler

The Profiler service is responsible for deriving snapshots of the internal state of the local Jay instance that, combined with
similar information from other instances, can guide adaptive offloading policies. As illustrated in Figure 6, the profiler
implementation comprises gRPC-based interactions with the other running local Jay services and a number of OS-level
monitoring subsystems.

The Profiler requires the gRPC interactions to collect computation and network transmission statistics, specifically
job startup and termination at the Worker and network data transmission initiation and termination by the Broker. The

F I G U R E 6 Profiler operation.
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knowledge of active computation and networking energy consumption drives energy consumption estimation during job
computation and transmission of job inputs/outputs. These measurements are then combined with data from OS-level
monitoring subsystems, for example, CPU usage and frequency, and energy readings for power and current, to allow
adaptive schedulers to make informed decisions about job offloading. Other subsystems in the Android implementation
of Jay keep track of hardware activity in the local host device that may also impact energy consumption, for example,
subsystems dedicated to monitoring connected sensors or enabled network links.19 The profiler is not extensible through
user code. However, new profiling modules can be implemented directly within the framework. This could be made
more flexible, as in task executors and offloading policies, since Jay’s profiler is already organized in modules for distinct
subsystems.13,19

5 AUTOMATED TESTING USING JAY

5.1 The Jay Workbench

The Jay Workbench tool was designed and implemented to automate the challenge of orchestrating experiments with
multiple devices, namely in what concerns device coordination and the acquisition of runtime analytics. It implements all
the logic required to control the multiple Jay instances involved in an experiment, thus allowing it to be executed any num-
ber of times with the same inputs, timings, and sequences of events following Poisson distributions. These experiments
can be set up seamlessly over manifold hybrid edge-cloud topologies.

The workbench allows individual experiments to be reproduced at any moment for a given hybrid cloud topology and
host configuration. This reproducibility is supported by storing all the experimental setup information, including configu-
ration files and seeds for random processes. This capability was of utmost importance for the experimental work described
in References 11 and 12. For a given workload configuration, the Workbench needs to determine first if the hybrid cloud
topology requirements are met, then set and initiate the workload, and finally collect execution logs for offline analysis.
As illustrated in Figure 7, the Workbench takes the form of a Python program that resorts to gRPC to communicate with
running Jay instances (once they are active) and the Android Debug Bridge (adb)20 for configuration actions involving
Android devices like rebooting the devices, installing Jay, setting up required permissions, transferring logs and so forth.19

The hybrid cloud may be composed of a mixture of cloud/cloudlet servers and mobile devices. In general, they will have
quite heterogeneous characteristics in terms of CPU, RAM, storage, or power availability and consumption. Cloud and
cloudlet servers are identified beforehand explicitly in workload configuration files, while mobile devices are discovered
automatically.

5.2 Case-study experiments

In previous work,11,12 we used the Jay Workbench to specify, configure, and automate the execution of multiple
experiments over different hybrid cloud topologies, job generation rates and offloading policies. We summarize these
experimental setups here to exemplify the ability of the workbench to greatly simplify the planning and execution of the
tests involved.

F I G U R E 7 The Jay Workbench.
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F I G U R E 8 Experimental setup for case-study experiments.

In the first scenario,11 we considered the hybrid cloud topology as shown in Figure 8. It featured 4 to 8 Nexus 9
mobile devices running Android 7, a cloudlet server connected to the local network via a gigabit Ethernet connection,
and a Google Cloud server hosted at the europe-west2-c Google data center located in London. An Android app
that receives images as input and produces reports of the objects detected in them using a machine learning model,
more precisely the ssd_mobilenet_v1_fpn_coco MobileNet model variant21 made available by TensorFlow.22 The
computation was performed for three different image datasets, with images of varying resolution/size taken from the
UltraEye dataset.23

The experiments involved many variations of the cloud topology in which all or just part of the components were used.
In all of these, the object detection jobs were only fired by mobile devices, while the cloudlet and cloud servers only acted
as workers. For each cloud topology, various parameters were varied to better understand the behavior of the system,
namely: number of mobile devices used, number of devices generating jobs, job release rate (defining a Poisson process),
job granularity (controlled by using different image resolutions as input to the object recognition jobs), and offloading
strategies. Each variation has a corresponding workload specification for automated execution using the Jay Workbench.

The fragment of such a workload specification is shown in Listing 6. As shown, the Workbench reads a text file con-
taining configuration sections, where each section contains a set of key-value pairs that define a workload specification.
In the example, the ESTIMATED_TIME_SCHEDULER_CONFIG section specifies a workload to be repeated five times
(as set by the Repetitions parameter), with each iteration lasting 240 s (Duration) and using an offloading strat-
egy (Strategy) set to EstimatedTimeScheduler (the internal identifier of the TMIN strategy discussed back in
Section 2.2). Furthermore, the workload uses 8 Android devices (Devices), all of which (Producers) generate jobs
through a Poisson process with 1 job released (GenerationRateRequests) every 10 s (GenerationRateSeconds)
on average. Every device generates jobs and is also able to execute them, along with a cloudlet server (Cloudlets)
at IP address 127.0.0.1 (the “local host,” i.e., the same host as that used to run the Workbench in this case), and
a cloud server (Clouds) in the Google Cloud namespace hyrax/europe-west1-b that is reachable through the
odcloud.duckdns.org domain name (a dynamic DNS address used for convenience).

1 [ESTIMATED_TIME_SCHEDULER_CONFIG]
2 Repetitions = 5
3 Duration = 240
4 Strategy = EstimatedTimeScheduler
5 Devices = 8
6 Producers = 8
7 GenerationRateRequests = 1
8 GenerationRateSeconds = 10
9 Cloudlets = 127.0.0.1

10 Clouds = hyrax/europe-west1-b/odcloud.duckdns.org
11 ...

Listing 6: Workload specification for a three-tier cloud topology.
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Subsequently, to the first case study, Jay developments allowed us to consider energy consumption as a met-
ric to be considered for offloading requests, and jobs with explicitly set soft real-time deadlines. In a second case
study,12 we experimented with a 2-tier topology formed by an edge network of heterogeneous Android devices and
a cloudlet server, using the same TensorFlow-based object detection application. The cloud tier was not consid-
ered due to the inherent impossibility of measuring the energy consumption of a host in a Google Cloud data
center. On the other hand, the scenario is richer compared to the first case study in terms of the use of het-
erogeneous Android devices (e.g., in terms of computational power, battery, memory, or manufacturer), and the
fact that energy consumption was measured continuously by the Jay profiler for these devices and also for the
cloudlet server. Offloading strategies can then be defined taking into account not only estimates for job com-
pletion time but also energy consumption, plus the deadline associated with jobs. For instance, we considered
energy-aware strategies such as HYBRID (discussed earlier in Section 2.2), which offloads a job to the instance that
is estimated to consume the least amount of energy amongst those whose completion times are estimated to be
deadline-compliant.

1 [HYBRID_SCHEDULER_CONFIG]
2 Strategy = HybridScheduler
3 TaskDeadline = 9
4 Duration = 600
5 GenerationRateRequests = 5
6 GenerationRateSeconds = 9
7 Cloudlets = 127.0.0.1
8 Devices = 5
9 Producers = 1

10 PowerDevices = False
11 MinBattery = 50
12 ...

Listing 7: Workload specification with settings for energy and deadline awareness

The workload specifications used by the Workbench reflect the extra parameterization required for the second case
study. An example is given in Listing 7. As shown, we have a configuration where the HYBRID offloading strategy
(HybridScheduler) is employed. Jobs are characterized by a deadline (TaskDeadline) in addition to other parameters
discussed earlier related to job generation (Duration, GenerationRateRequests and GenerationRateSec-
onds). Finally, cloudlet (Cloudlets) and Android device (Devices, Producers) settings are as before, but supple-
mented by parameters related to battery restrictions: all Android devices are required to not be charging their batteries
(PowerDevices) and the battery level (MinBattery) is required to be at least 50% at the start of the workload
execution.

6 RELATED WORK

In this section, we provide an overview of related work. For an extensive review and comparative discussion to Jay refer
to References 19 and 12.

The idea of offloading computations dates back to the early days of mobile devices, well before the advent
of smartphones. Limited hardware resources and battery capacity were the chief concerns24 that researchers nat-
urally tried to handle at the time. With the simultaneous emergence of the smartphone, the cloud computing
paradigm,25 and increasingly fast Internet connections, the MCC26 paradigm naturally emerged, tethering mobile
device applications onto servers in cloud infrastructures. Offloading computation can potentially reduce both bat-
tery consumption for mobile devices and the latency of computations. For this, there are ample resources avail-
able at cloud data centers. They have various degrees of flexibility such as the possibility of deploying and tearing
down resources on the fly, the use of custom computing environments through virtualization, the availability of
specialized hardware, and the interaction with a myriad of cloud services for storage and computation. Relevant
systems include COSMOS,27 Cuckoo,28 MAUI,29 Phone2Cloud,30 ThinkAir,31 ULOOF32 and, including support for
IoT-devices, PMCO.33
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Variable latency and intermittent connections can be a problem for MCC, though. The computation-communication
trade-off may be especially hard to get right, given that on one hand, computationally powerful servers may be
available for computation in a centralized cloud, but on the other hand communication latency may be high due
to a general-purpose Internet connection. A number of proposals emerged enabling closer-to-the-edge computing,
mitigating network overheads, lead up to edge clouds in different forms and designations. For instance, the orig-
inal concept of cyber-foraging34 proposed dedicated servers placed in the network vicinity of client devices and
found their way into offloading systems for mobile applications, for example, Reference 35. Another popular con-
cept is that of cloudlets,4 small-scale cloud data centers acting as a middle tier at the edge of the network between
mobile devices and centralized cloud infrastructures. With mobile but also IoT applications in mind, fog computing36

tries to integrate resources for computation and storage in close integration with the network fabric. The distinc-
tion between all these approaches and the use of terms is not without some ambiguity. Depending on the authors,
the terminology can be contradictory, for example, in regard to the difference between edge and fog computing.
Hence, we use the general term edge cloud. Some relevant systems include AIOLOS,35 EdgeReduce,37 mePaaS,38 and
Scavenger.39

Meanwhile, over the last two decades, mobile devices evolved from thin clients to computationally powerful devices
like smartphones and tablets. These incorporate relatively powerful multi-core processors, several gigabytes of RAM and
storage. They also support multiple types of network connectivity, including in particular D2D communication technolo-
gies like WiFi-Direct or Bluetooth that are enablers of proximity-aware applications with very limited or even absent
network infrastructure. For these applications, the computation must really happen at the edge. This context led to the
consideration of mobile edge clouds,5,40,41 where nearby devices form ad-hoc networks, via opportunistic D2D communi-
cations or via a local network, to form a pool of crowd-sourced computing resources. As with other cloud architectures,
computation offloading may aid in reducing latency and energy by moving computation onto nearby devices that can
be faster or more energy-efficient. Among offloading systems, a special kind of MECs worth mentioning is known as
Femtoclouds.42 In a Femtocloud, mobile devices form a worker pool to execute jobs offloaded from an external source,
enabling for instance applications in the realm of volunteer computing or mobile crowd-sensing. Some relevant systems
are Honeybee,43 Synergy,44 CWC,45 and RAMOS.46

Applications that make a hybrid use of multiple-tier clouds are emerging.47-50 The inherent goal is to make the best
use of heterogeneous resources for computation, storage, and communication at each tier. The motivating trade-offs are
very much the same as discussed above, but the consideration of multiple tiers adds flexibility to deal with issues such
as the movement of data to/from the edge, the opportunistic access to communications and edge or cloud resources,
including IoT devices, and a dynamic flow of computation from/to the edge according to the congestion level of upper
cloud tiers that in turn have an impact on latency or other QoS characteristics. Some relevant systems are mCloud51 and
Drop Computing.52,53

The main distinctive traits of Jay are that it is configurable in terms of target cloud architecture and scheduler oper-
ation, and can be employed for automatic and reproducible experiments. Thanks to a flexible design, each Jay host may
act as a scheduler of jobs (spawns and offloads jobs), a worker for jobs (performs the associated computation), or simul-
taneously play both of these roles. Moreover, these hosts can be deployed at distinct cloud tiers. One can thus use Jay for
offloading over manifold cloud architectures. Moreover, Jay supports per-device schedulers for offloading decisions or
centralized ones, as in a Femtocloud setting. This type of flexibility is only partially comparable to (only a few) systems
that work over hybrid cloud architectures. All these aspects can be exercised automatically in reproducible experiments
using the Jay Workbench.

The offloading strategies we instantiate and evaluate in Jay are partially illustrative of comparable time and/or
energy-aware approaches found in other systems. However, Jay is not bound to any particular approach since offloading
strategies are configurable, and there is a general design for monitoring the runtime state information. Jay supports job
deadlines, as well as a small portion of the offloading systems we surveyed. However, in some systems that do support
deadlines, this feature is tied to fault-tolerance mechanisms rather than a QoS factor that may directly influence offload-
ing decisions. On the flip side, in its current form Jay does not have any built-in fault-tolerance mechanisms (if required,
these need to be implemented at the application level).

Finally, Jay only supports single-job scheduling granularity, a characteristic that is more in line with the on-the-fly
offloading of independent jobs, as seen in most systems discussed. In contrast, multiple-job granularity is usually asso-
ciated with the use of a centralized scheduler, a Femtocloud architecture, or a computation model that embodies
parallelism.
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7 CONCLUSIONS

We presented Jay, a software framework for adaptive computation offloading in hybrid edge clouds that allows the seam-
less construction and realization of experiments for studying the performance of mobile applications in hybrid clouds.
A system profiler, present at every instance of Jay, gathers runtime information that allows state-sensitive, dynamic,
offloading policies to be implemented and systematically tested over a parametric space. In previous work11,12 this capa-
bility was used to study performance and energy tradeoffs with respect to parameters like job generation rate, deadlines,
and size; overheads due to job computation, network transmission, and associated energy consumption, and; the type of
cloud environment, MEC without infrastructural support in the base case, and multi-tier hybrid clouds that also include
cloudlet and/or traditional cloud servers.

There are several issues that we consider worth pursuing in future work on Jay.
The first is device churn, that is, the fact that devices may leave and enter a mobile edge cloud environment over time,

for instance, due to device mobility or intermittent network connections. Churn may cause jobs to be aborted and MEC to
be dismantled. To tackle churn, fault tolerance mechanisms would need to be introduced. Job check-pointing (the ability
to save a resumable state of computation for an active job) coupled with migration may allow a job to be resumed in part
or in full. When jobs are pending, migration can also leverage the addition of newly arrived devices. Moreover, network
formation algorithms at the mobile edge cloud level also play a role in this regard.

A second issue relates to “hierarchy.” While Jay works over multi-tier hybrid clouds and is able to differentiate between
hosts and make appropriate offloading decisions through runtime profiling information, it still has a “flat” view of the
hosts available for computation. Explicit notions of hierarchy and host groups can be relevant. MEC may form dynamic
groups enabled by device-to-device communication links, with only one device acting as a “bridge” to upper cloud tiers.
Also, cloudlet or cloud servers are often organized in clusters whose size may auto-scale dynamically according to the
volume of requests.

Finally runtime resource awareness can also be improved in Jay. In particular, this would be important for energy
consumption estimates which, as noted in our experimental results, may sometimes have significant errors. Other aspects
include the association of monetary costs due to cloud server offloading or network data through cellular networks, in
addition to the ones already considered by Jay. Finally, the available mix of standard CPU, GPU and AI cores at all levels of
the network topology—mobile device, cloudlet, and infrastructure cloud—should also be taken into consideration when
making job offloading decisions. Data placement awareness may also be relevant for jobs which consume data that may
be stored at distinct hosts and/or tiers in the cloud, hence the interplay between computation and data offloading can
potentially play a key role. Overall, increased resource awareness may enlarge the type of offloading strategies supported
by Jay and enhance their effectiveness.

AUTHOR CONTRIBUTIONS
Joaquim Silva: Conceptualization; investigation; software; validation, experimentation. Eduardo R. B. Marques: Con-
ceptualization, software; validation; experimentation, writing-review and editing. Luís M. B. Lopes: Conceptualization;
validation; writing-review and editing. Fernando M. B. Silva: conceptualization, validation; writing-review.

ACKNOWLEDGMENTS
This work was partially funded by projects SafeCities (POCI-01-0247-FEDER-041435), Augmanity
(POCI-01-0247-FEDER-046103), both through COMPETE 2020 and Portugal 2020, and by project UIDB/50014/2020
from the Portuguese funding agency, FCT.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Eduardo R. B. Marques https://orcid.org/0000-0002-6980-6868
Luís M. B. Lopes https://orcid.org/0000-0001-8273-1357
Fernando M. A. Silva https://orcid.org/0000-0001-8411-7094

https://orcid.org/0000-0002-6980-6868
https://orcid.org/0000-0002-6980-6868
https://orcid.org/0000-0001-8273-1357
https://orcid.org/0000-0001-8273-1357
https://orcid.org/0000-0001-8411-7094
https://orcid.org/0000-0001-8411-7094


18 SILVA et al.

REFERENCES
1. Ericsson Mobility Report, 2021. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
2. Liu F, Shu P, Jin H, et al. Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications. IEEE

Wirel Commun. 2013;20(3):14-22.
3. Erman J, Ramakrishnan KK. Understanding the super-sized traffic of the super bowl. Proceedings of the 2013 Conference on Internet

Measurement Conference. ACM; 2013:353-360.
4. Satyanarayanan M, Bahl P, Cáceres R, Davies N. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput.

2009;8(4):14-23.
5. Drolia U, Martins R, Tan J, et al. The case for mobile edge-clouds. 2013 IEEE 10th International Conference on Ubiquitous Intelligence and

Computing and 2013 IEEE 10th International Conference on Autonomic and Trusted Computing. IEEE; 2013:209-215.
6. Bland A. FireChat—the messaging app that’s powering the Hong Kong protests. The Guardian. 2014.
7. Cohen N. Hong Kong protests propel FireChat phone-to-phone app. The New York Times. 2014.
8. Albrecht MR, Blasco J, Jensen RB, Mareková L. Mesh messaging in large-scale protests: breaking Bridgefy. In: Paterson KG, ed. Topics in

Cryptology—CT-RSA 2021. Springer; 2021:375-398.
9. Potkin F, Pang J. Offline message app downloaded over million times after Myanmar coup. Reuters. 2021.

10. Hu YC, Patel M, Sabella D, Sprecher N, Young V. ETSI White Paper #11 Mobile Edge Computing - A key technology towards 5G. ETSI White
Paper; 2015.

11. Silva J, Marques ERB, Lopes LMB, Silva FMA. Jay: adaptive computation offloading for hybrid cloud environments. 2020 Fifth Interna-
tional Conference on Fog and Mobile Edge Computing. IEEE; 2020:54-61.

12. Silva J, Marques ERB, Lopes LMB, Silva FMA. Energy-aware adaptive offloading of soft real-time jobs in mobile edge clouds. J Cloud
Comput. 2021;10(1):38.

13. Silva J. The Jay framework; 2020. https://github.com/jqmmes/Jay
14. Silva J. The Jay workbench; 2020. https://github.com/jqmmes/JayWorkBench
15. Kotlin Programming Language. https://kotlinlang.org/ 2011
16. Peitgen HO, Saupe D, Fisher Y, et al. The Science of Fractal Images. Springer; 1988.
17. gRPC. A high performance, open source universal RPC framework; 2016. https://grpc.io
18. ProtocolBuffers. https://developers.google.com/protocol-buffers/ 2008
19. Silva J. Adaptative Computation Offloading in Mobile Egde Clouds. Ph.D. thesis. Faculty of Sciences, University of Porto; 2021. https://

repositorio-aberto.up.pt/handle/10216/139189
20. Android Debug Bridge. 2007. https://developer.android.com/studio/command-line/adb
21. Howard A, Zhu M, Chen B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications, 2017. https://arxiv.

org/abs/1704.0486
22. Huang J, Rathod V, Sun C, et al. Speed/accuracy trade-offs for modern convolutional object detectors. 2017 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). IEEE; 2017:3296-3297. https://github.com/tensorflow/models/blob/master/research/object_
detection/

23. Nemoto H, Hanhart P, Korshunov P, Ebrahimi T. Ultra-eye: UHD and HD images eye tracking dataset. 2014 Sixth International Workshop
on Quality of Multimedia Experience. IEEE; 2014:39-40.

24. Satyanarayanan M. Fundamental challenges in mobile computing. Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing. ACM; 1996:1-7.

25. Vaquero LM, Rodero-Merino L, Caceres J, Lindner M. A break in the clouds: towards a cloud definition. ACM SIGCOMM Comput Commun
Rev. 2009;39(1):50-55.

26. Fernando N, Loke SW, Rahayu W. Mobile cloud computing: a survey. Future Gener Comput Syst. 2013;29(1):84-106.
27. Shi C, Habak K, Pandurangan P, Ammar M, Naik M, Zegura E. COSMOS: Computation Offloading as a Service for Mobile Devices.

Proceedings of the 15th ACM International Symposium on Mobile ad hoc Networking and Computing. ACM; 2014:287-296.
28. Kemp R, Palmer N, Kielmann T, Bal H. Cuckoo: a computation offloading framework for smartphones. In: Gris M, Yang G, eds. Mobile

Computing, Applications, and Services. Springer; 2012:59-79.
29. Cuervoy E, Balasubramanian A, Cho DK, et al. MAUI: making smartphones last longer with code offload. Proceedings of the 8th

International Conference on Mobile Systems, Applications, and Services. ACM; 2010:49-62.
30. Xia F, Ding F, Li J, Kong X, Yang LT, Ma J. Phone2Cloud: exploiting computation offloading for energy saving on smartphones in mobile

cloud computing. Inf Syst Front. 2014;16(1):95-111.
31. Kosta S, Aucinas A, Hui P, Mortier R, Zhang X. ThinkAir: dynamic resource allocation and parallel execution in the cloud for mobile code

offloading. 2012 Proceedings IEEE INFOCOM. IEEE; 2012:945-953.
32. Neto JLD, Yu SY, Macedo DF, Nogueira JMS, Langar R, Secci S. ULOOF: a user level online offloading framework for mobile edge

computing. IEEE Trans Mob Comput. 2018;17(11):2660-2674.
33. Yousafzai A, Yaqoob I, Imran M, Gani A, Md Noor R. Process migration-based computational offloading framework for IoT-supported

mobile edge/cloud computing. IEEE Internet Things J. 2020;7(5):4171-4182.
34. Balan R, Flinn J, Satyanarayanan M, Sinnamohideen S, Yang HII. The case for cyber foraging. ACM SIGOPS European Workshop 2002.

ACM; 2002:87-92.
35. Verbelen T, Simoens P, De Turck F, Dhoedt B. AIOLOS: middleware for improving mobile application performance through cyber

foraging. J Syst Softw. 2012;85(11):2629-2639.

https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/november-2021
https://github.com/jqmmes/Jay
https://github.com/jqmmes/JayWorkBench
https://kotlinlang.org/
https://grpc.io
https://developers.google.com/protocol-buffers/
https://repositorio-aberto.up.pt/handle/10216/139189
https://repositorio-aberto.up.pt/handle/10216/139189
https://developer.android.com/studio/command-line/adb
https://arxiv.org/abs/1704.0486
https://arxiv.org/abs/1704.0486
https://github.com/tensorflow/models/blob/master/research/object_detection/
https://github.com/tensorflow/models/blob/master/research/object_detection/


SILVA et al. 19

36. Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the Internet of Things. Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing. ACM; 2012:13-15.

37. Pamboris A. Mobile Code Offloading for Multiple Resources. Ph.D. thesis. Imperial College London; 2013.
38. Liyanage M, Chang C, Srirama SN. mePaaS: mobile-embedded platform as a service for distributing fog computing to edge nodes. 2016

17th International Conference on Parallel and Distributed Computing, Applications and Technologies. IEEE; 2016:73-80.
39. Kristensen MD. Scavenger: transparent development of efficient cyber foraging applications. 2010 IEEE International Conference on

Pervasive Computing and Communications. IEEE; 2010:217-226.
40. Rodrigues J, Marques ERB, Lopes LMB, Silva FMA. Towards a middleware for mobile edge-cloud applications. Proceedings of the 2nd

Workshop on Middleware for Edge Clouds & Cloudlets. Vol 1. ACM; 2017:1-6.
41. Rodrigues JF. A Middleware for Mobile Edge-Cloud Applications. Ph.D. thesis. Faculty of Sciences, University of Porto; 2019. https://

repositorio-aberto.up.pt/handle/10216/118307
42. Habak K, Ammar M, Harras KA, Zegura E. Femto clouds: leveraging mobile devices to provide cloud service at the edge. 2015 IEEE 8th

International Conference on Cloud Computing. IEEE; 2015:9-16.
43. Fernando N, Loke SW, Rahayu W. Honeybee: a programming framework for mobile crowd computing. Mobile and Ubiquitous Systems:

Computing, Networking, and Services. Springer; 2013:224-236.
44. Kharbanda H, Krishnan M, Campbell RH. Synergy: a middleware for energy conservation in mobile devices. 2012 IEEE International

Conference on Cluster Computing. IEEE; 2012:54-62.
45. Arslan MY, Singh I, Singh S, Madhyastha HV, Sundaresan K, Krishnamurthy SV. Computing while charging: building a distributed

computing infrastructure using smartphones. Proceedings of the 8th International Conference on Emerging Networking Experiments and
Technologies. ACM; 2012:193-204.

46. Gedawy H, Habak K, Harras KA, Hamdi M. RAMOS: a resource-aware multi-objective system for edge computing. IEEE Trans Mob
Comput. 2021;20(8):2654-2670.

47. Garcia M, Rodrigues J, Silva J, Marques ERB, Lopes L. Ramble: opportunistic crowdsourcing of user-generated data using mobile edge
clouds. 2020 Fifth International Conference on Fog and Mobile Edge Computing. IEEE; 2020:172-179.

48. Dreibholz T, Mazumdar S, Zahid F, Taherkordi A, Gran EG. Mobile edge as part of the multi-cloud ecosystem: a performance study. 2019
27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing. IEEE; 2019:59-66.

49. Zhang Q, Zhang Q, Shi W, Zhong H. Firework: data processing and sharing for hybrid cloud-edge analytics. IEEE Trans Parallel Distrib
Syst. 2018;29(9):2004-2017.

50. Liu D, Chen X, Zhou Z, Ling Q. HierTrain: fast hierarchical edge AI learning with hybrid parallelism in mobile-edge-cloud computing.
IEEE Open J Commun Soc. 2020;1:634-645.

51. Zhou B, Dastjerdi AV, Calheiros RN, Srirama SN, Buyya R. MCloud: a context-aware offloading framework for heterogeneous mobile
cloud. IEEE Trans Serv Comput. 2017;10(5):797-810.

52. Marin RC, Gherghina-Pestrea A, Timisica AFR, Ciobanu RI, Dobre C. Device to device collaboration for mobile clouds in drop computing.
2019 IEEE International Conference on Pervasive Computing and Communications Workshops. IEEE; 2019:298-303.

53. Ciobanu RI, Negru C, Pop F, Dobre C, Mavromoustakis CX, Mastorakis G. Drop computing: ad-hoc dynamic collaborative computing.
Future Gener Comput Syst. 2019;92:889-899.

How to cite this article: Silva J, Marques ERB, Lopes LMB, Silva FMA. Jay: A software framework for
prototyping and evaluating offloading applications in hybrid edge clouds. Softw Pract Exper. 2023;1-19. doi:
10.1002/spe.3231

https://repositorio-aberto.up.pt/handle/10216/118307
https://repositorio-aberto.up.pt/handle/10216/118307

	J<0:sc>ay</0:sc>: A software framework for prototyping and evaluating offloading applications in hybrid edge clouds 
	1 INTRODUCTION
	2 OVERVIEW OF JAY
	2.1 Job model
	2.2 Offloading policies
	2.3 Architecture

	3 JAY PROGRAMMING
	3.1 Main API
	3.2 Coding jobs
	3.3 Definition of offloading strategies

	4 IMPLEMENTATION
	4.1 Overview
	4.2 Inter-component communication
	4.3 Job execution
	4.4 Profiler

	5 AUTOMATED TESTING USING JAY
	5.1 The J<0:sc>ay</0:sc> Workbench
	5.2 Case-study experiments

	6 RELATED WORK
	7 CONCLUSIONS

	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

