
Type-Based Verification of
Message-Passing Parallel Programs

Vasco Thudichum Vasconcelos, Francisco Martins,
Eduardo R. B. Marques, Hugo A. López, César Santos,

and Nobuko Yoshida

DI–FCUL–TR–2014–4

DOI:10455/6902

(http://hdl.handle.net/10455/6902)

November 2014

Published at Docs.DI (http://docs.di.fc.ul.pt/), the repository of the
Department of Informatics of the University of Lisbon, Faculty of Sciences.

Type-Based Verification of Message-Passing
Parallel Programs

Vasco Thudichum Vasconcelos1, Francisco Martins1, Eduardo R. B. Marques1,
Hugo A. López1, César Santos1, and Nobuko Yoshida2

1 LaSIGE, University of Lisbon
2 Imperial College London

Abstract. We present a type-based approach to the verification of the
communication structure of parallel programs. We model parallel imper-
ative programs where a fixed number of processes, each equipped with
its local memory, communicates via a rich diversity of primitives, includ-
ing point-to-point messages, broadcast, reduce, and array scatter and
gather. The paper proposes a decidable dependent type system incorpo-
rating abstractions for the various communication operators, a form of
primitive recursion, and collective choice. Term types may refer to val-
ues in the programming language, including integer, floating point and
arrays. The paper further introduces a core programming language for
imperative, message-passing, parallel programming, and shows that the
language enjoys progress.

1 Introduction

Parallel programming finds wide demand from the high-performance and sci-
entific computing community. One of the major challenges in developing paral-
lel applications is ensuring that programs do not engage in undesired races or
deadlocks. This constitutes a particularly difficult undertaking, to which non-
determinism and different semantics for message passing significantly contribute.
The current practice of detecting problematic situations in parallel programming
often resorts either to testing or to program debuggers and verifiers. Testing can
become quite expensive since meaningful tests must run directly on the mul-
ticore or the cluster where the final application will eventually be deployed.
Debuggers and verifiers (usually based on runtime testing or model checking)
are only of limited assistance, and usually do not scale beyond a small number
of processes [8, 22, 26, 27].

Observing the current practice of parallel programming development, one
realises that part of the problem relies on the lack of adequate programming
support. Development is usually performed in Fortran or C, languages char-
acterised by a rather low degree of abstraction in general, and null on what
concerns the particular operations of parallel programming, which are usually
accessed via dedicated APIs such as MPI [4]. This observation constitutes the de-
parting point for our work. We aim at providing the necessary language support

2 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

for the safe development of applications composed of a large number of pro-
cesses that communicate with each other via different forms of message passing
primitives.

The first contribution of this paper is the design of a language for protocol
description, embodied as a dependent type language equipped with primitive
recursion, and able to capture the usual sort of protocols found in the realm
of parallel programming. The type language features specific constructors for
the various communication primitives, including point-to-point message passing,
broadcast, reduce, array gather and scatter. For example, a type message 1 2 int
denotes a message exchange between process rank 1 and process rank 2 of an
integer value, and broadcast 1 x : float array.T denotes an operation whereby pro-
cess rank 1 passes a floating point array to all other processes. The rest of the
protocol is captured by type T which may refer to the value passed via vari-
able x. The type language further counts with the dependent product type, and
a concrete version of primitive recursion [19], ∀x ≤ n.T , where zero is the skip
type (denoting a computation that does not engage in any communication), and
the successor is sequential composition. In addition, a novel collective choice
type operator, p ?T1 :T2, provides for decisions common to all processes, based
on a proposition (p) as opposed to explicit communication, a pattern commonly
found in parallel programs. Following the practice of DML [29], our types may
depend on a domain of index objects, which in our case describe integer, floating
point and array values, further refined with the subset datatype {x : D | p}. This
choice is in line with the usual requirements of parallel programming, making in
addition type checking decidable, for a suitable choice of propositions.

Abstracting processes, term types provide a local view of computation. Pro-
gram types, one the other hand, provide a global perspective of programs, that
is, vectors of processes. Two major challenges addressed by this work are the
identification of the conditions under which a vector of term types constitutes
a program type in such a way that code that conform to program types does
not deadlock, and the ability to move between global and local perspectives of
communication via type equivalence.

A second contribution of this work is the formulation of a simple while lan-
guage for imperative parallel programming, and the proof of its properties. The
language includes, in addition to the standard constructs usually present in a
while language, primitives for each of the communication constructors living at
the type level, a for-loop matching primitive recursion, and a novel collective
conditional expression, whereby all processes are guaranteed to either take the
left or the right branch, without resorting to communication. Each well formed
expression is assigned a type that describes its communication behaviour. In
our setting, processes (that is, store-expression pairs) are assigned term types,
and programs (vectors of processes) are assigned program types. We develop
our theory along the lines of intuitionistic type theory [17], demonstrating the
soundness of our proposal via two main results: agreement of program reduction
and progress for programs.

Type-Based Verification of Message-Passing Parallel Programs 3

We have implemented a verifier that checks protocols for good formation, as
an Eclipse plugin [18]. We have also tested our type language and core program-
ming language on a number of representative examples from the field of scientific
computing, including one dimensional diffusion, Jacobi iteration, Laplace solver,
N-body simulation, π calculation, and parallel vector dot product, all taken from
standard textbooks such as [5, 7, 21].

The outline of the paper is as follows. The next section describes the language
of dependent types for parallel algorithms. Section 3 presents a core language for
imperative parallel programming and its main results. Section 4 discusses related
work. Section 5 concludes the paper, pointing directions for further work.

2 The type language

This section introduces the type theory, including the notions of term types
(Figure 1), term type equality (Figure 4), and program types (Figure 5).

2.1 Term types

Not all syntax may be judged to be a legal type. For example, one might not want
consider “skip;;” a valid piece of syntax. Similarly “broadcast 0 x : float” is not a
valid type if considered under a context where x is not deemed as a variable. We
abbreviate the judgment “T is a type under context Γ ” by Γ ` T : type. Types
depend on datatypes, hence we abbreviate a judgement “D is a datatype under
context Γ ” by Γ ` D : dtype. In turn, datatypes rely on propositions, and so
we abbreviate judgements “p is a proposition under context Γ ” by Γ ` p : prop.
Now, propositions depend on index terms, and so we abbreviate judgements
“i is an index term of datatype D under context Γ ” by Γ ` i : D. All the
above hypothetical judgements depend on datatype contexts Γ , (ordered) lists
of the form x1 : D1, . . . , xn : Dn. We abbreviate judgements “Γ is a context” by
Γ : context.

Types rely on three base sets: that of variables (denoted x, y, z), that of
integer values (k, l,m, n), and that of floating point values (f). There are two
distinguished variables: size and rank; we use them to denote the total number
of processes and the number of a given process within a collection of processes.
It will always be the case that 1 ≤ rank ≤ size. The axioms and inference rules
for deciding on what counts as a type, a datatype, a proposition, an index term
and a context, are in Figure 1. We briefly discuss the various type constructors,
starting with index terms.

Index terms describe the values types may depend upon. Our language counts
with variables, integer and floating-point constants, arithmetic operations, as
well as different array operations, namely array values ([v1, . . . , vn]), array ac-
cess (i1[i2]) and the array length operation (len(i)). Index terms formation rules
further include the standard refinement introduction rule and datatype sub-
sumption [6].

4 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Type formation, Γ ` T : type

Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true Γ ` D : dtype

Γ ` message i1 i2 D : type

Γ ` 1 ≤ i ≤ size true

Γ ` reduce i : type

Γ ` 1 ≤ i ≤ size true Γ ` D <: {x : D′ array | len(x)%size = 0}
Γ ` scatter i D : type

see scatter
Γ ` gather i D : type

Γ ` 1 ≤ i ≤ size true Γ, x : D ` T : type

Γ ` broadcast i x : D.T : type

Γ, x : D ` T : type

Γ ` valx : D.T : type

Γ ` p : prop Γ ` T1 : type Γ ` T2 : type

Γ ` p ?T1 :T2 : type

Γ ` T1 : type Γ ` T2 : type

Γ ` T1;T2 : type

Γ : context

Γ ` skip : type

Γ, x : {y : int | y ≤ i} ` T : type

Γ ` ∀x ≤ i.T : type

Datatype formation, Γ ` D : dtype

Γ : context

Γ ` int : dtype
Γ : context

Γ ` float : dtype
Γ ` D : dtype

Γ ` D array : dtype

Γ, x : D ` p : prop

Γ ` {x : D | p} : dtype

Proposition formation, Γ ` p : prop

Γ ` p1, p2 : prop

Γ ` p1 ∧ p2 : prop

Γ ` i1, i2 : int
Γ ` i1 ≤ i2 : prop

Γ, x : int ` p : prop

Γ ` ∀x.p : prop

Index term formation, Γ ` i : D

Γ : context x : D ∈ Γ
Γ ` x : D

Γ : context

Γ ` n : int
Γ : context

Γ ` f : float
Γ ` i : D array
Γ ` len(i) : int

Γ ` i1 : int Γ ` i2 : int
Γ ` i1 + i2 : int

Γ ` i1 : D . . . Γ ` in : D

Γ ` [i1, . . . , in] : D array
Γ ` i1 : D array Γ ` 1 ≤ i2 ≤ len(i1) true

Γ ` i1[i2] : D
Γ ` i : D Γ ` p{i/x} true

Γ ` i : {x : D | p}
Γ ` i : D1 Γ ` D1 <: D2

Γ ` i : D2

Context formation, Γ : context

ε : context

Γ : context Γ ` D : dtype x /∈ Γ,D
Γ, x : D : context

Fig. 1. Formation rules

Datatypes describe integer (int) and floating-point values (float), arrays of an
arbitrary datatype (D array), and refinements of the form {x : D | p}. Refinement
datatypes allow to describe integer values smaller than a given index term i, such
as {y : int | y ≤ i}, or arrays of a given length n, as in {a : float array | len(a) =
n}. Datatypes rely on propositions. Figure 1 presents a couple of significant
examples of propositions. More can be easily added, including further boolean
and relational operators.

Type-Based Verification of Message-Passing Parallel Programs 5

Datatype subtyping, Γ ` D <: D

Γ : context

Γ ` int <: int
Γ : context

Γ ` float <: float
Γ ` D1 <: D2

Γ ` D1 array <: D2 array
Γ ` D1 <: D2 Γ, x : D1 ` p true

Γ ` D1 <: {x : D2 | p}
Γ ` D1 <: D2 Γ, x : D1 ` p : prop

Γ ` {x : D1 | p} <: D2

Proposition entailment, Γ ` p true

Γ ` p : prop formulae(Γ) � p
Γ ` p true

Formulae in a context, formulae(Γ)

formulae(ε) , ∅

formulae(Γ, x : D) , formulae(Γ) ∪ forms(x : D)

forms(x : int) , forms(x : float) , true

forms(h : {x : D | p}) , forms(x : D) ∧ p{h/x}

forms(h : D array) , ∀x.1 ≤ x ≤ len(h)→ forms(h[x] : D)

Fig. 2. Datatype subtyping and proposition entailment

All the formation rules rely on contexts, intuitively mapping variables into
datatypes. Contexts are also subject to formation rules. Symbol ε denotes the
empty context. The second rule for context formation ensures that types appear-
ing in a context are well-formed with respect to the “initial” part of the context,
a standard requisite in dependent type systems. Premise x /∈ Γ,D means that x
does not occur in Γ and in D, that is, if y : D′ is an entry in Γ then y is different
from x and x does not occur in D′.

A notion of subtyping is defined for index terms: we abbreviate judgements
of the form “datatype D1 is a sub-datatype of D2 under context Γ ” by Γ `
D1 <: D2. The rules, presented in Figure 2, are standard, including those for
refinement datatypes [6]. The last rule, for example, allows to conclude that ε `
{a : float array | len(a) = 512} <: float array. The notion of proposition deducibility
is also standard [6]. The formulae relation collects the logical refinements present
in a given context. They allow, e.g., to extract formula ∀1 ≤ y ≤ len(a).a[y] 6= y∧
∀1 ≤ y ≤ len(a).1 ≤ b[z] ≤ size from context a : {b : {x : int | 1 ≤ x ≤ size} array |
∀1 ≤ y ≤ len(b).b[y] 6= y}. We rely on an auxiliary judgement formulae(Γ) � p
stating that a proposition p is deducible from the formulas in a context Γ .

We are now in a position to discuss types and type formation. A type of
the form message i1 i2D describes a point-to-point communication, from the i1-
ranked process to the i2-ranked process, of a value of datatype D. Both index
terms must denote valid ranks, that is they must lie between 1, the first rank,
and size, the number of processes. Furthermore, the sending and receiving pro-

6 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

cesses must be different from each other.3 A type of the form reduce i denotes a
collective operation whereby all processes contribute with values that are used
to produce a result (say, the maximum). This value is then transmitted to the i-
ranked process, usually known as the root process. A type of the form scatter iD
describes a collective operation whereby the i-ranked process (the root process)
distributes an array among all processes, including itself. The type formation
rule requires i to be a valid rank, and the length of the array to divide the
number of processes, so that each process receives a sub-array of equal length
and the whole array gets distributed. Type gather iD denotes the inverse op-
eration, whereby each process proposes an array of identical length, the con-
catenation of which is delivered to the root process. In both cases, the premise
Γ ` D <: {x : D′ array | len(x)%size = 0} ensures that D is an array datatype
whose length divides the number of processes.

A type of the form broadcast i x : D.T denotes a collective communication
whereby the root process transmits a value of type D to all processes (including
itself). The continuation type T may refer to the value transmitted via variable x.
Type val x : D.T is the dependent product type. In our case, it denotes a collec-
tive operation whereby all processes agree on a common value of datatype D,
without resorting to communication. Such a value may be referred to, in the con-
tinuation type T , via variable x. Typical applications include program constants
and command-line values that protocols may depend upon. A type p ?T1 :T2 de-
notes a collective conditional, whereby all processes jointly decide on proceeding
as T1 or as T2, again without resorting to communication. Type T1;T2 describes
a computation that first performs the operations as described by T1 and then
those described by T2. Type skip describes any computation that does not engage
in communication. skip-typed processes are not necessarily halted; they may still
perform local operations. Finally, type ∀x ≤ i.T is a concrete instance of prim-
itive recursion. A recursive sequence ∀x ≤ i.T uniquely determines an indexed
family of types T{i/x};T{i− 1/x}; . . . ;T{1/x}; skip.

In addition to the above type constructors, others could be easily added.
For example, a type barrier would work similarly to, say, reduce, except that no
value is transmitted. A type allreducex : float.T , denoting an operation whereby
all processes contribute with a floating point number, from which a value is
computed and delivered to all process, could be introduced as an abbreviation
or else as primitive for efficiency reasons. In the former case, such type could
abbreviate reduce 1; broadcast 1x : float.T , where process rank 1 collects a series
of floating points values and then distributes the maximum to all processes
(including itself). Similarly, a type allgatherx : D.T could denote an operation
whereby all processes contribute with an array, whose concatenation would then
be further distributed to all processes: gather 1D; broadcast 1x : D.T .

The reader may have noticed that types such as message or reduce do not
introduce value dependencies, whereas others such as broadcast do. The con-
tinuation of a message type, if existent, is captured by sequential composition,

3 This requirement is particularly relevant for synchronous, or unbuffered, communi-
cation, where a message from, say, rank 2 to rank 2 would constitute a deadlock.

Type-Based Verification of Message-Passing Parallel Programs 7

valn : {x : int | x ≥ 0 ∧ x%size = 0}.
broadcast 1m : int.

scatter 1 {a : float array | len(a) ∗ size = n};
∀k ≤ m.(
∀l ≤ size.(

message l (l%size+ 1) float;

message l ((l − 2 + size)%size+ 1) float);

allreducex : float.skip);

gather 1 {b : float array | len(b) ∗ size = n}

Fig. 3. The type for the finite differences algorithm

as in message 1 2 float;message 2 1 int. That of a broadcast is built into the type
constructor itself; as in broadcast 1x : int.broadcast 1 y : {z : int | z ≥ x}.skip. The
fundamental reason for the difference lies in the target of the values transmitted.
In the cases of message and reduce values are transmitted to a unique process,
namely process i in types message i′ iD and reduce i. In that of broadcast all pro-
cesses receive a same value. This value may then be safely substituted in the
continuation of the types for all processes, thus preserving the natural prop-
erties of types for programs. For the same reason, reduce does not introduce a
type dependency, whereas allreduce may. Even though all processes receive arrays
of equal lengths in a scatter operation, the arrays themselves may be different,
hence the type introduces no value dependency.

As a concrete example, consider the finite differences algorithm [5]. Given
an initial vector X0, the algorithm calculates successive approximations to the
solution X1, X2, . . . , until a pre-defined maximum number of iterations has been
reached. A type for the algorithm is in Figure 3, where n denotes the length of
the input vector, and m the number of iterations to be performed. The length of
the array must evenly divide the number of processes, so that the root process
may divide the whole array among all processes. The problem size is made known
via a val type. The number of iterations is disseminated by process rank 1, via
a broadcast operation. The same process then divides the input array among all
processes. Each participant is responsible for the calculation of a local part of the
solution. Towards this end, in each iteration each process exchanges boundary
values with its right and left neighbours. When the pre-defined number of iter-
ations is reached, process rank 1 collects the global error via a reduce operation
and the solution to the problem via a gather type.

Topology passing is another example attesting the flexibility of our type lan-
guage. Datatypes of the form 1D = {b : {x : int | 1 ≤ x ≤ size} array | ∀1 ≤ y ≤
len(b).b[y] 6= y} encode a one-dimensional network topology. In the below type
process rank 1 distributes the topology; each process then exchanges a message

8 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

with its neighbour.

broadcast 1 t : 1D.∀x ≤ len(t).message x t[x] float

A ring topology (a linear array with wraparound link) of length 5 can be encoded
in array [2, 3, 4, 5, 1]. A two dimensional topology can be written as 2D = {b : 1D |
len(b) = 2}. A protocol where each node exchanges a message with its east and
south neighbours can be written as

broadcast 1 t : 1D.(∀x ≤ len(t[1]).message x t[1][x] float;

∀y ≤ len(t[2]).message y t[2][y] float)

In this case a 2-D mesh with wraparound (a 2-D torus) of with 3×3 nodes can be
encoded in array [[2, 3, 1, 5, 6, 2, 8, 9, 3], [4, 5, 6, 7, 8, 9, 1, 2, 3]]. The two examples
above assume that each dimension wraps around, so that all processes have
exactly one neighbour in each dimension. If that is not the case, we may control
neighbourhood at type level by taking advantage of collective choice, as in

broadcast 1 t : int array.(∀x ≤ len(t).(1 ≤ t[x] ≤ size ?message x t[x] float : skip))

where messages are exchanged only if the array entry contains a valid process
number. In this case, a linear array of length 5 with no wraparound link can be
encoded as [2, 3, 4, 5, 0].

We now revert to the technical development. Because types may include
index terms, they may contain index term variables. We say that types ∀x ≤ i.T ,
val x : D.T and broadcast i x : D.T bind the occurrences of variable x in type T .
Datatype {x : D | p} binds the occurrences of x in proposition p. The notions
of free and bound variables are derived accordingly. We denote by fv(T) the set
of free variables in type T , and similarly for datatypes, propositions, and index
terms.

Before we proceed any further, we must make sure that the above formation
rules are valid. For example, before we can talk about T being a type under
context Γ , that is Γ ` T : type, we must make sure that Γ is indeed a context,
that is Γ : context. The same applies to the other five judgements our type
theory is composed of.

Lemma 1 (agreement for type formation).

Γ ` T : type

Γ : context

Γ ` D : dtype

Γ : context

Γ ` p : prop
Γ : context

Γ ` i : D
Γ ` D : dtype

Γ ` D1 <: D2

Γ ` D1 : dtype Γ ` D2 : dtype

Γ ` p true

Γ : context

Proof. By simultaneous rule induction on the various hypothesis.

The substitution operation on types, defined in the standard way (based on
the variable bindings introduced above) and denoted by T{i/x}, replaces all the

Type-Based Verification of Message-Passing Parallel Programs 9

Type equality, Γ ` T ≡ T

(Γ ` T : type)

Γ ` T ; skip ≡ T
(Γ ` T : type)

Γ ` skip;T ≡ T
(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡ T1; (T2;T3)

Γ ` i < 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ skip

Γ ` i ≥ 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ (T{i/x}; ∀x ≤ i− 1.T)

Γ ` i1, i2 6= rank true (Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true) (Γ ` D : dtype)

Γ ` message i1 i2D ≡ skip

Omitting the rules pertaining to congruence and equivalence

Fig. 4. Type equality

occurrences of variable x by index term i in type T , leaving all other variables
untouched. The substitution on datatypes D{i/x}, propositions p{i/x}, and
on index terms i1{i2/x} are also defined in the conventional, inductive, way. A
standard substitution lemma summarises the main property of the operation (see
Section B.1). One can easily show that <: is a preorder (again, see Section B.1).

2.2 Term type equality

Type equality plays a central role in dependent type systems. In our case, type
equality includes the monoidal rules for semicolon and skip, the expansion of
primitive recursion, and for a form of projection of message types. The rules
in Figure 4 determine what it means for two types to be equal under a given
context. There are ten congruence rules (see Section B.2). The congruence rule
for message types allows, for example, to show the following equality.

size, rank : {x : int | x = 3} ` message rank (rank%size+ 1) float ≡ message 3 1 float

The first pair of rules in Figure 4 provides for the meaning of primitive
recursion. The base case represents a terminated computation (from the point
of view of communications), denoted by skip. The second premise in the rule
ensures that ∀x ≤ i.T is indeed a type, playing no other role in the definition of
type equality. In these cases, we enclose the premise in parenthesis. The induction
step is a sequential composition made of the first iteration (x = i) and the rest of
the iterations (x ≤ i−1). The two rules, together with the congruence rules allow
to show the following equality, where we abbreviate context size : {x : int | x = 3}
by size = 3. Also, for the sake of brevity we omit the datatype in the message
types.

size = 3 ` ∀j ≤ size.(message j (j%size+ 1)) ≡ message 3 1;message 2 3;message 1 2

The next rule in the figure says that a message type that plays no role for a
given process rank is equal to skip. The rule effectively allows to project a given

10 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

type onto a given rank, a notion introduced in the context of multi-party session
types [9], here cleanly captured as type equality. When projecting the above type
onto rank 2 we obtain the following type equality.

size = 3, rank = 2 `
∀j ≤ size.(message j (j%size+ 1)) ≡ skip;message 2 3;message 1 2

Finally, from the monoidal rules we get:

size = 3, rank = 2 ` ∀j ≤ size.(message j (j%size+ 1)) ≡ message 2 3;message 1 2

2.3 Program types

Program types are vectors of term types. Not all vectors are nevertheless of inter-
est. Program types in particular must not deadlock. Below are a few candidates
that, albeit composed of term types, cannot be judged as program types. For
the sake of brevity we once more omit the datatype in types.

(message 1 2), (message 2 1)

(scatter 1), (reduce 1)

(message 1 3; scatter 1), (message 1 3; reduce 1), (message 1 3; scatter 1)

(message 3 1;message 1 2), (message 1 2;message 2 3), (message 2 3;message 3 1)

The first vector of types is blocked for process rank 1 intends to send a mes-
sage to rank 2, whereas rank 2 is ready to send a message to rank 1. A variant
of the type—(message 1 2), (message 1 2)—constitutes a program type. The sec-
ond vector also describes a deadlocked computation: process rank 1 is trying
to distribute an array, whereas rank 2 is not ready to receive its part. The
third case involves a 1–3 message that leads to a deadlocked situation, namely
(scatter 1), (message 1 3; reduce 1), (scatter 1); notice that the second type is equiva-
lent to reduce 1. The fourth case involves a circular waiting situation: the message
between 3 and 1 cannot happen before that of 2 and 3 (see type for rank 3);
the 2–3 message cannot happen before the 1–2 (rank 2); and finally, the 1–2
message cannot happen before the 3–1 message (rank 1). We judge such vector
of types as not constituting program types, based on the intended synchronous
(or unbuffered) message passing semantics.

The rules in Figure 5 are meaning determining for assertions of the form
S : ptype. They rely on two abbreviations: Γn for context size : {x : int | x = n},
and Γn,k for context Γn, rank : {x : int | x = k}. The indispensable agreement
result is Section B.3.

The central intuition of a program type is that it describes a non-deadlocked
computation, that is, a computation that is either halted or that may reduce.
With this in mind it is easy to understand the rules for the collective operations—
reduce, scatter, gather, broadcast, val , if, and skip—they require all types to agree.
The premises, in parenthesis, guarantee the validity of the rules: they ensure the
good formation of the term types involved. The rule for sequential composition

Type-Based Verification of Message-Passing Parallel Programs 11

Program type formation, S : ptype

(Γn ` 1 ≤ l ≤ n true)

reduce l, . . . , reduce l : ptype
(Γn ` 1 ≤ l ≤ n true) Γn ` D <: {x : D′ array | len(x)%size = 0}

scatter l D, . . . , scatter l D : ptype

(Γn ` 1 ≤ l ≤ n true) Γn ` D <: {x : D′ array | len(x)%size = 0}
gather l D, . . . , gather l D : ptype

(Γn ` 1 ≤ l ≤ n true) (Γn, x : D ` T : type)

broadcast l x : D.T, . . . , broadcast l x : D.T : ptype
skip, . . . , skip : ptype

(Γn, x : D ` T : type)

valx : D.T, . . . , valx : D.T : ptype

T1, . . . , Tn : ptype T ′1, . . . , T
′
n : ptype

(T1;T ′1), . . . , (Tn;T ′n) : ptype

Γn ` p : prop (T1, . . . , Tn) : ptype (T ′1, . . . , T
′
n) : ptype

p ?T1 :T ′1, . . . , p ?Tn :T ′n : ptype

(Γn ` l 6= m true) (Γn ` D : dtype)

skip1, . . . , (message l mD), skipl+1, . . . , skipm−1, (message l mD), . . . , skipn : ptype

T1, . . . , Tk, . . . , Tn : ptype Γn,k ` Tk ≡ T ′k : type

T1, . . . , T ′k, . . . , Tn : ptype

Fig. 5. Program type formation

requires programs to be composed of two parts, both of which conform to pro-
gram types. The rule for the collective conditional requires all propositions to
agree, forcing all process to take identical decisions. The rule for messages re-
quires the vector of term types to contain two identical message types; the “rest”
of the vector must itself be composed of skip types. Finally, the last rule allows
to replace equal term types in program types.

With these rules in place we can easily check that the following vector of
term types is a program type.

(message 1 3;message 2 4),message 2 4, (message 1 3;message 2 4),message 2 4

because

(message 1 3;message 2 4), (skip;message 2 4),

(message 1 3;message 2 4), (skip;message 2 4)

is a program type, because both

message 1 3, skip,message 1 3, skip

message 2 4,message 2 4,message 2 4,message 2 4

are program types.
Deciding when an arbitrary vector of term types constitutes a program type

may not be an easy task. There is however a simple case: that of a vector of

12 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Datatype formation, Γ ` D : dtype

Γ ` D : dtype

Γ ` D ref : dtype

Index formation, Γ ` i : D

Γ : context r : D ∈ Γ
Γ ` r : D

Γ ` i : D
Γ ` mkref i : D ref

Γ ` i : D ref
Γ ` !i : D

Γ ` i1 : D ref Γ ` i2 : D

Γ ` i1 := i2 : D

Context formation, Γ : context

Γ : context Γ ` D : dtype r /∈ Γ,D
Γ, r : D : context

Datatype subtyping, Γ ` D <: D

Γ ` D1 ≡ D2

Γ ` D1 ref <: D2 ref

Fig. 6. Reference formation

identical types. Such a program type is of particular relevance for models of
computation where all processes share the same code, hence the same initial
term type.

Lemma 2 (load).

Γn ` T : type . . . Γn ` T : type

T, . . . , T︸ ︷︷ ︸
n copies

: ptype

Proof. A simple analysis on the ten type constructors available, using type equiv-
alence in the case of messages and primitive recursion.

3 A core parallel imperative programming language

This section introduces our core programming language, including references ex-
pressions, stores, processes and programs, as well as the main results of the paper:
agreement for programs (Theorem 1) and progress for programs (Theorem 3).

3.1 References

To deal with imperative features, we introduce the notion of references. We rely
on an extra base set, that of reference identifiers, ranged over by r. References
have impact on datatypes, index terms, contexts, and index subtyping. The rules
in Figure 6 extend those in Figure 1. A new datatype, D ref, describes references
to values of type D. Four new index terms are introduced: references r, and
the conventional operations on references. These include mkref i, which evaluates

Type-Based Verification of Message-Passing Parallel Programs 13

index term i and returns a reference to the value, !i which retrieves the value
associated to the reference described by i, and i1 := i2 which replaces the value
associated with reference i1 by the value of index term i2. We also need a new
formation rule for ref datatypes. Typing contexts Γ may now contain reference
entries r : D in addition to variable entries x : D; the new formation rule is in
Figure 6. We can easily check that the various definitions are still well formed
(cf. Lemma 1), and that index term subtyping remains a pre-order.

We designed our programming language in such a way that it directly han-
dles index terms. The pure index terms of Figure 1 are however extended with
effectful operations, such as reference creation and assignment. The meaning of
expressions with effects when they occur as index objects to type families is un-
determined. For this reason we are careful in requiring index objects appearing
in types to remain pure.

3.2 Expressions

The constructors of our language can intuitively be divided in two parts: conven-
tional expressions usually found in a while-language and communication-specific
expressions. The rules in Figure 7 characterise what it means to be an expres-
sion e of a type T under a context Γ , abbreviated to Γ ` e : T .

In an expression of the form send i1 i2, index term i1 (of datatype int) denotes
the target process and index term i2 (of datatype D) describes the value to be
sent. The type of the send expression is message rank i1D, representing a message
from process rank to process i1 containing a value of datatype D. The premises
come naturally if one considers the hypothesis necessary for message rank i1D to
be considered a type under context Γ , namely, i1 must denote a valid process
number and must be different from the sender’s rank. The value to be sent, i2,
must naturally be of datatype D, so that it conforms to the value the message
is supposed to exchange. An expression of the form receive i1 i2 denotes the re-
ception of a value (of datatype D) from process i1. The value is stored in the
reference (of datatype D ref) denoted by index term i2. The type of the expres-
sion is message i1rankD, expressing the fact that a message is transmitted from
process i1 to the target process rank.

The reduce expression requires three index term arguments: the first is the
target process (the one that receives the maximum of the values proposed by
all processes), the second is the value each process proposes, and the third is
the reference on which the target process saves the maximum of all values. The
premises require i1 to denote a valid rank, i2 to be of float datatype, and i3 to be
a reference to a float. The type of the expression is simply reduce i1, for the values
transmitted and received are not captured by the type, since it will always be a
float.

The gather expression is similar to reduce on what concerns the meaning of
its three arguments. The first is the target process (the one receiving the various
subarrays), the second denotes the subarrays proposed by the various processes,
and the third is the reference that will hold the concatenation of the subarrays.
The premises reflect these conditions; notice how the types for the arrays embody

14 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D

Γ ` send i1 i2 : message rank i1D

Γ ` 1 ≤ i1 ≤ size ∧ i1 6= rank true Γ ` i2 : D ref
Γ ` receive i1 i2 : message i1 rankD

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : float Γ ` i3 : float ref
Γ ` reduce i1 i2 i3 : reduce i1

Γ ` 1≤ i1≤size true Γ ` i2 : D array ref Γ ` i3 : {x : D array | len(x) = size ∗ len(i2)}
Γ ` gather i1 i2 i3 : gather i1 (D array)

Γ ` 1≤ i1≤size true Γ ` i2 : {x : D array | len(i3) = size ∗ len(x)} ref Γ ` i3 : D array
Γ ` scatter i1 i2 i3 : scatter i1 (D array)

Γ ` 1 ≤ i1 ≤ size true Γ ` i2 : D Γ, x : D ` e : T rank /∈ fv(i1)

Γ ` letx : D = broadcast i1 i2 in e : broadcast i1 x : D.T
Γ ` i : D Γ, x : D ` e : T

Γ ` letx : D = val i in e : valx : D.T
Γ ` p : prop Γ ` e1 : T1 Γ ` e2 : T2 rank /∈ fv(p)

Γ ` ifc p then e1 else e2 : p ?T1 :T2

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1; e2 : T1;T2

(Γ : context)

Γ ` skip : skip
Γ, x : {y : int | y ≤ i} ` e : T
Γ ` forx : i..1 do e : ∀x ≤ i.T

Γ ` p : prop Γ ` e1 : T Γ ` e2 : T

Γ ` if p then e1 else e2 : T

Γ ` p : prop Γ ` e : skip
Γ ` while p do e : skip

Γ ` i : D Γ, x : D ` e : T x /∈ fv(T)

Γ ` letx : D = i in e : T
Γ ` e : T1 Γ ` T1 ≡ T2 : type

Γ ` e : T2

In all rules, T and D contain no ref datatypes.

Fig. 7. Expression formation

the relation between their lengths, as required by the type formation rule in
Figure 1. The rule for the scatter expression is similar, except that the order of
the last two parameters is exchanged (i2 denotes the subarrays received by each
process and i3 the array to be distributed), in such a way that the last parameter
is evaluated only at the root process.

In a broadcast expression, index term i1 denotes the root process and index
term i2 the value to be distributed. The index term denoting the root process
cannot refer to the special variable rank, for this has different values at different
processes, precluding all processes from agreeing on a common root process.
Contrary to the expressions studied so far, where the object of communications
is stored in a reference, the value distributed by the root process is collected in
a variable x and made available to an explicit continuation expression e. This
strategy keeps the expression and the type aligned, as made clear by the type
formation rule: variable x (of datatype D) is moved into the context to type the
continuation, while retaining its presence in the dependent type for broadcast.
The same applies to expression val, where the value of the index term i is made

Type-Based Verification of Message-Passing Parallel Programs 15

available, via variable x, to the continuation expression e, while being present in
the val -dependent type. The rule for the collective conditional expression requires
variable rank not to occur in the proposition. The restriction allows all processes
to decide equally, given that rank has different values in different processes.

The expression formation rule for sequential composition e1; e2 is standard,
except perhaps for its type, T1;T2, composed of the types T1 and T2 for expres-
sions e1 and e2. Expression skip has type skip as expected, even though many
other expressions may have this type. To inhabit the ∀-type, the language counts
with a for loop. In forx : i..1 do e, variable x takes values i, i−1, . . . , 1 in each dif-
ferent iteration of the loop. The rule for the conditional expression is standard,
and so is the one for the while loop. Notice that the while p e expression requires e
to be of type skip, not allowing the loop to perform any communication action.
If communications are required in a loop body, then a for loop must be used.
An expression of the form letx : D = i in e evaluates index term i and continues
as e with variable x replaced by the value of i. The type T of the let is that of
the expression e, hence variable x cannot be free in T . The dependent version
of this expression is the val expression introduced above. The last expression
formation rule introduces type equality. Agreement for expression formation is
in Section B.5.

The bindings for expressions are as follows. Variable x is bound in expres-
sions letx : D = broadcast i1 i2 in e, letx : D = val i in e, letx : D = i in e, and
forx : i..1 do e. The notion of free variables, fv(e), is defined accordingly. Among
all index terms, we call values to integer constants n, to floating point numbers
f , to vectors of values [v1, . . . , vn], and to reference identifiers r, and collectively
denote them by v. The notion of substitution, e{v/x}, is defined in the stan-
dard, inductive way, from that of free variables. The standard result of term
substitution in dependent types is in Section B.5.

Figure 8 presents a schematic implementation of the finite differences algo-
rithm in our language. We can show that

size : {x : int | x ≥ 2}, rank : {y : int | 1 ≤ y ≤ size} ` e : T

where e is the expression in Figure 8 and T the type in Figure 3. It worth
pointing out that the internal ∀-type in Figure 3 (∀l ≤ size.) is inhabited by the
long for-loop in the second column in Figure 8. The different send/receive orders,
crucial to ensure absence of deadlock, conform to a type that is made equal to
the ∀-type via type equality alone. Notice that this sort of code is extremely
sensitive to variations, thus reinforcing the potential of the type-based approach
to verification of parallel programming.

3.3 Stores

Intuitively stores are maps from reference identifiers into values. The formation
rules are in Figure 9. Stores can be easily converted into contexts; the rules in
Figure 9 determine the meaning of assertions ρ to Γ . A store entry of the form
r := v is transformed into a context entry r : D ref, if the initial part of the store

16 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

let n : {x : int | x ≥ 0 ∧ x%size = 0} =
val <read-the-dimension> in

let max : int ref = mkref 0 in

let global : {a : float array | len(a) = n} ref =
mkfloatarray n in

if rank = 1 then

max := <read-max-iterations>;

global := <read-the-global-array>;

let m : int = broadcast 1 !max in

let local : {b : float array | len(b) ∗ size = n}
ref = mkfloatarray (n/size) in

scatter 1 local !global ;

let left : {x : int | 1 ≤ x ≤ size} =
(rank− 2 + size)%size+ 1 in

let right : {x : int | 1 ≤ x ≤ size} =
rank%size+ 1 in

let lRecv : float ref = mkref 0.0 in

let rRecv : float ref = mkref 0.0 in

let gError : float ref = mkref 0.0 in

let lError : float ref = mkref 0.0 in

for i : m..1 do

if rank = 1 then

send left local [1]

send right local [n/size]

receive right !rRecv

receive left !lRecv

else if rank = size then

receive right !rRecv

receive left !lRecv

send left local [1]

send right local [n/size]

else

receive left !lRecv

send left local [1]

send right local [size/n]

receive right !rRecv

<compute-next-local-and-lError>
let x : float = allreduce !lError in

gError := x;

gather 1 !local global

Fig. 8. The algorithm for finite differences

Stores, ρ : store

ε : store
ρ : store r /∈ ρ ρ to Γ Γ ` v : D

ρ, r := v : store

Stores as contexts, ρ to Γ

(ε : store) to (ε : context)
ρ to Γ Γ ` v : D (r /∈ ρ, Γ,D)

(ρ, r := v) to (Γ, r : D ref)

Fig. 9. Store formation and store-to-context conversion

is transformed in context Γ and Γ ` v : D. We can easily check that agreement
holds (see Section B.6).

In the sequel we abuse the notation and write ρ where a context is expected.
For example ρ ` i : D means Γ ` i : D where ρ to Γ . Store update, notation
ρ[r := v], is the store ρ′, r := v, ρ′′ if ρ is of the form ρ′, r := v′, ρ′′ and ρ′ ` r :
D ref and ρ′ ` v : D.

Type-Based Verification of Message-Passing Parallel Programs 17

(ρ : store)

(ρ,m)↓n,k (ρ,m) : int
(ρ : store)

(ρ, f)↓n,k (ρ, f) : float
(ρ : store)

(ρ, size)↓n,k (ρ, n) : int

(ρ : store)

(ρ, rank)↓n,k (ρ, k) : int
r := v ∈ ρ ρ ` v : D (ρ : store)

(ρ, r)↓n,k (ρ, r) : D ref

(ρ1, i)↓n,k (ρ2, v) : D r /∈ ρ2
(ρ1,mkref i)↓n,k ((ρ2, r := v), r) : D ref

(ρ1, i)↓n,k (ρ2, r) : D ref r := v ∈ ρ2
(ρ1, !i)↓n,k (ρ2, v) : D

(ρ1, i1)↓n,k (ρ2, r) : D ref (ρ2, i2)↓n,k (ρ3, v) : D

(ρ1, i1 := i2)↓n,k (ρ3[r := v], v) : D

(ρ1, i1)↓n,k (ρ2, v1) : int (ρ2, i2)↓n,k (ρ3, v2) : int
(ρ1, i1 + i2)↓n,k (ρ3, v1 + v2) : int

(ρ1, i1)↓n,k (ρ2, v1) : D . . . (ρn, in)↓n,k (ρn+1, vn) : D

(ρ1, [i1, . . . , in])↓n,k (ρn+1, [v1, . . . , vn]) : D array

(ρ1, i1)↓n,k (ρ2, [v1, . . . , vl]) : {x : D array | len(x) = l}
(ρ2, i2)↓n,k (ρ3,m) : {y : int | 1 ≤ y ≤ l}

(ρ1, i1[i2])↓n,k (ρ3, vm) : D

(ρ1, i)↓n,k (ρ2, [v1, . . . , vn]) : D array
(ρ1, len(i))↓n,k (ρ2, n) : int

(ρ1, i)↓n,k (ρ2, v) : D1 ρ2 ` D2 <: D1

(ρ1, i)↓n,k (ρ2, v) : D2

(ρ1, i)↓n,k (ρ2, v) : D Γn,k, ρ2 ` p{i/x} true
(ρ1, i)↓n,k (ρ2, v) : {x : D | p}

Fig. 10. Index term evaluation

Index terms are evaluated against a store; evaluation also resolves the distin-
guished variables size and rank. The rules in Figure 10 are meaning determining
for assertions of the form (ρ1, i) ↓n,k (ρ2, v) : D, abbreviating “index term i of
datatype D evaluates under store ρ1, size = n, and rank = k, yielding a value
v of datatype D and a new store ρ2”. The rules are straightforward; we briefly
describe them. The two rules for constants (integer and floating point) evaluate
the constants to themselves, keeping the store unchanged. The two rules for the
special variables (size and rank) read the variables’ values from the parameters
n and k, again keeping the store unchanged. The rules for references and for
arithmetic and array operations, should be easy to understand based on the
explanations above and their intuitive meaning. The last two rule introduce re-
finement types and subtyping, necessary, e.g., to ensure that index term i1[i2] is
well-formed in the evaluation rule for array access; they should not be needed
when the rules are used in “evaluation” mode. Agreement for evaluation is in
Section B.6.

The following result links deducibility to index term evaluation, stating that
evaluation succeeds on well formed index terms, thus contributing to the progress
result.

18 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

(ρ, i)↓n,k (ρ′, v) : D (Γn,k, ρ, x : D ` e : T) (x 6∈ fv(T))

(ρ, letx : D = i in e)→n,k (ρ′, e{v/x})

Γn,k, ρ ` p true (Γn,k, ρ ` e1, e2 : T)

(ρ, if p then e1 else e2)→n,k (ρ, e1)

Γn,k, ρ ` ¬p true (Γn,k, ρ ` e1, e2 : T)

(ρ, if p then e1 else e2)→n,k (ρ, e2)

Γn,k, ρ ` p true (Γn,k, ρ ` e : skip)
(ρ,while p do e)→n,k (ρ, (e;while p do e))

Γn,k, ρ ` ¬p true (Γn,k, ρ ` e : skip)
(ρ,while p do e)→n,k (ρ, skip)

Γn,k, ρ ` i ≥ 1 true (Γn,k, ρ, x : {y : int | y ≤ i} ` e : T)
(ρ, forx : i..1 do e)→n,k (ρ, (e{i/x}; forx : i− 1..1 do e))

Γn,k, ρ ` i < 1 true (Γn,k, ρ, x : {y : int | y ≤ i} ` e : T)
(ρ, forx : i..1 do e)→n,k (ρ, skip)

(ρ, e1)→n,k (ρ′, e3) (Γn,k, ρ ` e2 : T)

(ρ, (e1; e2))→n,k (ρ′, (e3; e2))

(Γn,k, ρ ` e : T)
(ρ, (skip; e))→n,k (ρ, e)

Fig. 11. Process reduction

Lemma 3 (evaluation succeeds).

Γn,k, ρ1 ` i : D
(ρ1, i)↓n,k (ρ2, v) : D

Proof. By rule induction on the hypothesis.

3.4 Processes

A process p is a pair (ρ, e) composed of a store ρ and an expression e. The rule
below determines the meaning for assertions of the form Γ ` q : T .

Γ, ρ ` e : T
Γ ` (ρ, e) : T

The rules in Figure 11 determine what it means for a process q1 to reduce to a
process q2 given that size = n and rank = k, that is, they determine the meaning
of assertions q1 →n,k q2. The rules should be self-explanatory. The let expression
evaluates index i to value v and proceeds with expression e with v replacing vari-
able x. Since let is a local (process) operation, x cannot be free in T , as discussed
before. The premises in parenthesis guarantee the good formation of the stores
and expressions involved. The remaining rules—for conditionals, while and for
loops, and sequential composition—are standard. Notice that process reduction
does not change the type of the expressions involved. That the definition is well
formed follows from the following result.

Lemma 4 (agreement for process reduction).

q →n,k q′

Γn,k ` q : T Γn,k ` q′ : T

Type-Based Verification of Message-Passing Parallel Programs 19

Proof. By rule induction on the hypothesis.

Lemma 5 (process reduction is deterministic).

q1 →n,k q2 q1 →n,k q3
q2 = q3

Proof (sketch). The case for sequential composition follows by a simple induc-
tion. All other cases follow from the fact that evaluation is deterministic and
from the fact that either p or 6= p is true.

The following lemma ensures that processes do not get stuck and will play
its part in the main result of the paper.

Lemma 6 (progress for processes).

Γn,k, ρ ` e : skip
e is skip or (ρ, e)→n,k q

Γn,k, ρ ` i : D Γn,k, ρ, x : D ` e : T x 6∈ fv(T)

(ρ, letx : D = i in e)→n,k q

Γn,k, ρ ` p : prop Γn,k, ρ ` e1, e2 : T

(ρ, if p then e1 else e2)→n,k q

Γn,k, ρ ` p : prop Γn,k, ρ ` e : skip
(ρ,while p do e)→n,k q

Γn,k, ρ ` i : int Γn,k, ρ, x : {y : int | y ≤ i} ` e : T
(ρ, forx : i..1 do e)→n,k q

Proof (sketch). By analysis of the hypotheses. For example, in the let rule, build-
ing from Γn,k, ρ ` i : D and the fact that evaluation succeeds (Lemma 3), we
obtain (ρ, i) ↓n,k (ρ′, v) : D. This, combined with premises Γn,k, ρ, x : D ` e : T
and x 6∈ fv(T) constitute the necessary conditions to apply reduction for let pro-
cesses in Figure 11, obtaining (ρ, letx : D = i in e) →n,k (ρ′, e{v/x}). All other
cases excepting skip are similar. For Γn,k, ρ ` e : skip, we rely on the inversion
lemma for expression formation (cf. proof of Theorem 3) and analyse all expres-
sions such that Γ ` e : skip, showing that e is either skip or there exists a process
reduction rule such that (ρ, e)→n,k (ρ′, e′).

3.5 Programs

A program is a vector of processes q1, . . . , qn. Not all such vectors are of interest
to us. The following rule is meaning determining for assertions of the form P : S.

Γn,1 ` q1 : T1 . . . Γn,n ` qn : Tn T1, . . . , Tn : ptype

q1, . . . , qn : T1, . . . , Tn

The rules in Figure 12 determine what it means for a program P1 to reduce to
a program P2, that is, they determine the meaning of assertions P1 → P2. Pro-
gram reduction is composed of six collective barrier-like rules—for send/receive,
reduce, scatter, gather, broadcast, and val—one rule for collective decisions, and
one rule that provides for local process reduction. As in the previous cases, the
premises to the rule may be divided in two parts: those governing the reduction

20 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

il ↓n m (ρl, i
′
l)↓n,l (ρ′l, v) : D im ↓n l (ρm, i

′
m)↓n,m (ρ′m, r) : D ref (l 6= m)

(Γn,l ` el : T) (Γn,m ` em : T) (Γn,k ` qk : T) (k = 1..n, k 6= l,m)

q1, . . . , ql−1, (ρl, send il i′l; el), ql+1, . . . , qm−1, (ρm, receive im i′m; em), qm+1 . . . , qn →
q1, . . . , ql−1, (ρ

′
l, el), ql+1, . . . , qm−1, (ρ

′
m[r := v], em), qm+1 . . . , qn

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, fk) : float

(ρ′l, i
′′
l)↓n,l (ρ′′l , r) : float ref (Γn ` 1 ≤ ik ≤ n true) (k = 1..n)

(ρk, reduce ik i′k i
′′
k)

n
k=1 → (ρ′k, skip)

l−1
k=1, (ρ

′′
l [r := max(v1, .., vn)], skip), (ρ′k, skip)

n
k=l+1

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, rk) : {x : D array | len(x) ∗ size = len(i′′k)} ref (k = 1..n)

(ρ′l, i
′′
l)↓n,l (ρ′′l , [~v1, . . . , ~vn]) : D array (Γn ` 1 ≤ ik ≤ n true) (Γn,k, ρk ` i′′k : D array)
(ρk, scatter ik i′k i

′′
k)

n
k=1 →

(ρ′k[rk := [~vk]], skip)l−1
k=1, (ρ

′′
l [rl := [~vl]], skip), (ρ′k[rk := [~vk]], skip)nk=l+1

ik ↓n l (ρk, i
′
k)↓n,k (ρ′k, [~vk]) : D array (ρ′l, i

′′
l)↓n,l (ρ′′l , r) : {x : D array | len(x) = size ∗ len(i′k)} ref

(Γn ` 1 ≤ ik ≤ n true) (Γn,k, ρk ` i′k : D array) (k = 1..n)

(ρk, gather ik i′k i
′′
k)

n
k=1 → (ρ′k, skip)

l−1
k=1, (ρ

′′
l [rl := [~v1, . . . , ~vn]], skip), (ρ′k, skip)

n
k=l+1

ik ↓n l (ρl, i
′
l)↓n,l (ρ′l, v) : D (Γn ` 1 ≤ ik ≤ n true)

(Γn,k, ρk ` i′k : D) (Γn,k, x : D, ρk ` ek : T) (k = 1..n)

(ρk, letx : D = broadcast ik i′k in ek)
n
k=1 →

(ρk, ek{v/x})l−1
k=1, (ρ

′
l, el{v/x}), (ρk, ek{v/x})nk=l+1

ik ↓n v (Γn,k, x : D, ρk ` ek : T) (k = 1..n)

(ρk, let x : D = val ik in ek)nk=1 → (ρk, ek{v/x})nk=1

Γn ` pk true (Γn,k, ρk ` ek : T) (Γn,k, ρk ` e′k : T ′)

(ρ1, ifc p1 then e1 else e′1), . . . , (ρn, ifc pn then en else e′n)→ (ρ1, e1), . . . (ρn, en)

(qk, ek)
n
k=1 → (q′k, e

′′
k)

n
k=1 (Γn,k ` e′k : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

(qk, (ek; e′k))
n
k=1 → (q′k, (e

′′
k ; e
′
k))

n
k=1

ql →n,l q′l (Γn,k ` qk : Tk) (T1, . . . , Tn : ptype) (k = 1..n)

q1, . . . , qn → q1, . . . , ql−1, q′l, ql+1, . . . , qn

In all rules, D and T contain no ref types and rank /∈ fv(D,T)
Omitting dual rule for receive-send and the Γ ` ¬pk true rule for ifc.

Fig. 12. Program reduction

process itself, and those guaranteeing the good formation of the programs in-
volved. The latter are enclosed in parenthesis, as before. Notation i ↓n v abbrevi-
ates the evaluation of an int index term under the empty store, (ε, i)↓n (ε, v) : int.
The proviso in all rules that types and datatypes do not contain ref datatypes
impedes reference passing (and the associated problem of dangling references at
the receiving process). A similar reason forbids the rank variable in types, for
this variable has a different value in each different process.

The rule for message-passing (the first rule in Figure 12), evaluates both
index terms in both the send and the receive process. There is a fundamental

Type-Based Verification of Message-Passing Parallel Programs 21

difference between the first and the second parameter in both cases. The first
describes a process rank (target or source), the second the value to be passed,
or the reference to hold the result. In general, index terms that denote process
ranks cannot refer to the store, for these exact indices show up in the type
of the processes (messagemilD, in the send case). In such cases we use the
abbreviated evaluation, as in il ↓n m. In all other cases, we use evaluation under
a generic store, as in (ρl, i

′
l) ↓n,l (ρ′l, v) : D. The send/receive processes reduce to

skip (the stores evolve accordingly); the others remain unchanged. The case of
the rule for reduce is illustrative of a feature of single-instruction-multiple-data
models: the third parameter is evaluated at one site only (namely process l,
cf. (ρ′l, i

′′
l) ↓n,l (ρ′′l , r) : float ref), yet the source code (index term i′′k) appears in

all processes. In the rule for broadcast (and let) we follow a strategy slightly
different from that of reduce (and scatter/gather). Since a value is transmitted to
all processes, the broadcast expression features an explicit continuation, allowing
to substitute the value directly in the continuation process ek (and in its type T),
as opposed to using references.

That the definition is well formed is the theme of the next theorem.

Theorem 1 (agreement for program reduction).

P1 → P2

P1 : S1 P2 : S2

Proof (sketch). By rule induction on assertion P1 → P2. There are eight cases
to consider. The case for process reduction follows by agreement for process re-
duction (Lemma 4). The cases for collective operations and message passing all
follow a similar strategy. P1 is (ρk, ek)nk=1, P2 is (ρ′k, e

′
k)

n
k=1. From the premises

of the rules for (ρk, ek)
n
k=1 → (ρ′k, e

′
k)

n
k=1 we obtain the necessary hypotheses

to build the expression typings for Γn,k, ρk ` ek : T and Γn,k, ρ′k ` e′k : T ′.
From agreement of expression formation we know that Γn,k, ρk ` T : type and
Γn,k, ρ′k ` T ′ : type. We can eliminate ρk and ρ′k from the contexts (strengthen-
ing), given that neither T nor T ′ contain references. That T, . . . , T : ptype fol-
lows from the Load lemma (lemma 2). Showing that T ′, . . . , T ′ : ptype amounts
to checking that the premises of the appropriate rules in Figure 5 are satisfied
for each case.

Program reduction is Church-Rosser. As usual this does not mean that it is
strongly normalising: taking advantage of while-loops, processes may engage in
infinite computations.

Theorem 2 (Program reduction is Church-Rosser).

P1 → P2 P1 → P3

P2 → P4 P3 → P4

Proof (sketch). By rule induction on the first hypothesis. The cases of reduce,
scatter, gather, broadcast, val, ifc (both rules) follow from the fact that evaluation
is deterministic and that either p or 6= p is true. When P1 → P2 is obtained with

22 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

send/receive rule, we analyse the possible P1 → P3 reductions. Given the form of
P1 only two cases may hold. If P3 is obtained via the send/receive rule, the two
processes involved are different from those involved in the P1 → P2 reduction,
otherwise P1 would not be well formed. Then we can easily see that there is P4

such that P2 → P4 and P3 → P4, both using the send/receive rule. If, on the
other hand, P3 is obtained via the process rule, then we know that the process
involved is neither the send nor the receive process, since these expressions do not
reduce via process reduction. Then again, we can easily build a program P4 such
that P2 → P4 via the process rule, and P3 → P4 via the send/receive rule.

In preparation for the progress result, we determine the meaning of assertions
of the form P halted using the following rule.

(ρ1 : store) . . . (ρn : store)

(ρ1, skip), . . . , (ρn, skip) halted

We are finally in a position to establish our progress result.

Theorem 3 (progress for programs).

P1 : S

P1 halted or P1 → P2

Proof (sketch). From the hypothesis and the formation rule for programs, we
know that S : ptype. The proof proceeds by rule induction on this assertion.
There are nine cases to consider. The case for the type equality rule follows by
induction. For the others we establish an inversion lemma for each of the type
constructors in our language. For example, if Γ ` e : broadcast i x : D.T then e is
either

– letx : D1 = broadcast i1 i2 in e1 and Γ ` D1 ≡ D : dtype and Γ ` i1 = i true
and Γ ` 1 ≤ i1 ≤ size true and Γ ` i2 : D and Γ, x : D ` e1 : T , or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(broadcast i x : D.T) and
Γ, y : D1 ` e1 : broadcast i x : D.T , or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : broadcast i x : D.T and
Γ ` e2 : broadcast i x : D.T , or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : broadcast i x : D.T .

We then distinguish two cases: a) the expressions in all processes are of the
form letx : Dk = broadcast ik i′k in ek, b) at least one of the expressions is not
broadcast. In the former case we show that P1 reduces under the broadcast rule.
For the latter, we analyse the three possibilities to conclude that, in each case,
P1 reduces under one of the process reduction rules (Lemma 6).

4 Related work

With more than 20 years of existence MPI [4] is the de facto standard for high-
performance computing, admittedly the most widely used API for program-
ming distributed message-passing applications. The verification effort for MPI

Type-Based Verification of Message-Passing Parallel Programs 23

programs centres on debuggers and software verifiers. Tools such as ISP [22],
DAMPI [27], and MUST [8] are runtime verifiers that aim at detecting dead-
locks, hence are dependent on the quality of the tests. TASS [26] is a bounded
model checker that uses symbolic execution to explore C+MPI program execu-
tions, verifying safety properties and functional equivalence to serial programs.
The approach performs a number of checks besides deadlock detection (such
as, buffer overflows and memory leaks), but, as expected, does not scale with
the number of processes. MOPPER [3] searches for deadlocks using SAT and
a partial-order encoding, offering a more scalable solution. The purpose of our
work is not detecting deadlocks; our type checker ensures that programs cannot
possibly deadlock.

The type theory here developed is part of a larger effort aiming at a compre-
hensive approach to type-based verification of parallel programs [18]. The project
includes a toolchain for deductive verification of real world parallel programs
written in the C programming language using MPI for inter-process communi-
cation. Currently, the toolchain is composed of an Eclipse plug-in, an annotated
MPI library, a C annotator, and makes use of the Verifying C Compiler (VCC)
and the Z3 SMT solver. The Eclipse plug-in allows for developing protocol spec-
ifications (the types in this paper), verifies that protocols are well formed (with
the help of Z3 for constraint satisfiability), and generates protocol representa-
tions in VCC format. The annotated MPI library contains the contracts of a
core subset of MPI primitives, plus the base logic for protocol representation
and program-protocol matching. The C annotator is a Clang/LLVM applica-
tion that analyses the C+MPI source code and generates VCC annotations. The
annotated C+MPI program is then checked by VCC to prove its conformance
against the given protocol. A key result is that C+MPI programs can be verified
in constant time, independently of the number of processes or values for program
inputs, unlike other approaches (e.g., model checking and symbolic execution)
that stumble on the state-explosion problem. The Eclipse plugin may also syn-
thesise fully functional C+MPI programs that are correct-by-construction. Such
code may then be further complemented with user-provided C functions that
merely implement the local computations eschewing MPI primitives. We have
also transposed the theory presented in this paper to the Why3 language. The
Eclipse plugin compiles the protocol into Why3 against which WhyML programs
are checked. Details are provided in [10, 14–16, 24].

The rich field of session types [12] provides for a major source of inspira-
tion for this work. From the theory of multiparty session types [9], Scribble [11],
a concrete protocol specification language, was developed. Scribble protocols
describe high level, global, communication patterns. Under this framework, a
protocol is first defined that specifies interactions among all principals. From
such a protocol, or global type, local types are obtained by end-point projection
onto particular principals. Code may then be developed for each end-point, us-
ing specific libraries for the Scribble’s message-passing primitives (Session C is
one such example [20]). The whole development methodology ensures that the
resulting code is exempt from deadlocks. In our case, rather than using two sep-

24 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

arate languages for global and local types, we see global types as vectors of local
types subject to certain restrictions. The projection operator is cleanly captured
in our setting via type equality. Another central distinction is that all our pro-
cesses run the same code, as opposed to requiring the separate development for
each different kind of participant in a distributed computation.

Among all works on session types, the closest to ours is probably that of
Deniélou, Yoshida et al. [1], introducing dependent types and a form of primi-
tive recursion into session types. The system here proposed provides for various
communication primitives (in contrast to message passing only) and incorpo-
rates dependent collective choices. One the other hand, we do not allow passing
protocols on messages, a feature not used in the field of parallel programming.
At the term level, we work with a while language, as opposed to a variant of the
the π-calculus. Kouzapas et al. introduce a notion of broadcast in the setting
of session types [13]. A new operational semantics system allows to describe 1-
to-n and n-to-1 message passing, where n is not fixed a priori, meaning that a
non-deterministic number of processes may join the operation, the others being
left waiting. Types, however, do not distinguish point-to-point from broadcast
operations. We work on a deterministic setting and provide a much richer choice
of type operators.

Following Martin-Löf’s works on constructive type theory [17], a number of
programming languages have made use of dependent type systems. Rather than
taking advantage of the power of full dependent type systems (that brings un-
decidability to type checking), Xi and Pfenning [29] introduce a restricted form
of dependent types, where types may refer to values of a restricted domain, as
opposed to values of the term language. The type checking problem is then re-
duced to constraint satisfiability, for which different tools nowadays are available.
Our language follows this approach. Xanadu [28] incorporates these ideas in a
imperative C-like language. Omega [25] and Liquid Types [23] are two further
examples of pure functional languages that either resorting to theorem prov-
ing or do type inference. All these languages are functional; their type systems
cannot abstract program’s communication patterns.

5 Conclusion and further work

We developed a type theory for parallel, message-passing, programming. The
type language includes constructs matching those usually found in the practice
of parallel programming, namely different forms of communication primitives, as
well as sequential composition, primitive recursion, and a novel collective choice
operator. Type dependency is taken from the domain of integer, floating point
and array values, making type checking decidable. We have also introduced a
core while language equipped with primitives matching those at the type level.
The main result is soundness in the form of agreement for program reduction
(akin to subject-reduction) and progress for programs. The theory has been put
into to practice in a number of forms, including the verification of real world
C+MPI programs.

Type-Based Verification of Message-Passing Parallel Programs 25

Even if processes run in parallel, our language is intrinsically deterministic,
hence exempt from races. The practice of MPI programming has shown us that
“wildcard receives” (whereby a receive process can match any sender targeting
the process) are often used, either for efficiency purposes or simply for easing
programming. Wildcard receive introduces additional challenges that we want
to look at in the future. MPI is equipped with different communication seman-
tics, including synchronous (or unbuffered, the one addressed in this paper) and
buffered. For the latter case, MPI features non-blocking sends together with a
wait operation that blocks until the memory space associated to the message con-
tents can be reused. We believe that our framework can accommodate buffered
semantics, at the expense of additional complexity both at the type and the
operational semantics level. Finally, control-flow based on transmitted data (as
opposed to explicit “control” messages usually found in, say, session types) is
ubiquitous in MPI programming. Our type language already supports (depen-
dent) collective decisions, but loops (catering for e.g., numerical convergence)
introduce additional difficulties which we would like to address.

Acknowledgments. This work is supported by FCT through project Ad-
vanced Type Systems for Multicore Programming and project Liveness, Stat-
ically (PTDC/EIA-CCO/122547 and 117513/2010) and the LaSIGE lab (PEst-
OE/EEI/UI0408/2011). We would like to thank Dimitris Mostrous for his in-
sightful comments.

References

1. Deniélou, P., Yoshida, N., Bejleri, A., Hu, R.: Parameterised multiparty session
types. Logical Methods in Computer Science 8(4) (2012)

2. FEVS: A functional equivalence verification suite, http://vsl.cis.udel.edu/
fevs/

3. Forejt, V., Kroening, D., Narayanswamy, G., Sharma, S.: Precise predictive analysis
for discovering communication deadlocks in mpi programs. In: FM. LNCS, vol.
8442, pp. 263–278. Springer (2014)

4. Forum, M.P.I.: MPI: A Message-Passing Interface Standard Version 3.0. University
of Tennessee (2012)

5. Foster, I.: Designing and building parallel programs. Addison-Wesley (1995)
6. Gordon, A.D., Fournet, C.: Principles and applications of refinement types. In:

Logics and Languages for Reliability and Security, pp. 73–104. IOS Press (2010)
7. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming with

the message passing interface. MIT press (1999)
8. Hilbrich, T., Protze, J., Schulz, M., de Supinski, B.R., Müller, M.S.: MPI run-

time error detection with MUST: advances in deadlock detection. In: SC. p. 30.
IEEE/ACM (2012)

9. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL. pp. 273–284. ACM (2008)

10. Honda, K., Marques, E.R.B., Ng, N., Vasconcelos, V.T., Yoshida, N.: Verification
of MPI programs using session types. In: Recent Advances in the Message Passing
Interface. LNCS, vol. 7490, pp. 291–293. Springer (2012)

26 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

11. Honda, K., Mukhamedov, A., Brown, G., Chen, T.C., Yoshida, N.: Scribbling in-
teractions with a formal foundation. In: ICDCIT. LNCS, vol. 6536, pp. 55–75.
Springer (2011)

12. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: ESOP. LNCS, vol. 1381,
pp. 122–138. Springer (1998)

13. Kouzapas, D., Gutkovas, R., Gay, S.J.: Session types for broadcasting. In: PLACES.
EPTCS, vol. 155, pp. 25–31 (2014)

14. Lemos, F.: Synthesis of correct-by-construction MPI programs. Master’s thesis,
Department of Informatics, University of Lisbon (2014)

15. Marques, E.R.B., Martins, F., Vasconcelos, V.T., Ng, N., Martins, N.: Towards de-
ductive verification of MPI programs against session types. In: PLACES. EPTCS,
vol. 137, pp. 103–113 (2013)

16. Marques, E.R.B., Martins, F., Vasconcelos, V.T., Santos, C., Ng, N., Yoshida, N.:
Protocol-based verification of MPI programs. DI-FCUL 5, University of Lisbon
(2014)

17. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis-Napoli (1984)
18. MPI Sessions, http://gloss.di.fc.ul.pt/MPISessions
19. Nelson, N.: Primitive recursive functionals with dependent types. In: MFPS. LNCS,

vol. 598, pp. 125–143. Springer (1991)
20. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe parallel programming

with message optimisation. In: TOOLS Europe. LNCS, vol. 7304, pp. 202–218.
Springer (2012)

21. Pacheco, P.: Parallel programming with MPI. Morgan Kaufmann (1997)
22. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Palmer, R., Thakur, R., Gropp, W.:

Practical model-checking method for verifying correctness of MPI programs. In:
PVM/MPI. LNCS, vol. 4757, pp. 344–353. Springer (2007)

23. Rondon, P.M., Kawaguchi, M., Jhala, R.: Liquid types. In: PLDI. pp. 159–169.
ACM (2008)

24. Santos, C.: Protocol based programming of concurrent systems. Master’s thesis,
Department of Informatics, University of Lisbon (2014)

25. Sheard, T., Linger, N.: Programming in Omega. In: CEFP. LNCS, vol. 5161, pp.
158–227. Springer (2007)

26. Siegel, S.F., Zirkel, T.K.: Automatic formal verification of MPI-based parallel pro-
grams. In: PPOPP. pp. 309–310. ACM (2011)

27. Vo, A., Aananthakrishnan, S., Gopalakrishnan, G., de Supinski, B.R., Schulz, M.,
Bronevetsky, G.: A scalable and distributed dynamic formal verifier for MPI pro-
grams. In: SC. pp. 1–10. IEEE (2010)

28. Xi, H.: Imperative programming with dependent types. In: LICS. pp. 375–387.
IEEE (2000)

29. Xi, H., Pfenning, F.: Dependent types in practical programming. In: POPL. pp.
214–227. ACM (1999)

Type-Based Verification of Message-Passing Parallel Programs 27

A Further examples

This section presents a few examples attesting the flexibility of the type language
and the programming language.

A.1 Diffusion 1-D

The Diffusion 1-D example calculates the evolution of the diffusion (heat)
equation in one dimension over time. The program iterates for a given number
of steps, computing at each step the new temperatures at each point in the
domain. This example was adapted from the FEVS benchmark suite [2].

The type for the diffusion 1-D example:

1 val maxIter : {x : nat | x > 0}.
2 val n : {x : nat | x%size = 0}.
3 broadcast 1 a : int.
4 broadcast 1 b : float.
5 broadcast 1 c : float.
6 broadcast 1 d : float.
7 ∀i ≤ size− 1.
8 message 1 (i + 1) {x : float array | len(x) = n/size};
9 ∀iter ≤ maxIter .
10 ∀i ≤ size− 1.
11 message (i + 1) i float;
12 ∀i ≤ size− 1.
13 message i (i + 1) float

The code for the diffusion 1-D example:

1 let on : float = val if rank = 1 then 0.01 else 0.0 in
2 let omaxIter : float = val if rank = 1 then 10000 else 0 in
3 let ok : float = if rank = 1 then 0.01 else 0.0 in
4 let owstep : int = if rank = 1 then 10 else 0 in
5 let n : int = broadcast 1 on in
6 let k : float = broadcast 1 ok in
7 let maxIter : int = broadcast 1 omaxIter in
8 let wstep : int = broadcast 1 owstep in
9 let localn : int = n/size in
10 let u : float array ref = mkref mkfloatarray localn + 2 in
11 let unew : float array ref = mkref mkfloatarray localn + 2 in
12 if rank = 1 then
13 let buf : float array = <fill-buffer> in
14 for i : size− 1..1 do
15 send (i + 1) buf
16 else
17 receive 1 u;
18 let left : int = rank− 1 in
19 let right : int = rank+ 1 in
20 for iter : maxIter ..1 do
21 if rank > 1 then

28 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

22 send left !u
23 else
24 receive right u;
25 if rank > 1 then
26 receive right u
27 else
28 send left !u;
29 <update-unew>

A.2 Jacobi iteration

The Jacobi iteration example solves a linear equation of the form Ax = b
using Jacobi’s method. Each diagonal element is solved for, and an approximate
value is plugged in. The example was changed to use a maximum number of
iterations in place of the original data convergence method. This example was
adapted from the Parallel Programming with MPI book [21].

The type for the Jacobi iteration example:

1 val n : {x : positive | x%size = 0}.
2 val maxIter : int.
3 scatter 1 {x : float array | len(x) = n ∗ n};
4 scatter 1 {x : float array | len(x) = n};
5 allgather a : {x : float array | len(x) = n/size}.
6 ∀i ≤ maxIter .
7 (allgather a : {x : float array | len(x) = n/size}.
8 skip);
9 gather 1 {x : float array | len(x) = n/size}

The code for the Jacobi iteration example:

1 let Ainitial : int array = n ∗ n in
2 let binitial : int array = n in
3 let n : int = val <get-problem-size> in
4 let maxIter : int = val <get-max-iterations> in
5 let nsplit : int = n/size in
6 let Alocal : float array ref = mkref n ∗ nsplit in
7 let xlocal : float array ref = mkref nsplit in
8 let blocal : float array ref = mkref nsplit in
9 let xfinal : float array ref = mkref n in

10 let xtemp2 : float array ref = mkref n in
11 scatter 1 Alocal !Ainitial ;
12 scatter 1 blocal !binitial ;
13 for i : nsplit ..1 do
14 <initialize-xlocal>;
15 let xold : float array = allgather !xlocal in
16 for iter : maxIter ..1 do
17 (for i : nsplit ..1 do
18 <update-xlocal>;
19 let xnew : float array = allgather !xlocal in skip);

Type-Based Verification of Message-Passing Parallel Programs 29

20 <swap-xold-xnew>;
21 for i : nsplit ..1 do
22 <initialize-xlocal>;
23 gather 1 !xlocal xfinal

A.3 Laplace solver

The Laplace solver example iteratively calculates a solution to the 2-D Laplace
equation. The example was adapted from the FEVS benchmark suite [2].

The type for the Laplace solver example:

1 val maxIter : {x : positive | x > 0}.
2 val nx : {x : positive | x > 0}.
3 val ny : {x : positive | x > 0}.
4 ∀i ≤ size− 1 .
5 (∀j ≤ ny − 2 .
6 message i + 1 1 {x : float array | len(x) = nx});
7 message size 1 {x : float array | len(x) = nx});
8 ∀iter ≤ maxIter .
9 (∀i ≤ size− 1.
10 message (i + 1) i {x : float array | len(x) = 10});
11 (∀i ≤ size− 1.
12 message i (i + 1) {x : float array | len(x) = 10});
13 allreduce s : float.
14 skip

The code for the Laplace solver example:

1 let maxIter : int = val <read-max-iterations> in
2 let dimx : int = val <read-horizontal-dimension> in
3 let dimy : int = val <read-vertical-dimension> in
4 let lower : int = rank− 1 in
5 let upper : int = rank+ 1 in
6 let time : int ref = mkref 0 in
7 let u1 : float array ref = mkref (mkfloatarray (dimy ∗ dimx)) in
8 let u2 : float array ref = mkref (mkfloatarray (dimy ∗ dimx)) in
9 if rank > 1 then

10 for prow : dimy − 2..1 do
11 send 1 !u1 ;
12 if rank = size
13 then send 1 !u1else skip
14 else
15 (let rbuf : float array ref = mkref mkfloatarray dimx in
16 for proc : size− 1..1 do
17 for prow : dimy − 2..1 do
18 receive proc + 1 rbuf
19 receive size rbuf);
20 for iter : maxIter ..1 do
21 (if rank = 0 then

30 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

22 receive upper u1 ;
23 send upper !u1
24 else
25 if rank = size then
26 send lower !u1 :
27 receive lower u1
28 else
29 send lower !u1 ;
30 receive upper u1 ;
31 receive lower u1 ;
32 send upper !u1);
33 let error : float = <calculate-error> in
34 let globalerror : float = allreduce error in
35 <update-time>;
36 <swap-u1-u2>

A.4 N-body simulation

The N-body simulation example simulates a dynamic system of particles un-
der the influence of physical forces, particularly gravity, including the effect par-
ticles have on each other. Each process is responsible for a fixed subset of the
particles. This example was adapted from the Using MPI book [7].

The type for the N-body simulation example:

1 val n : {x : nat | x%size = 0}.
2 val maxIter : {x : nat | x > 0}.
3 ∀iter ≤ maxIter .
4 (∀pipe ≤ size− 1.
5 ∀i ≤ size.
6 message i (i + 1 ≤ p ? i+ 1 : 1) {x : float array | len(x) = n ∗ 4});
7 allreduce z : float.
8 skip

The code for the N-body simulation example:

1 let npart : int = val <get-problem-size> in
2 let maxIter : int = val <get-max-iterations> in
3 let left : int = if rank = 1 then size else rank− 1 in
4 let right : int = if rank = size then 1 else rank+ 1 in
5 let simt : float ref = mkref 0 in
6 let count : int = npart ∗ 4 in
7 let out : float array = mkfloatarray count in
8 let in : float array ref = mkref (mkfloatarray count) in
9 for iter : maxIter ..1 do

10 for pipe : size..1 do
11 if rank = 1 then
12 send right out ;
13 receive left in
14 else

Type-Based Verification of Message-Passing Parallel Programs 31

15 receive left in;
16 send right out
17 let dtlocal : float = 0.01 in
18 let dt : float = allreduce dtlocal in
19 <update-simt>

A.5 π calculation

The π calculation example calculates π through numerical integration. This
example was adapted from the Using MPI book [7].

The type for the π calculation example:

1 ∀i ≤ size− 1.
2 message 1 (i+ 1) {x : int | x > 1};
3 reduce 1

The code for the π calculation example:

1 letn : {x : int | x > 1} ref = mkref 2 in
2 letmypi : float ref = mkref 0.0 in
3 let pi : float ref = mkref 0.0 in
4 let sum : float ref = mkref 0.0 in
5 if rank = 1 then
6 n := <read-intervals>;
7 for i : p− 1..1 do
8 send (i+ 1) !n
9 else

10 receive 1 n
11 leth : float = <calculate-h> in
12 sum := <calculate-sum>;
13 mypi := h/!sum;
14 reduce 1 !mypi pi

A.6 Vector dot product

The vector dot product example calculates the dot product of two vectors.
This example was adapted from the Parallel Programming with MPI book [21].

The type for the Vector dot product example:

1 broadcast 0 v : {x : int | x > 0 ∧ x%size = 0}.
2 ∀i ≤ size− 1.message 1 (i + 1) float array;
3 ∀i ≤ size− 1.message 1 (i + 1) float array;
4 allreduce w : float.
5 ∀i ≤ size− 1.message (i + 1) 1 float array

The code for the vector dot product example:

32 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

1 let psize : int ref = mkref (if (rank = 1) then <initialize> else 0) in
2 let n : int = broadcast 1 !psize in
3 let localx : float array = mkfloatarray n in
4 let localy : float array = mkfloatarray n in
5 let temp : float array = mkfloatarray n in
6 let nbar : int = n/size in
7 if rank = 1 then
8 <scan-local-x>;
9 for i : size− 1..1 do
10 <scan-temp>;
11 send (i + 1) !temp
12 else
13 receive 1 localx ;
14 if rank = 1 then
15 <scan-local-y>;
16 for i : size− 1..1 do
17 <scan-temp>;
18 send (i + 1) !temp
19 else
20 (let buf : float ref = mkref 0.0 in
21 receive 1 buf ;
22 <update-localy>);
23 let localdot : float ref = <calculate-dot-product> in
24 let dot : float = allreduce !localdot in
25 let remotedot : float ref = mkref 0.0 in
26 if rank = 1 then
27 for i : size− 1..1 do
28 receive (i + 1) remotedot
29 else
30 send 1 !localdot

Type-Based Verification of Message-Passing Parallel Programs 33

B Proofs

B.1 Results related to term types

Main results in this section: agreement for type formation (Lemma 1), weakening
(Lemma 7), strengthening (Lemma 8), <: is a preorder (Lemma 11), and the
substitution lemma for types (Lemma 12).

Lemma 1 (agreement for type formation). Statement on page 8.

Proof. By simultaneous rule induction on the various hypotheses.

Lemma 7 (weakening). Let Γ ` D : dtype.4

Γ ` T : type

Γ, x : D ` T : type

Γ ` D2 : dtype

Γ, x : D ` D2 : dtype

Γ ` p : prop
Γ, x : D ` p : prop

Γ ` i : D1

Γ, x : D ` i : D1

Γ ` D1 <: D2

Γ, x : D ` D1 <: D2

Γ ` p true

Γ, x : D ` p true

Proof. By simultaneous rule induction on the various hypotheses.

Lemma 8 (strengthening).

Γ, x : D ` T : type x /∈ fv(T)

Γ ` T : type

Γ, x : D ` D1 : dtype x /∈ fv(D1)

Γ ` D1 : dtype

Γ, x : D ` p : prop x /∈ fv(p)

Γ ` p : prop
Γ, x : D ` i : D1 x /∈ fv(D1)

Γ ` i : D1

Γ, x : D ` D1 <: D2 x /∈ fv(D1, D2)

Γ ` D1 <: D2

Γ, x : D ` p true x /∈ fv(p)

Γ ` p true

y : D1 ∈ Γ, x : D2 x /∈ y, fv(D1)

y : D1 ∈ Γ

Proof. By simultaneous rule induction on the first hypothesis for each justified
inference.

Lemma 9 (inversion for subtyping).

1. If Γ ` int <: D then D is int or D is {x : D′ | p} and Γ ` D′ <: int.
2. If Γ ` float <: D then D is float or D is {x : D′ | p} and Γ ` D′ <: float.
3. If Γ ` D1 array <: D2 then D2 is D3 array and Γ ` D1 <: D3 or D2 is
{x : D3 | p} and Γ ` D1 array <: D3 and Γ, x : D1 array ` p true.

4 Assertion Γ ` D : dtype should be understood as a premise for all justified inference
rules. For example, the inference rule for types is the following.

Γ ` D : dtype Γ ` T : type

Γ, x : D ` T : type

34 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

4. If Γ ` {x : D1 | p1} <: D2 then Γ ` D1 <: D2 and Γ, x : D1 ` p1 : prop
or D2 is {y : D3 | p2} and Γ ` {x : D1 | p1} <: D3 and Γ, y : {x : D1 | p1} `
p2 true.

Proof. By a case analysis on the rules for subtyping.

Lemma 10 (context subsumption). Let Γ ` D2 <: D1.

Γ, x : D1 : context

Γ, x : D2 : context

Γ, x : D1 ` T : type

Γ, x : D2 ` T : type

Γ, x : D1 ` D3 : dtype

Γ, x : D2 ` D3 : dtype

Γ, x : D1 ` p true

Γ, x : D2 ` p true

Γ, x : D1 ` p : prop
Γ, x : D2 ` p : prop

Γ, x : D1 ` i : D3

Γ, x : D2 ` i : D3

Proof. By simultaneous rule induction on the various hypotheses.

Lemma 11 (<: is a pre-order).

Γ ` D <: D

Γ ` D1 <: D2 Γ ` D2 <: D3

Γ ` D1 <: D3

Proof (sketch). Reflexivity follows by case analysis on assertion Γ ` D : dtype.
Transitivity is proved by induction on assertion Γ ` D1 : dtype followed by
induction on assertion Γ ` D2 : dtype, using the inversion lemma for subtyping
(Lemma 9) and context subsumption (Lemma 10).

Lemma 12 (substitution lemma).

Γ1, x : D,Γ2 ` T : type Γ1 ` i : D
Γ1, Γ2{i/x} ` T{i/x} : type

Γ1, x : D,Γ2 ` D1 : dtype Γ1 ` i : D
Γ1, Γ2{i/x} ` D1{i/x} : dtype

Γ1, x : D,Γ2 ` p : prop Γ1 ` i : D
Γ1, Γ2{i/x} ` p{i/x} : prop

Γ1, x : D,Γ2 ` p true Γ1 ` i : D
Γ1, Γ2{i/x} ` p{i/x} true

Γ1, x : D,Γ2 ` i1 : D1 Γ1 ` i : D
Γ1, Γ2{i/x} ` i1{i/x} : D1{i/x}

Γ1, x : D,Γ2 ` D1 <: D2 Γ1 ` i : D
Γ1, Γ2{i/x} ` D1{i/x} <: D2{i/x}

Γ1, x : D,Γ2 : context Γ1 ` i : D
Γ1, Γ2{i/x} : context

y : D ∈ (Γ1, x : D,Γ2) Γ1 ` i : D
y : D{i/x} ∈ Γ{i/x}

Proof. By simultaneous rule induction on the first hypothesis of each justified
inference rule. We highlight a couple of cases.

hypothesis Γ1 ` i : D (1)

Case the derivation ends with Γ1, x : D,Γ2 ` broadcast i1 y : D1.T : type.

rule premise Γ1, x : D,Γ2 ` 1 ≤ i1 ≤ size true (2)
rule premise Γ1, x : D,Γ2, y : D1 ` T : type (3)
1, induction, def. subs. Γ1, Γ2{i/x} ` 1 ≤ i1{i/x} ≤ size true (4)
2, induction, def. subs. Γ1, Γ2{i/x}, y : D1{i/x} ` T{i/x} : type (5)

Type-Based Verification of Message-Passing Parallel Programs 35

4, 5, formation, def. subs. Γ1, Γ2{i/x} ` (broadcast i1 y : D1.T){i/x} : type
(6)

Case the derivation ends with Γ1, x : D,Γ2 ` y : D1.

rule premise Γ1, x : D,Γ2 : context (2)
rule premise y : D1 ∈ (Γ1, x : D,Γ2) (3)

Subcase y = x

3, y = x D1 is D (4)
2, context formation x /∈ D (5)
1, 4, 5, y = x,def. subs. Γ1 ` y{i/x} : D1{i/x} (6)
6, 2, lemma 7 Γ1, Γ2{i/x} ` y{i/x} : D1{i/x} (7)

Subcase y 6= x

1, 2, induction Γ1, Γ2{i/x} : context (8)
1, 3, induction y : D1{i/x} ∈ (Γ1, Γ2{i/x}) (9)
8, 9, type formation Γ1, Γ2{i/x} ` y{i/x} : D1{i/x} (10)

Case the derivation ends with Γ1, x : D,Γ2 ` i1 : {y : D1 | p}.

rule premise Γ1, x : D,Γ2 ` i1 : D1 (2)
rule premise Γ1, x : D,Γ2 ` p{i1/y} true (3)
2, induction Γ1, Γ2{i/x} ` i1{i/x} : D1{i/x} (4)
2, induction Γ1, Γ2{i/x} ` p{i1/y}{i/x} true (5)
5, (y 6= x), def. subs. Γ1, Γ2{i/x} ` p{i/x}{i1/y} true (6)
4, 5, index formation Γ1, Γ2{i/x} ` i1{i/x} : {y : D1{i/x} | p{i/x}} (7)
7, def. subs. Γ1, Γ2{i/x} ` i1{i/x} : {y : D1 | p}{i/x} (8)

Case the derivation ends with Γ1, x : D,Γ2 ` p true.

rule premise Γ1, x : D,Γ2 ` p : prop (2)
rule premise formulae(Γ1, x : D,Γ2) � p (3)
2, induction Γ1, Γ2{i/x} ` p{i/x} : prop (4)
1, 3, assumption on � formulae(Γ1, Γ2{i/x}) � p{i/x} (5)
4, 5, true formation Γ1, Γ2{i/x} ` p{i/x} true (6)

Lemma 13 (context exchange). Let Γ1 ` D1 : dtype

Γ1, Γ2, x : D1 ` T : type

Γ1, x : D1, Γ2 ` T : type

Γ1, Γ2, x : D1 ` D : dtype

Γ1, x : D1, Γ2 ` D : dtype

Γ1, Γ2, x : D1 ` p true

Γ1, x : D1, Γ2 ` p true

Γ1, Γ2, x : D1 ` p : prop
Γ1, x : D1, Γ2 ` p : prop

Γ1, Γ2, x : D1 ` i : D2

Γ1, x : D1, Γ2 ` i : D2

Γ1, Γ2, x : D : context

Γ1, x : D,Γ2 : context

Γ1, Γ2, x : D1 ` D2 <: D3

Γ1, x : D1, Γ2 ` D2 <: D3

36 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Type equality, Γ ` T ≡ T

Γ ` i1, i2 = i3, i4 true Γ ` D1 ≡ D2 (Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true)

Γ ` message i1 i2 D1 ≡ message i3 i4 D2

Γ ` i1 = i2 true Γ ` D1 ≡ D2 (Γ ` 1 ≤ i1 ≤ size true)
(Γ ` D1 <: {x : D3 array | len(x)%size = 0})

Γ ` scatter i1 D1 ≡ scatter i2 D2

see scatter
Γ ` gather i1 D1 ≡ gather i2 D2

Γ ` i1 = i2 true (Γ ` 1 ≤ i1 ≤ size true)

Γ ` reduce i1 ≡ reduce i2
Γ ` i1 = i2 true Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡ T2 (Γ ` 1 ≤ i1 ≤ size true)

Γ ` broadcast i1 x : D1.T1 ≡ broadcast i2 x : D2.T2

Γ ` D1 ≡ D2 Γ, x : D1 ` T1 ≡ T2

Γ ` valx : D1.T1 ≡ valx : D2.T2

Γ ` T1 ≡ T3 Γ ` T2 ≡ T4

Γ ` T1;T2 ≡ T3;T4

Γ ` p1 ↔ p2 true Γ ` T1 ≡ T2 : type Γ ` T ′1 ≡ T ′2 : type

Γ ` p1 ?T1 :T ′1 ≡ p2 ?T2 :T ′2 : type

Γ : context

Γ ` skip ≡ skip
Γ ` i1 = i2 true Γ, x : {y : int | y ≤ i1} ` T1 ≡ T2

Γ ` ∀x ≤ i1.T1 ≡ ∀x ≤ i2.T2

Γ ` i ≥ 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ (T{i/x}; ∀x ≤ i− 1.T)

Γ ` i < 1 true (Γ, x : {y : int | y ≤ i} ` T : type)

Γ ` ∀x ≤ i.T ≡ skip

Γ ` i1, i2 6= rank true (Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true) (Γ ` D : dtype)

Γ ` message i1 i2D ≡ skip

(Γ ` T : type)

Γ ` T ; skip ≡ T
(Γ ` T : type)

Γ ` skip;T ≡ T
(Γ ` T1, T2, T3 : type)

Γ ` (T1;T2);T3 ≡ T1; (T2;T3)

Γ ` T1 ≡ T2

Γ ` T2 ≡ T1

Γ ` T1 ≡ T2 Γ ` T2 ≡ T3

Γ ` T1 ≡ T3

Datatype equality, Γ ` D ≡ D

Γ ` D1 <: D2 Γ ` D2 <: D1

Γ ` D1 ≡ D2

Fig. 13. Type equality

Proof. By mutual rule induction on the various “main” hypotheses.

B.2 Results related to type equality

The complete definition of type equality is in Figure 13. Main results in this sec-
tion: agreement for type equality (Lemma 14) and type equality is an equivalence
relation (Lemma 15).

Lemma 14 (agreement for type equality).

Γ ` T1 ≡ T2
Γ ` T1 : type Γ ` T2 : type

Type-Based Verification of Message-Passing Parallel Programs 37

Proof. By rule induction on the derivation of the hypothesis. We must analyse
fourteen cases. The congruence/equivalence cases are standard. We detail the
other four.
Case Γ ` skip;T ≡ T :

hyp. premise Γ ` T : type (1)
1, agreement for type formation Γ : context (2)
2, type formation Γ ` skip : type (3)
1, 3, type formation Γ ` skip;T : type (4)

Case Γ ` ∀x ≤ i.T ≡ skip:

hyp. premise Γ, x : {y : int | y ≤ i} ` T : type (1)
hyp. premise Γ ` i < 1 true (2)
1, type formation Γ ` ∀x ≤ i.T : type (3)
2, agreement for true Γ : context (4)
4, type formation Γ ` skip : type (5)

Case Γ ` message i1 i2D ≡ skip:

hyp. premise Γ ` i1, i2 6= rank true (1)
hyp. premise Γ ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (2)
hyp. premise Γ ` D : dtype (3)
2, 3, type formation Γ ` message i1 i2D : type (4)
3, agreement for dtype Γ : context (5)
5, type formation Γ ` skip : type (6)

Case Γ ` ∀x ≤ i.T ≡ (T{i/x};∀x ≤ i− 1.T):

hyp. premise Γ ` i ≥ 1 true (1)
hyp. premise Γ, x : {y : int | y ≤ i} ` T : type (2)
1, inversion Γ ` i ≥ 1 : prop (3)
3, inversion Γ ` i : int (4)
2, lemma 1 Γ, x : {y : int | y ≤ i} : context (5)
5, inversion Γ ` {y : int | y ≤ i} : dtype (6)
6, inversion Γ, y : int ` y ≤ i : prop (7)
7, lemma 1 Γ, y : int : context (8)

It is always the case that an index term is smaller or equal to itself:

4, deducibility Γ ` i ≤ i true (9)
8, def. of subs. Γ ` (y ≤ i){i/y} true (10)

38 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

By application of index formation rules and the substitution lemma (Lemma 12):

4, 10, index formation Γ ` i : {y : int | y ≤ i} (11)
11, 2, lemma 12 Γ ` T{i/x} : type (12)

It is easy to prove that Γ ` {y : int | y ≤ i− 1} <: {y : int | y ≤ i} (it follows from
9, standard deducibility, and index formation).

2, lemma 10 Γ, x : {y : int | y ≤ i− 1} ` T : type (13)
16, type formation Γ ` ∀x ≤ i− 1.T : type (14)

Finally, we can join assertions 11 and 13 by applying the type formation rule
for sequential composition:

11, 13, type formation Γ ` T{i/x};∀x ≤ i− 1.T : type (15)
1, 2, type formation Γ ` ∀x ≤ i.T : type (16)

Lemma 15 (type equality is an equivalence relation).

Proof. Reflexivity follows from the congruence rules; symmetry and transitivity
are built into the definition.

B.3 Results related to program types

Main results in this section: agreement for program type formation (Lemma 16)
and the load lemma (Lemma 2).

Lemma 16 (agreement for program type formation).

T1, . . . , Tn : ptype

Γn,1 ` T1 : type . . . Γn,n ` Tn : type

Proof. By rule induction on the hypothesis. We illustrate a few cases.
Case the derivation ends with type equality:

rule premise T1, . . . , T
′
k, . . . , Tn : ptype (1)

1, inversion T1, . . . , Tk, . . . , Tn : ptype (2)

1, inversion Γn,k ` Tk ≡ T ′k (3)

lemma 14 Γn,k ` T ′k : type (4)

Case the derivation ends with message passing:

rule premise skip1, . . . , (message l mD), skipl+1,

. . . , skipm−1, (message l mD), . . . , skipn (1)
1, inversion Γn ` l 6= m true (2)
1, inversion Γn ` D : dtype (3)

Type-Based Verification of Message-Passing Parallel Programs 39

3, lemma 1 Γn : context (4)
4,ptype formation Γn ` skip : type (5)
1, def. of l Γn ` 1 ≤ l ≤ size true (6)
1, def. of m Γn ` 1 ≤ m ≤ size true (7)
2, 3, 6, 7, type formation Γn ` message l mD : type (8)

Case the derivation ends with broadcast:

hyp. premise broadcast l x : D.T, . . . , broadcast l x : D.T : ptype (1)
hyp. premise Γn ` 1 ≤ l ≤ n true (2)
hyp. premise Γn, x : D ` T : type (3)
2, replacement in Γn Γn ` 1 ≤ l ≤ size true (4)
3, 4, type formation Γn ` broadcast l x : D.T : type (5)

Lemma 2 (load lemma). Statement on page 12.

Proof. By rule induction on hypothesis Γn ` T : type.
Case the derivation ends with the scatter rule.

rule premise Γn ` 1 ≤ i ≤ size true (1)
rule premise Γn ` D <: {x : D′ array | len(x)%size = 0} (2)
1, 2,ptype formation scatter l D, . . . , scatter l D : ptype (3)

Case the derivation ends with reduce, gather, broadcast, val, skip: as above.
Case the derivation ends with the rule for T = message i1 i2D.

rule premise Γn ` 1 ≤ i1, i2 ≤ size ∧ i1 6= i2 true (1)
rule premise Γn ` D : dtype (2)
1, inversion(s) Γn ` i1 : int Γn ` i2 : int (3)
1, assumption on true Γn ` i1 = l true Γn ` i2 = m true (4)

4, lemma 7 Γn,k ` i1 = l true Γn,k ` i2 = m true (5)

1, 2, (l,m 6= k), type eq. Γn,k ` message l mD ≡ skip : type (6)
1, 2, 6,ptype formation skip1, . . . ,message l mD, skipl+1, . . . ,

message l mD, skipm+1, . . . , skipn : ptype (7)

Case the derivation ends with the rule for T = T1;T2.

rule premise Γn ` T1 : type (1)
rule premise Γn ` T2 : type (2)
1, induction T1, . . . , T1 : ptype (3)
2, induction T2, . . . , T2 : ptype (4)
3, 4,ptype formation T1;T2, . . . , T1;T2 : ptype (5)

40 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Case the derivation ends with ifc: as above.
Case the derivation ends with ∀x ≤ i.T :

rule premise Γn, x : {y : int | y ≤ i} ` T : type (1)
1, lemma 1 Γn, x : {y : int | y ≤ i} : context (2)
2, context formation Γn ` {y : int | y ≤ i} : dtype (3)
3, inversion Γn, y : int ` y ≤ i : prop (4)
4, inversion Γn, y : int ` i : int (5)
5, lemma 8 Γn ` i : int (6)

We analyse on the possible values of i:
Subcase Γn ` i < 1 true:

subcase Γn ` i < 1 true (7)
1, 7, type eq. Γn ` ∀x ≤ i.T ≡ skip : type (8)
8, lemma 14 Γn ` skip : type (9)
9,ptype formation skip, . . . , skip : ptype (10)

Subcase Γn ` i ≥ 1 true:

subcase Γn ` i ≥ 1 true (11)
1, 11, type eq. Γn ` ∀x ≤ i.T ≡ T{x/i};∀x ≤ i− 1.T : type (12)
12, lemma 14 Γn ` T{x/i};∀x ≤ i− 1.T : type (13)
13, inversion Γn ` T{x/i} : type (14)
13, inversion Γn ` ∀x ≤ i− 1.T : type (15)
14, induction T{x/i}, . . . , T{x/i} : ptype (16)
15, induction ∀x ≤ i− 1.T, . . . ,∀x ≤ i− 1.T : ptype (17)
16, 17,ptype form. T{x/i};∀x ≤ i− 1.T, . . . , T{x/i};∀x ≤ i− 1.T : ptype

(18)

B.4 Results related to references

Main results in this section: agreement for type formation, now with references
(Lemma 17), index term subtyping remains a pre-order (Lemma 18) and that
deducibility contains no references (Lemma 19).

Lemma 17 (agreement for type formation, with references). The state-
ment of this lemma is that of Lemma 1, page 8.

Proof. By mutual rule induction on the hypotheses, reusing the cases from the
proof of Lemma 1.

Lemma 18 (subtyping is still a pre-order). The statement of this lemma
is that of Lemma 11, page 34.

Type-Based Verification of Message-Passing Parallel Programs 41

Proof. By rule induction on the hypothesis, reusing the cases from the proof of
Lemma 11. Inversion for <: (Lemma 9) must be extended with the following
case.

5. If Γ ` D1 ref <: D2 then D2 is D3 ref and Γ ` D1 <: D3 or D2 is {x : D3 | p}
and Γ ` D1 ref <: D3 and Γ, x : D1 ref ` p true.

Lemma 19 (deducibility contains no references).

Γ ` p true

r 6∈ refs(p)

Proof. Assertion Γ ` p true is not defined on reference identifiers.

B.5 Results related to expressions

Main results in this section: agreement for expression formation (Lemma 20),
weakening for expression formation (Lemma 21), strengthening for expression
formation (Lemma 22), substitution in expressions (Lemma 24), and the inver-
sion lemma for expression formation (Lemma 26).

Lemma 20 (agreement for expression formation).

Γ ` e : T
Γ ` T : type

Proof. By rule induction on the hypothesis, using Lemma 1.

Lemma 21 (weakening for expressions).

Γ ` e : T Γ ` D : dtype

Γ, x : D ` e : T

Proof. By rule induction on the first hypothesis, using Lemma 7.

Lemma 22 (strengthening for expressions).

Γ, x : D ` e : T x /∈ fv(e, T)

Γ ` e : T
Proof. By rule induction on the first hypothesis, using Lemma 8.

Lemma 23 (context subsumption for expressions).

Γ, x : D1 ` e : T Γ ` D2 <: D1

Γ, x : D2 ` e : T

Proof. By rule induction on the first hypothesis, using Lemma 10.

Lemma 24 (substitution for expressions).

Γ, x : D ` e : T Γ ` i : D
Γ ` e{i/x} : T{i/x}

42 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Proof. By rule induction on the first hypothesis, using Lemma 12.

Lemma 25 (context exchange for expressions).

Γ1, Γ2, x : D1 ` e : T Γ1 ` D1 : dtype

Γ1, x : D1, Γ2 ` e : T

Proof. By rule induction on the first hypothesis, using Lemma 13.

The lemma below establishes the various expressions that may inhabit a given
type. It forms the basis to the proof of the result on progress (Theorem 3).

Lemma 26 (inversion for expression formation).

1. If Γ ` e : broadcast i x : D.T then e is either
– letx : D1 = broadcast i1 i2 in e1 and Γ ` D1 ≡ D : dtype and Γ `
i1 = i true and Γ ` 1 ≤ i1 ≤ size true and Γ ` i2 : D and rank 6∈ fv(i1)
and Γ, x : D ` e1 : T , or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(broadcast i x : D.T) and
Γ, y : D1 ` e1 : broadcast i x : D.T , or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : broadcast i x : D.T and
Γ ` e2 : broadcast i x : D.T , or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : broadcast i x : D.T .
2. If Γ ` e : message i i′D then e is either

– send i1 i2 and Γ ` rank = i true and Γ ` i1 = i′ true and Γ ` i2 : D, or
– receive i1 i2 and Γ ` i1 = i true and Γ ` rank = i′ true, and Γ ` i2 :
D ref, or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(message i i′D) and
Γ, y : D1 ` e1 : message i i′D, or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : message i i′D and Γ `
e2 : message i i′D, or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : message i i′D.
3. If Γ ` e : ∀x ≤ i.T then e is either

– forx : i1..1 do e1 and Γ ` i1 ≤ i true and Γ, x : {y : int | y ≤ i} ` e1 : T
and Γ ` T{i/x} = T{i− 1/x} = · · · = {i1 + 1/x} ≡ skip : type, or

– skip and Γ ` i < 1 true, or
– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(∀x ≤ i.T) and Γ, y : D1 `
e1 : ∀x ≤ i.T , or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : ∀x ≤ i.T and Γ ` e2 :
∀x ≤ i.T , or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : ∀x ≤ i.T , or
4. If Γ ` e : (T ;T ′) then e is either

– e1; e2 and Γ ` e1 : T and Γ ` e2 : T ′

– forx : i1..1 do e1 and Γ ` i1 ≥ 1 true and Γ, x : {y : int | y ≤ i1} ` e1 : T1
and Γ ` T1{i/x} ≡ T : type and Γ ` (∀x ≤ i1 − 1.T1) ≡ T ′ : type, or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(T ;T ′) and Γ, y : D1 ` e1 :
T ;T ′, or

Type-Based Verification of Message-Passing Parallel Programs 43

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : T ;T ′ and Γ ` e2 : T ;T ′,
or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : T ;T ′, or
5. If Γ ` e : skip then e is either

– skip, or
– while p do e1 and Γ ` p : prop and Γ ` e1 : skip, or
– forx : i..1 do e1 and Γ ` i < 1 true and Γ, x : {y : int | y ≤ i} ` e1 : skip,

or
– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(skip) and Γ, y : D1 ` e1 :

skip, or
– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : skip and Γ ` e2 : skip, or
– e1; e2 and Γ ` e1 : skip and Γ ` e2 : skip.

6. If Γ ` e : gather iD then e is either
– gather i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and
Γ ` i2 : {x : D array | len(i3) = size ∗ len(x)} and Γ ` i3 : D array ref, or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(gather iD) and Γ, y : D1 `
e1 : gather iD, or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : gather iD and Γ ` e2 :
gather iD, or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : gather iD.
7. If Γ ` e : scatter iD then e is either

– scatter i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and
Γ ` i2 : {x : D array | len(i3) = size ∗ len(x)} and Γ ` i3 : D array ref, or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(scatter iD) and Γ, y : D1 `
e1 : scatter iD, or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : scatter iD and Γ ` e2 :
scatter iD, or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : scatter iD.
8. If Γ ` e : reduce i then e is either

– reduce i1 i2 i3 and Γ ` i1 = i true and Γ ` 1 ≤ i1 ≤ size true and
Γ ` i2 : float and Γ ` i3 : float ref, or

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(reduce i1) and Γ, y : D1 `
e1 : reduce i1, or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : reduce i1 and Γ ` e2 :
reduce i1, or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : reduce i1.
9. If Γ ` e : valx : D.T then e is either

– letx : D1 = val i1 in e1 and Γ ` D1 ≡ D : dtype and Γ ` i1 : D and
Γ, x : D ` e1 : T

– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(valx : D.T) and Γ, y : D1 `
e1 : valx : D.T , or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : valx : D.T and Γ ` e2 :
valx : D.T , or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : valx : D.T .
10. If Γ ` e : p ?T :T ′ then e is either

44 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

– ifc p′ then e1 else e2 and Γ ` p↔ p′ true and Γ ` e1 : T and Γ ` e2 : T ′

and rank /∈ fv(p), or
– let y : D1 = i1 in e1 and Γ ` i1 : D1 and y /∈ fv(p ?T :T ′) and Γ, y : D1 `
e1 : p ?T :T ′, or

– if p then e1 else e2 and Γ ` p : prop and Γ ` e1 : p ?T :T ′ and Γ ` e2 :
p ?T :T ′, or

– e1; e2 and Γ ` e1 : skip and Γ ` e2 : p ?T :T ′.

Proof. By a case analysis on the rules for expression formation.

B.6 Results related to stores

Main results in this section: agreement for store-to-context formation (Lemma 27),
agreement for index evaluation (Lemma 32) and that evaluation induces de-
ducibility (Lemma 33).

Lemma 27 (agreement for store-to-context conversion).

ρ to Γ

ρ : store Γ : context

Proof. By rule induction on the hypothesis.

Lemma 28 (store-to-context inversion).

ρ : store

ρ to Γ

Proof. By rule induction on the hypothesis.

Lemma 29 (store update does not affect store-to-context).

ρ to Γ Γ ` r : D ref Γ ` v : D

ρ[r := v] to Γ

Proof. By rule induction on the hypothesis ρ to Γ .

Lemma 30 (store value is index).

ρ ` r : D ref r := v ∈ ρ
ρ ` v : D

Proof. From the second hypothesis we know that ρ is not empty. Case ρ is
ρ′, r := v. From the definition of ρ to Γ we know that (ρ′, r := v) to (Γ ′, r : D ref).
By inversion we get Γ ′ ` v : D. Applying weakening (Lemma 7) we conclude
Γ ′, r : D ref ` v : D. Case ρ is ρ′, r′ := v′ with r 6= r′ follows by induction.

Lemma 31 (inversion of store formation).

ρ to Γ r : D ∈ Γ
r := v ∈ ρ D is D′ ref Γ ` v : D′

Type-Based Verification of Message-Passing Parallel Programs 45

Proof. By rule induction on hypothesis ρ to Γ . From the second premise we know
that Γ is not empty, then the only case to consider is when ρ is not empty.
Case ρ is ρ′, r := v′:

store as context ρ′, r := v′ to Γ ′, r : D′ ref (1)
1, inversion ρ′ to Γ ′ (2)
1, inversion Γ ′ ` v′ : D′ (3)
1, inversion r 6∈ ρ′, Γ,D′ (4)
1 r := v′ ∈ ρ′, r := v′ (5)
3, lemma 7 Γ ′, r : D′ ref ` v′ : D′ (6)

Case ρ is ρ′, r ′ := v′ and r 6= r′:

Case hyp., store as context ρ′, r ′ := v′ to Γ ′, r′ : D′ ref (1)
Case hyp. r 6= r′ (2)
Case hyp. r : D ∈ Γ ′, r′ : D′ ref (3)
2, 3, lemma 8 r : D ∈ Γ ′ (4)
1, inversion r : D ∈ Γ ′ (5)
4, 5, induction r := v′′ ∈ ρ′ (6)
4, 5, induction D is D′′ ref (7)
4, 5, induction Γ ′ ` v : D′′ (8)

Lemma 32 (agreement for evaluation).

(ρ1, i)↓n,k (ρ2, v) : D
ρ1 to Γ1 ρ2 to Γ2 Γ2 is Γ1, Γ3 Γn,k, Γ2 ` i : D Γ2 ` v : D

Proof. By rule induction on the hypothesis. We list the most representative
cases.
Case (ρ, f)↓n,k (ρ, f) : float

rule premise ρ : store (1)
1, lemma 28 ρ to Γ (2)
2, lemma 27 Γ : context (3)
3, index formation Γ ` f : float (4)

4, lemmas 7, 13 Γn,k, Γ ` f : float (5)

Case (ρ, size)↓n,k (ρ, n) : int

rule premise ρ : store (1)
1, lemma 28 ρ to Γ (2)
2, lemma 27 Γ : context (3)

3, lemmas 7,13 Γn,k, Γ : context (4)

46 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

4, index formation Γn,k, Γ ` size : int (5)
2, index formation Γ ` n : int (6)

Case (ρ, r)↓n,k (ρ, r) : D ref

rule premise ρ : store (1)
rule premise r := v ∈ ρ (2)
rule premise ρ ` v : D (3)

From (2) we know that ρ is non empty. Subcase ρ is ρ′, r := v:

1, lemma 28 (ρ′, r := v) to (Γ ′, r : D ref) (4)
4, lemma 27 Γ ′, r : D ref : context (5)
5, index formation Γ ′, r : D ref ` r : D ref (6)

6, lemmas 7,13 Γn,k, Γ ′, r : D ref ` r : D ref (7)

The subcase where ρ is ρ′, r′ := v′ with r 6= r′ follows by induction.

Case (ρ1, !i)↓n,k (ρ2, v) : D

rule premise (ρ1, i)↓n,k (ρ2, r) : D ref (1)
rule premise r := v ∈ ρ2 (2)
1, induction ρ2 to Γ2 (3)
1, induction ρ1 to Γ1 (4)
1, induction Γ2 is Γ1, Γ3 (5)

1, induction Γn,k, Γ2 ` i : D ref (6)
1, induction Γ2 ` r : D ref (7)

6, index formation Γn,k, Γ2 ` !i : D (8)
2, 3, 7, lemma 30 Γ2 ` v : D (9)

Case (ρ1, i1 := i2)↓n,k (ρ2[r := v], v) : D

rule premise (ρ1, i1)↓n,k (ρ3, r) : D ref (1)

rule premise (ρ3, i2)↓n,k (ρ2, v) : D (2)
1, induction ρ1 to Γ1 (3)

1, induction Γn,k, Γ3 ` i1 : D ref (4)
1, induction Γ3 ` r : D ref (5)
1, induction ρ3 to Γ3 (6)
1, induction Γ3 is Γ1, Γ4 (7)

2, induction Γn,k, Γ2 ` i2 : D (8)
2, induction Γ2 ` v : D (9)

Type-Based Verification of Message-Passing Parallel Programs 47

2, induction Γ2 is Γ3, Γ5 (10)
2, induction ρ2 to Γ2 (11)

Through simple context manipulation and the fact that store update does not
affect store to context formation (Lemma 29) we obtain the remaining conclu-
sions:

7, 10, equals for equals Γ2 is Γ1, Γ4, Γ5 (12)

4, 12, lemma 7 Γn,k, Γ2 ` i1 : D ref (13)

8, 13, index formation Γn,k, Γ2 ` i1 := i2 : D (14)
5, 10, lemma 7 Γ2 ` r : D ref (15)
9, 11, 15, lemma 29 ρ2[r := v] to Γ2 (16)

Case (ρ1,mkref i)↓n,k ((ρ2, r := v), r) : D ref

rule premise (ρ1, i)↓n,k (ρ2, v) : D (1)
rule premise r fresh (2)

1, induction Γn,k, Γ2 ` i : D (3)
1, induction Γ2 ` v : D (4)
1, induction Γ2 is Γ1, Γ3 (5)
1, induction ρ1 to Γ1 (6)
1, induction ρ2 to Γ2 (7)

3, index formation Γn,k, Γ2 ` mkref i : D (8)
7, lemma 27 ρ2 : store (9)
7, lemma 27 Γ2 : context (10)
2, 10, 7, 4, store formation ρ2, r := v : store (11)
11, store as context formation ρ2, r := v to Γ2, r : D ref (12)
5,monotonicity Γ2, r := v is Γ1, Γ3, r := v (13)

Case (ρ1, [i1, . . . , in])↓n,k (ρn+1, [v1, . . . , vn]) : D array

rule premise (ρ1, i1)↓n,k (ρ2, v1) : D (1)

rule premise (ρn, in)↓n,k (ρn+1, vn) : D (2)

2, induction, for all 1 ≤ l ≤ n Γn,k, Γl+1 ` il : D (3)
2, induction, for all 1 ≤ l ≤ n Γl+1 ` vl : D (4)
2, induction, for all 2 ≤ l ≤ n Γl+1 is Γl, Γ

′
l (5)

2, induction, for all 1 ≤ l ≤ n+ 1 ρl to Γl (6)

By applying basic lemmas over contexts (weakening, strengthening), index for-
mation rules, and transitivity we get:

5, transitivity Γl+1 = Γ1, Γ
′
1, . . . , Γ

′
n (7)

48 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

3, 7, lemma 7 Γn,k, Γl+1 ` il : D (8)

8, index formation Γn,k, Γl+1 ` [i1, . . . , in] : D array (9)
4, 7, lemma 7 Γl+1 ` vl : D (10)
11, index formation Γl+1 ` [v1, . . . , vn] : D array (11)

Case (ρ1, i1[i2])↓n,k (ρ3, vm) : D

rule premise (ρ1, i1)↓n,k (ρ2, [v1, . . . , vl]) : {x : D array | len(x) = l}
(1)

rule premise (ρ2, i2)↓n,k (ρ3,m) : {x : int | 1 ≤ x ≤ l} (2)

1, induction Γn,k, Γ2 ` i1 : {D array | len(x) = l} (3)
1, induction Γ2 ` [v1, . . . , vl] : {D array | len(x) = l} (4)
1, induction ρ1 to Γ1 (5)
1, induction Γ2 = Γ1, Γ4 (6)
1, induction ρ2 to Γ2 (7)

2, induction Γn,k, Γ3 ` i2 : {x : int | 1 ≤ x ≤ l} (8)
2, induction Γ3 ` m : {x : int | 1 ≤ x ≤ l} (9)
2, induction ρ3 to Γ3 (10)
2, induction Γ3 = Γ2, Γ5 (11)
10, 15, equals for equals Γ3 is Γ1, Γ4, Γ5 (12)

8, inversion, lemma 7 Γn,k, Γ3 ` 1 ≤ i1 ≤ l true (13)

3, 13, index formation Γn,k, Γ3 ` i1[i2] : D (14)
8, inversion, lemma 7 Γ3 ` vm : D (15)

Case refinement introduction.

rule premise (ρ1, i)↓n,k (ρ2, v) : D (1)
rule premise ε ` p{i/x} true (2)
1, induction ρ1 to Γ1 (3)
1, induction ρ2 to Γ2 (4)
1, induction Γ2 is Γ1, Γ3 (5)

1, induction Γn,k, Γ2 ` i : D (6)
1, induction Γ2 ` v : D (7)

2, lemma 7 Γn,k, Γ2 ` p{i/x} true (8)

6, 8, index formation Γn,k, Γ2 ` i : {x : D | p} (9)
2, lemma 7 Γ2 ` p{i/x} true (10)
7, 10, index formation Γ2 ` v : {x : D | p} (11)

Case subtyping.

rule premise (ρ1, i)↓n,k (ρ2, v) : D1 (1)

Type-Based Verification of Message-Passing Parallel Programs 49

rule premise ρ2 ` D2 <: D1 (2)
1, induction ρ1 to Γ1 (3)
1, induction ρ2 to Γ2 (4)
1, induction Γ1 is Γ1, Γ3 (5)

1, induction Γn,k, Γ2 ` i : D1 (6)
1, induction Γ2 ` v : D1 (7)

2, 6, lemma 7, subtyping Γn,k, Γ2 ` i : D2 (8)
2, 7, subtyping Γ2 ` v : D2 (9)

Lemma 33 (eval to deducibility).

i ↓n m
Γn ` i = m true

Proof. By rule induction on the hypothesis, making use of basic assumptions on
deducibility such as, Γ ` i1 = m1 true and Γ ` i2 = m2 true and m is m1+m2

implies Γ ` i1 + i2 = m true.

Lemma 3 (evaluation succeeds). Statement on page 18.

Proof. By rule induction on the hypothesis. We highlight a few representative
cases.

premise ρ to Γ (1)
1, lemma 27 ρ : store Γ : context (2)

Case Γn,k, Γ ` x : D

premise x : D ∈ (Γn,k, Γ) (3)
1, 3 x is size or x is rank (4)

Subcase x is size

1, eval rule (ρ, size)↓n,k (ρ, n) : int (5)

Subcase x is rank. As above.

Case Γn,k, Γ ` r : D

premise r : D ∈ (Γn,k, Γ) (3)

1, 3, lemma 31 D is D′ref ∧ Γn,k, Γ ` v : D′ ∧ r := v ∈ ρ (4)

2, 4, eval rule (ρ, r)↓n,k (ρ, r) : D (5)

Case Γn,k, Γ ` i1 + i2 : int

premise Γn,k, Γ ` i1 : int (3)

50 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

premise Γn,k, Γ ` i2 : int (4)

3, induction (ρ, i1)↓n,k (ρ1,m1) : int (5)
5, lemma 32 ρ1 to Γ1 (6)
5, lemma 32 Γ1 is Γ, Γ ′ (7)

4, 6, lemma 7 Γn,k, Γ1 ` i2 : int (8)

9, induction (ρ1, i2)↓n,k (ρ2,m2) : int (9)

5, 9, eval rule (ρ, i1 + i2)↓n,k (ρ2, v1 + v2) : int (10)

Case Γn,k, Γ ` i1[i2] : D

premise Γn,k, Γ ` i1 : {x : D array | len(x) = l} (3)

premise Γn,k, Γ ` 1 ≤ i2 ≤ l true (4)

4, inversion Γn,k, Γ ` i2 : int (5)

4, 5, index formation Γn,k, Γ ` i2 : {y : int | 1 ≤ y ≤ l} (6)

3, induction (ρ0, i1)↓n,k (ρ1, v1) : {x : D array | len(x) = l} (7)
7, lemma 32 ρ1 to Γ1 (8)
7, lemma 32 Γ1 is Γ, Γ ′ (9)

6, 9, lemma 7 Γn,k, Γ1 ` i2 : {y : int | 1 ≤ y ≤ l} (10)

10, induction (ρ1, i2)↓n,k (ρ2,m) : {y : int | 1 ≤ y ≤ l} (11)

7, 11, evaluation (ρ, i1[i2])↓n,k (ρ2, vm) : D (12)

Case Subtyping Γn,k, Γ ` i : D1

premise Γn,k, Γ ` i : D2 (3)

premise Γn,k, Γ ` D1 <: D2 (4)

3, induction (ρ, i)↓n,k (ρ′, v) : D2 (5)
5, lemma 32 ρ′ to Γ2 (6)
5, lemma 32 Γ2 is Γ, Γ ′ (7)

4, 7, lem. 7 Γn,k, Γ2 ` D1 <: D2 (8)

5, 8, evaluation (ρ, i)↓n,k (ρ′, v) : D1 (9)

Case Refinement Γn,k, Γ ` i : {x : D | p}

premise Γn,k, Γ ` i : D (3)

premise Γn,k, Γ ` p{i/x} true (4)

3, induction (ρ, i)↓n,k (ρ′, v) : D (5)
5, lemma 32 ρ′ to Γ2 (6)
5, lemma 32 Γ2 is Γ, Γ ′ (7)

Type-Based Verification of Message-Passing Parallel Programs 51

4, 7, lemma 7 Γn,k, Γ2 ` p{i/x} true (8)

5, 8, evaluation (ρ, i)↓n,k (ρ′, v) : {x : D | p} (9)

Case Γ ` mkref i : D ref

premise Γn,k, Γ ` i : D (3)

3, induction (ρ, i)↓n,k (ρ′, v) : D (4)
ref. ids are countable r 6∈ ρ′ (5)

4, 6, eval. (ρ,mkref i)↓n,k ((ρ′, r := v), r) : D′ ref (6)

Case Γ ` !i : D

premise Γn,k, Γ ` i : D ref (3)

3, induction (ρ, i)↓n,k (ρ′, r) : D ref (4)
4, lemma 32 ρ′ to Γ ′ (5)
4, lemma 32 Γ ′ ` r : D ref (6)
6, inversion r : D ref ∈ Γ ′ (7)
5, 7, lemma 31 r := v ∈ ρ′ (8)

4, 8, evaluation (ρ, !i)↓n,k (ρ′, v) : D (9)

Case Γ ` i1 := i2 : D

premise Γn,k, Γ ` i1 : D ref (3)

premise Γn,k, Γ ` i2 : D (4)

3, induction (ρ, i1)↓n,k (ρ′, r) : D ref (5)
4, lemma 32 ρ′ to Γ ′ (6)
4, lemma 32 Γ ′ is Γ, Γ ′′ (7)

4, 7, lemma 7 Γn,k, Γ ′ ` i2 : D (8)

8, induction (ρ′, i2)↓n,k (ρ′′, r) : D (9)

5, 9, evaluation (ρ, i1 := i2)↓n,k (ρ′′[r := v], v) : D (10)

B.7 Results related to processes

Main results in this section: agreement for process reduction (Lemma 4) and
progress for processes (Lemma 6).

Lemma 34 (agreement for process formation).

Γ ` q : T
Γ ` T : type

52 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Proof. From the hypothesis and the only process formation rule, we know that q
is (ρ, e) and that Γ, ρ ` e : T . Agreement (Lemma 1) tells us that Γ, ρ ` T : type.
The premise of all expression formation rules tells us that T contains no ref types.
From strengthening (Lemma 8) we get the result.

Lemma 4 (agreement for process reduction). Statement on page 18.

Proof. By rule induction on the hypothesis. We have nine simple cases, and
illustrate one of them.

(ρ, forx : i..1 do e)→n,k (ρ, (e{i/x}; forx : i− 1..1 do e)) (1)

rule premise Γn,k, ρ ` i ≥ 1 true (2)

rule premise Γn,k, ρ, x : {y : int | y ≤ i} ` e : T (3)

The type for the left hand side follows from the application of expression and
process formation rules:

3, exp. formation Γn,k, ρ ` forx : i..1 do e : ∀x ≤ i.T (4)

4, proc. formation Γn,k ` (ρ, forx : i..1 do e) : ∀x ≤ i.T (5)

The right hand side requires slightly more effort.

2, inversion Γn,k, ρ ` i : int (6)

6, tautology Γn,k, ρ ` i ≤ i true (7)

7,def. of subs. Γn,k, ρ ` (y ≤ i){i/y} true (8)

6, 8, index form. Γn,k, ρ ` i : {y : int | y ≤ i} (9)

3, 9, lemma 24 Γn,k, ρ ` e{i/x} : T{i/x} (10)

3, agreement Γn,k, ρ, x : {y : int | y ≤ i} : context (11)

11, subtyping Γn,k, ρ ` {y : int | y ≤ i− 1} <: {y : int | y ≤ i} (12)

3, 12, lemma 23 Γn,k, ρ, x : {y : int | y ≤ i− 1} ` e : T (13)

13, exp. formation Γn,k, ρ ` forx : i− 1..1 do e : ∀x ≤ i− 1.T (14)

10, 14, exp. formation Γn,k, ρ ` (e{i/x}; forx : i− 1..1 do e) :

T{i/x};∀x ≤ i− 1.T (15)

3, lemma 20 Γn,k, ρ, x : {y : int | y ≤ i} ` T : type (16)

2, 16, type eq. Γn,k, ρ ` (T{i/x};∀x ≤ i− 1.T) ≡ ∀x ≤ i.T (17)

10, 17, exp.+proc. form. Γn,k ` (ρ, e{i/x}; forx : i− 1..1 do e) : ∀x ≤ i.T (18)

Lemma 6 (progress for processes). Statement on page 19.

Type-Based Verification of Message-Passing Parallel Programs 53

Proof. By analysis of the hypotheses, with one case for each rule, and a special
treatment for Γn,k, ρ ` e : skip.
Case let rule: Building from Γn,k, ρ ` i : D and the fact that evaluation suc-
ceeds (Lemma 3), we obtain (ρ, i)↓n,k (ρ′, v) : D. This, combined with premises
Γn,k, ρ, x : D ` e : T and x 6∈ fv(T) constitute the necessary conditions to ap-
ply reduction for let processes in Figure 11, obtaining (ρ, letx : D = i in e) →n,k

(ρ′, e{v/x}).

Case if p then e1 else e2, while p do e, and forx : i..1 do e rules: Similar to let.

Case Γn,k, ρ ` e : skip: By induction on this assertion, using the inversion lemma
for expression formation (Lemma 26).

Subcase e is skip: we are done.

Subcase e is while p do e1 and Γn,k, ρ ` p : prop and Γn,k, ρ ` e1 : skip. Analysing
the possible truth values of proposition p, we know that either formulae(Γn,k, ρ) |=
p or formulae(Γn,k, ρ) 6|= p. We show the first case (the other is similar). If
formulae(Γn,k, ρ) |= p and Γn,k, ρ ` p : prop then Γn,k, ρ ` p true. By applying
process reduction rules we conclude that (ρ,while p do e1)→n,k (ρ, e1;while p do e1).

Subcase e is forx : i..1 do e1, Γn,k, ρ ` i < 1 true and Γn,k, ρ, x : {y : int | y ≤ i} `
e1 : skip. By direct application of the process reduction rules we can conclude
that (ρ, forx : i..1 do e1)→n,k (ρ, skip).

Subcase e is let y : D1 = i1 in e1, and (1) Γn,k, ρ ` i1 : D1 and (2) y /∈ fv(skip),
and (3) Γn,k, ρ, y : D1 ` e1 : skip: By applying evaluation always succeeds
(lemma 3) to (1), we derive that (4) (ρ, i) ↓n,k (ρ′, v) : D. By applying (2–4)
and process reduction rules, we can conclude that (ρ, let y : D1 = i1 in e1) →n,k

(ρ′, e1{v/y}).

Subcase e is if p then e1 else e2, and Γn,k ` p : prop, and Γn,k, ρ ` e1 : skip, and
Γn,k, ρ ` e2 : skip: Similar to while.

Subcase e is e1; e2, and (1) Γn,k, ρ ` e1 : skip, and (2) Γn,k, ρ ` e2 : skip. By
induction on (1) we obtain e1 is skip or (ρ, e1)→n,k q. It is easy to show that for
both cases there is a process reduction rule such that (ρ, e1; e2)→n,k q.

B.8 Results related to programs

Main results in this section: agreement for program formation (Lemma 35),
agreement for program reduction (Theorem 1), and progress for programs (The-
orem 3).

54 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

Lemma 35 (agreement for program formation).

P : S

S : ptype

Proof. Directly from the premise of the only rule for assertion P : S.

Theorem 1 (agreement for program reduction). Statement on page 21.

Proof. By case analysis on the rules concluding the hypothesis. We have eight
cases: one dealing with message passing, one dealing with process reductions and
six dealing with collective operations. We illustrate one case for each category.
Case the derivation ends with the broadcast rule:

rule premise (ρl, i
′
l)↓n,l (ρ′l, v) : D (1)

rule premise Γn ` 1 ≤ ik ≤ n true (2)

rule premise Γn,k, ρk ` i′k : D (3)

rule premise Γn,k, x : D, ρk ` ek : T (4)
rule premise D,T contain no ref types (5)
rule premise rank /∈ fv(D,T) (6)

Building the first result, P1 : S1:

2–4, 6, lem. 7, exp.+proc. form. Γn,k ` (ρk, letx : D = broadcast ik i
′
k in ek) :

broadcast ik x : D.T
(7)

4, 6, lemmas 20,8 Γn, x : D ` T : type (8)
2, 8, type form., lemma 2 (broadcast ik x : D.T)

n
k=1 : ptype (9)

7, 9,prog. form. (ρk, letx : D = broadcast ik i
′
k in ek)

n
n=1 :

(broadcast ik x : D.T)
n
k=1 (10)

Building the second result, P2 : S2:

2, lemma 32 Γn,l, ρl ` i′l : D (11)
2, lemma 32 ρ′l ` v : D (12)
2, lemma 32 ρ′l = ρl, ρ

′′
l (13)

2, 4, 6, lemma 8 ε ` v : D (14)

rank 6= l:

14, lemma 7 Γn,k, ρk ` v : D (15)

5, 8, lemma 24 Γn,k, ρk ` e{v/x} : T{v/x} (16)

14, proc. formation Γn,k, ρk ` (ρk, e{v/x}) : T{v/x} (17)

Type-Based Verification of Message-Passing Parallel Programs 55

rank = l:

5, 13, lemma 7 Γn,l, ρ′l ` el : T (18)

as for rank 6= l Γn,l, ρ′l ` (ρl, e{v/x}) : T{v/x} (19)
14, lemma 7 Γn, ρk ` v : D (20)
8, 20, lemmas 12,2 (T{v/x})nk=1 : ptype (21)

17, 19, 21, proc+proc. form. (ρk, ek{v/x})l−1k=1, (ρ
′
l, el{v/x}), (ρk, ek{v/x})nk=l+1 :

(T{v/x})nk=1 (22)

Case the derivation ends with the message rule:

shape of the rule 1 ≤ l,m ≤ n (1)
rule premise il ↓n m (2)

rule premise (ρl, i
′
l)↓n,l (ρ′l, v) : D (3)

rule premise im ↓n l (4)
rule premise (ρm, i

′
m)↓n,m (ρ′m, r) : D ref (5)

rule premise ε ` l 6= m true (6)

rule premise Γn,l, ρl ` i′l : D (7)
rule premise Γn,m, ρm ` i′m : D ref (8)

rule premise Γn,k ` qk : skip (1 ≤ k ≤ n, k 6= l,m) (9)
rule premise D,T contain no ref types (10)
rule premise rank /∈ fv(D,T) (11)

We proceed by building the first result, namely P1 : S1. The types for pro-
cesses (ρl, send il i′l) and (ρm, receive im i′m) follow from Lemma 33 and from the
constraints imposed on l and m:

2, lemma 33 Γn ` il = m true (12)
1, 12, transitivity Γn ` 1 ≤ il ≤ size true (13)

From the definition of Γn,l, we know that Γn,l ` rank = l true.

6, Γn,l ` rank = l true Γn,l ` m 6= rank true (14)

By applying agreement for evaluation (Lemma 32), we infer:

3, lemma 32 Γn,l, ρl ` i′l : D (15)

Weakening (Lemma 7) is used in rules (13–15) to extend the type environment
to Γn,l, ρl (details omitted). Such steps build the type for send:

13, 14, 15, lem. 7, exp. form. Γn,l, ρl ` send il i
′
l : message l il D (16)

56 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

A similar derivation yields the type for receive:

4, lemma 33 Γn ` im = l true (17)
1, 19, transitivity Γn ` 1 ≤ im ≤ size true (18)
6, Γn,m ` rank = m true Γn,m ` l 6= rank true (19)
5, lemma 32 Γn,m, ρm ` i′m : D ref (20)
18, 19, 20, lem. 7, exp. form. Γn,m, ρm ` receive im i ′m : message im m D (21)

16, 12, proc. form. Γn,l ` (ρl, send m i′l) : message l m D (22)
21, 17, proc. form. Γn,m ` (ρm, receive l i

′
m) : message l m D (23)

Building the ptype:

7, 10, 11, lemma 8 Γn ` i′l : D (24)
24, lemma 1 Γn ` D : dtype (25)
6, lemma 7 Γn ` l 6= m true (26)
25, 26,ptype form. skip1, . . . , skipl−1,message l m D, skipl+1, . . . ,

skipm−1,message l m D, skipm+1, . . . , skipn : ptype
(27)

9, 22, 23, 27, prog. form. (qk)
l−1
k=1, (ρl, send il i

′
l), (qk)

m−1
k=l+1, (ρm, receive im i′m),

(qk)
n
k=m+1 : (skipk)

l−1
k=1,message l m D, (skipk)

m−1
k=l+1,

message l m D, (skipnk=m+1) (28)

Building the second result, P2 : S2:

3, lemma 32 ρ′l ` v : D (29)
29, lemma 17 - applied twice ρ′l : context (30)

30, lemmas 7, 13 Γn,l, ρ′l : context (31)

31, exp.+proc. formation Γn,l ` (ρ′l, skip) : skip (32)
5, lemma 32 ρ′m ` r : D ref (33)
10, 29, lemma 8 ε ` v : D (34)
34, lemma 7 ρ′m ` v : D (35)
33, 35, store update ρ′m[r := v] ` r : D ref (36)
36, lemma 17 ρ′m[r := v] : context (37)
37, lemmas 21, 25 Γn,m, ρ′m[r := v] : context (38)
38, exp.+ proc. formation Γn,m ` (ρ′m[r := v], skip) : skip (39)
ptype formation (skipk)

n
k=1 : ptype (40)

9, 32, 39, 41, prog. form (qk)
l−1
k=1, (ρ

′
l, skip), (qk)

m−1
k=l+1,

(ρ′m[r := v], skip), (qk)
n
k=m+1 : (skipk)

n
k=1 (41)

Case the derivation ends with process reduction:

rule premise ql →n,l q′l (1)

Type-Based Verification of Message-Passing Parallel Programs 57

rule premise Γn,k ` qk : Tk (2)
rule premise T1, . . . , Tl, . . . , Tn : ptype (3)

The proof relies on agreement for process reduction (lemma 4).

2, 3, prog. form. q1, . . . , ql, . . . , qn : T1, . . . , Tl, . . . , Tn (4)

1, lemma 4 Γn,l ` q′l : Tl (5)
2, 4, 5, prog. form. q1, . . . , q

′
l, . . . , qn : T1, . . . , Tl, . . . , Tn (6)

Theorem 3 (progress for programs). Statement on page 22.

Proof. From the hypothesis and the formation rules for programs and processes
we know that:

P1 is (ρ1, e1), . . . , (ρn, en) (1)
S1 is T1, . . . , Tn (2)

Γn,k, ρk ` ek : Tk (k = 1..n) (3)
T1, . . . , Tn : ptype (4)

The proof proceeds by rule induction on assertion T1, . . . , Tn : ptype. There
are ten cases to consider. We illustrate a few.
Case the derivation ends with the type equality rule:

rule premise T1, . . . , T
′
k, . . . , Tn : ptype (5)

rule premise Γn,k ` Tk ≡ T ′k : type (6)

3, 6, exp. formation Γn,k, ρk ` ek : T ′k (7)
1, 3, 7, 5, proc+prog. formation P1 : T1, . . . , T

′
k, . . . , Tn (8)

8, induction P + 1 halted or P1 → P2 (9)

Case the derivation ends with the broadcast rule:

rule premise Γn ` 1 ≤ l ≤ n true (5)
rule premise Γn, x : D ` T : type (6)

6, lemma 7, lemma 13 Γn,k, ρk, x : D ` T : type (7)

Each expression ek (1 ≤ k ≤ n) may be of four different forms, according to
inversion for expression formation:
Subcase each expression ek is letx : D1 = broadcast ik i′k in e

′
k:

lemma 26 Γn,k, ρk ` D1 ≡ D : dtype (8)

lemma 26 Γn,k, ρk ` ik = l true (9)

lemma 26 Γn,k, ρk ` 1 ≤ ik ≤ size true (10)

lemma 26 Γn,k, ρk ` i′k : D (11)

58 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

lemma 26 rank 6∈ fv(i1) (12)

lemma 26 Γn,k, x : D1, ρk ` e′k : T (13)

Building from index typing, deducibility and the fact that evaluation always
succeeds, we get:

5, inversion Γn ` 1 ≤ l ≤ n : prop (14)
14, index form. Γn ` l : int (15)
14, 15, index form. Γn ` l : {y : int | 1 ≤ y ≤ n} (16)
9, 12, inversion, lemmas 19, 8 Γn ` ik : int (17)
17, lemma 3 ik ↓n l (18)

11, lemma 3 (ρk, i
′
k)↓n,k (ρ′′k , v) : D (19)

We have now all the ingredients to perform reduction:

10, 11, 13, 18, 19, prog. red. (ρk, letx : D = broadcast ik i
′
k in e

′
k)

n
k=1 →

(ρk, e
′
k{v/x})i−1k=1, (ρ

′′
i , e
′
i{v/x}), (ρk, e′k{v/x})nk=i+1

(20)

Subcase at least one of the expressions ek is not broadcast.
From inversion of expression formation we have three additional cases.

Subsubcase ek is let yk : Dk = i′k in e
′
k:

lemma 26 Γn,k, ρk ` i′k : Dk (21)
lemma 26 y 6∈ fv(broadcast i x : D.T) (22)

lemma 26 Γn,k, ρk, yk : Dk ` e′k : broadcast ik x : D.T (23)

We apply progress for processes followed by program reduction:

21, 22, 23, lemma 6 (ρk, let yk : Dk = i′k in ek)→n,k qk (24)
3, 4, 24, prog. red. P1 → (ρ1, e1), . . . , qk, . . . , (ρn, en) (25)

Subsubcase ek is if p then e′k else e
′′
k :

lemma 26 Γn,k, ρk ` p : prop (26)

lemma 26 Γn,k, ρk ` e′k : broadcast ik x : D.T (27)

lemma 26 Γn,k, ρk ` e′′k : broadcast ik x : D.T (28)

We just need to apply progress to processes and program reduction.

26, 27, 28, lemma 6 if p then e′k else e
′′
k →n,k qk (29)

3, 4, 29, prog. red. P1 → (ρ1, e1), . . . , qk, . . . , (ρn, en) (30)

Subsubcase ek is e′k; e
′′
k :

lemma 26 Γn,k, ρk ` e′k : skip (31)

Type-Based Verification of Message-Passing Parallel Programs 59

lemma 26 Γn,k, ρk ` e′′k : broadcast ik x : D.T (32)

From progress for processes applied to e′k we have:

31, lemma 6 e′k is skip or (ρk, e
′
k)→n,k (ρ′k, e

′′′
k) (33)

Subsubsubcase e′k is skip: Follows by simple application of process and program
reduction rules:

33 e′k is skip (34)

32, 34, proc. red. (ρk, skip; e
′′
k)→n,k (ρk, e

′′
k) (35)

3, 4, 36, prog. red. P1 → (ρ1, e
′
k), . . . , (ρk, e

′′
k), . . . , (ρn, e

′
n) (36)

Subsubsubcase e′k reduces: Again a simple application of process and program
reduction rules yields:

33 (ρk, e
′
k)→n,k (ρ′k, e

′′′
k) (37)

32, 37, proc. red. (ρk, (e
′
k; e
′′
k))→n,k (ρ′k, (e

′′′
k , e

′′
k)) (38)

3, 4, 38, prog. red. P1 → (ρ1, e
′
k), . . . , (ρ

′
k, (e

′′′
k , e

′′
k)), . . . , (ρn, e

′
n) (39)

Case the derivation ends with the message rule.

rule premise Γn ` l 6= m true (1)
rule premise Γn ` D : dtype (2)

According to inversion for expression formation lemma we have five cases for
each of the two ej , em expressions.
Subcase el is send il i′l and em is receive im i′m and l < m.

lemma 26 Γn ` rank = l true (3)
lemma 26 Γn ` il = m true (4)
lemma 26 Γn ` i′l : D (5)
lemma 26 Γn ` im = l true (6)
lemma 26 Γn ` rank = m true (7)
lemma 26 Γn ` i′m : D ref (8)

4, lemma 7 Γn,l, ρl ` il = m true (9)

9, lemma 3 (ρl, il)↓n,k (ρ′l,m) : D (10)
10, il does not contain references il ↓n m (11)

By applying to (9-11) similar steps as for im:

steps 9-11, applied to im il ↓n m (12)

We can infer that (ρl, i′l)↓n,l (ρ′l, v) : D and (ρm, i
′
m)↓n,m (ρ′m, r) : D via weaken-

ing and that evaluation always succeeds (lemma 3):

5, lemma 7 Γn,l, ρl ` i′l : D (13)

60 Vasconcelos, Martins, Marques, López, Santos, and Yoshida

13, lemma 3 (ρl, i
′
l)↓n,l (ρ′l, v) : D (14)

8, lemma 7 Γn,m, ρm ` i′m : D ref (15)
15, lemma 3 (ρm, i

′
m)↓n,m (ρ′m, r) : D (16)

Finally, we need to derive ε ` l 6= m true:

1, deducibility inversion Γn ` l 6= m : prop (17)
3, deducibility and prop inversions Γn ` l : int (18)
7,deducibility and prop inversions Γn ` m : int (19)
17, lemma 8, truth formation ε ` l 6= m true (20)

And putting all together:

11–16, 20, form. q1, . . . , (ρl, send il i
′
l), . . . , qm−1, (ρm, receive im i′m), . . . , qn →

q1, . . . , (ρ
′
l, skip), . . . , qm−1, (ρ

′
m[r := v], skip), . . . , qn (21)

Subcase el is send il i′l and em is receive im i′m and l > m (from (1) we know that
the case for l = m does not apply).

Similar to the case above.
Subcase Either el or em are not receive or send. We show the case for el, the
other is similar.
Subsubcase el is let y : D1 = i1 in e′l

lemma 26 Γn ` i1 : D1 (22)
lemma 26 y 6∈ fv(message l mD) (23)
lemma 26 Γn, y : D1 ` e′l : message l mD (24)

22, lemma, 7 Γn,l, ρl ` i1 : D1 (25)

24, lemma 21, lemma 25 Γn,l, ρl, y : D1 ` e′l : message l mD (26)

By applying progress for processes:

23, 25, 26, lem. 6 (ρl, el)→n,l ql (27)
27, prog. red. skip1, . . . , (ρl, el), skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn →

skip1, . . . , ql, skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn (28)

Subsubcase el is if p then e1 else e2
From inversion of expression formation we get:

lemma 26 Γn ` p : prop (29)
lemma 26 Γn ` e1 : message l mD (30)
lemma 26 Γn ` e2 : message l mD (31)

We weaken the context with ρl:

29, lemma 7 Γn,l, ρl ` p : prop (32)

Type-Based Verification of Message-Passing Parallel Programs 61

30, lemma 21 Γn,l, ρl ` e1 : message l mD (33)

31, lemma 21 Γn,l, ρl ` e2 : message l mD (34)

apply progress for processes:

32, 33, 34, lem. 6 (ρl, if p then e1 else e2)→n,l ql (35)
35, prog. red. skip1, . . . , (ρl, el), skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn →

skip1, . . . , ql, skipl+1, . . . , skipm−1, (ρm, em), . . . , skipn (36)

Subsubcase el is e1; e2:
From inversion of expression formation and weakening we get:

lemma 26 Γn ` e1 : skip (37)
lemma 26 Γn ` e2 : message l mD (38)

37, lemma 21 Γn,l, ρl ` e1 : skip (39)

38, lemma 21 Γn,l, ρl ` e2 : message l mD (40)

From progress for processes we have that:

39, lemma 6 e1 is skip or (ρl, e1)→n,l (ρ′l, e3) (41)

Subsubsubcase e1 is skip: By applying process and program reduction as we
in the previous case:

40,proc. red. (ρl, e1; e2)→n,l (ρl, e2) (42)
42,prog. red. skip1, . . . , (ρl, el), . . . , skipm−1, (ρm, em), . . . , skipn →

skip1, . . . , (ρl, e2), . . . , skipm−1, (ρm, em), . . . , skipn (43)

Subsubsubcase (ρl, e1)→n,l (ρ′l, e3): By applying process and program reduc-
tions we get:

40, proc. red. (ρl, e1; e2)→n,l (ρ′l, e3; e2) (44)
44, prog. red. skip1, . . . , (ρl, el), . . . , skipm−1, (ρm, em), . . . , skipn →

skip1, . . . , (ρ
′
l, e3; e2), . . . , skipm−1, (ρm, em), . . . , skipn (45)

