
20

Flux: A Platform for Dynamically Reconfigurable Mobile

Crowd-Sensing

NUNO SILVA, EDUARDO R. B. MARQUES, and LUÍS M. B. LOPES, Faculty of Science,

University of Porto & CRACS/INESC-TEC

Flux is a platform for dynamically reconfigurable crowd-sensing using mobile devices like smartphones and

tablets, programmed under a notion of region-based sensing. Each region is defined by a set of physical con-

straints that determine the sensing scope, e.g., based on device position or other environmental variables,

plus a set of periodic tasks that perform the actual sensing. The resulting behavior is inherently dynamic: as

a device’s state changes, e.g., moves in space, it enters and/or leaves different regions, thereby changing the

set of active tasks; moreover, regions can be added, deleted, and reprogrammed on-the-fly. Flux makes use

of a domain-specific language for sensing tasks that is compiled into abstract bytecode, later executed by a

low-footprint virtual machine within a device, guaranteeing runtime safety by construction. For region/task

dissemination, Flux employs a broker that holds a changeable region configuration plus gateways that mir-

ror the configuration throughout different network access points to which devices connect. Sensing data is

streamed by devices to gateways and then back to the broker. Live or archived data streams are in turn fed

by the broker to data-processing clients, which interface with the broker using a publish/subscribe API. We

conducted two case-study experiments illustrating Flux: a single-region deployment to monitor WiFi signal

quality, and a multi-region deployment to monitor noise, temperature, and places-of-interest based on device

movement.

CCS Concepts: • Information systems → Sensor networks; • Networks → Mobile networks; • Com-

puter systems organization → Sensor networks; • Software and its engineering → Virtual ma-

chines; Domain specific languages;

Additional Key Words and Phrases: Mobile crowd-sensing, software architecture, domain-specific language,

virtual machine, android

ACM Reference format:

Nuno Silva, Eduardo R. B. Marques, and Luís M. B. Lopes. 2018. Flux: A Platform for Dynamically Reconfig-

urable Mobile Crowd-Sensing. ACM Trans. Sen. Netw. 14, 3–4, Article 20 (November 2018), 25 pages.

https://doi.org/10.1145/3200202

This work was supported by projects TEC4Growth - RL SMILES - Smart, Mobile, Intelligent and Large scale Sensing and

analytics (NORTE-01-0145-FEDER-000020, NORTE 2020) and HYRAX (CMUP-ERI/FIA/0048/2013, FCT). An earlier version

of the work presented in this article was published in the ACM International Conference on Systems for Energy-Efficient

Built Environments (BuildSys 2017), Delft, The Netherlands, November 2017.

Authors’ addresses: N. Silva, E. R. B. Marques, and L. M. B. Lopes, Faculty of Science, University of Porto & CRACS/

INESC-TEC, Rua do Campo Alegre, 1021, Porto, 4169-007, Portugal; emails: nmsilva@fc.up.pt, edrdo@dcc.fc.up.pt,

lblopes@dcc.fc.up.pt.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1550-4859/2018/11-ART20 $15.00

https://doi.org/10.1145/3200202

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

https://doi.org/10.1145/3200202
mailto:permissions@acm.org
https://doi.org/10.1145/3200202

20:2 N. Silva et al.

1 INTRODUCTION

The use of sensors to monitor physical or environmental phenomena has manifold applications.
Traditionally, such tasks were performed using Wireless Sensor Networks (WSN), networks
of low cost, low power, devices typically composed of a radio transceiver, a microcontroller, a
power source, and multiple specialised sensors (Akyildiz et al. 2002). The nodes communicate
using energy efficient protocols like ZigBee and report sensor readings to one or more network
gateways, also known as base-stations, and are programmed using domain-specific languages (Fok
et al. 2009; Gay et al. 2003; Newton and Welsh 2004). Today, however, we have more than 1
billion potential multi-sensor personal devices in our smartphones or wearables that are more
flexible and becoming more attractive to use than WSNs. Smartphones have become ubiqui-
tous and typically feature powerful multi-core processors, several gigabytes of storage space,
multiple communication interfaces and sensors, and can be programmed using general-purpose
programming languages (Piejko 2017; Society 2015).

Given the ubiquity of mobile devices, their density in some locations and the increasing sophisti-
cation and quantity of sensors, we witnessed the emergence of Mobile Crowd-Sensing (MCS) (Guo
et al. 2015; Lane et al. 2010). MCS applications may concern passive monitoring in a spatially aware
manner, e.g., environment variables or user mobility patterns, but also explicitly engage users in
sensing actions, by triggering sensing actions that require their intervention (e.g., photo acquisi-
tion) or using the human as “sensor” for event reporting (e.g., accidents in road traffic).

In this context, most proposals focus on the infrastructure required to move the data from the
devices into the cloud infrastructure, for storage or processing, or on specific applications for
the context of mobile networks. Comparatively little work has been done to address the need of
dynamically re-programming these systems and the varying nature of sensing tasks attending to
environmental conditions/parameterisation, e.g., changing location due to device mobility. Current
systems are often inflexible and have a low degree of automation, mostly relying on application
installations/updates and user intervention to control the sensing process.

To address these concerns, we consider dynamically reprogrammable crowd-sensing using
mobile devices, with the overall approach illustrated in Figure 1. We consider that devices
automatically retrieve sensing configurations from the network, expressed as a set of regions.
Each region is defined by a set of physical constraints that determine the sensing scope, e.g., by
encoding a geographical zone of interest for sensing and/or predicates over other environmental
variables, plus a set of tasks that define the actual sensing. When a device enters a region (verifies
the region’s constraints), it activates the tasks mapped to that region and starts streaming back
the corresponding sensing data to the network; eventually (tasks for) one or more regions
may be active at a given time, as enabling constraints for different regions may be verified
simultaneously, e.g., regions may overlap in spatial coordinates. When a device leaves a region
(the region’s constraints no longer hold), the tasks are deactivated. Thus, different regions (tasks)
may be active over time, for instance, as the location of a device changes. An additional level of
dynamic behavior may be obtained if we let the set of regions be changed over time, implying
their dynamic installation/removal along with associated tasks, something that should happen
seamlessly, without the intervention of the mobile device users.

We believe this approach is in line with the wide scope of crowd-sensing in the real-world. Pub-
lic or commercial buildings may have several zones of interest and distinct sensing requirements
for each, e.g., shopping malls, where there are different spaces (shops, walking areas, etc.). Regions
can also be useful abstractions in different realms, for instance, in citizen science apps to direct
sensing tasks/participant users to under-sampled areas, or in transportation systems to differenti-
ate between different routes. Naturally, user participation incentives need to be accounted for. In
each of the previous realms, different ones can be considered, e.g., a sweepstakes system giving a

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:3

Fig. 1. Dynamic region-based sensing tasks for mobile devices.

bonus for payments in certain shops or movie tickets in shopping malls, co-authorship of a paper
in citizen science, or the possibility of obtaining a global view of information in transport systems
shaped from data collected by all participants.

In this article, we present Flux, a MCS platform using region-based programming. Flux takes
form through an Android service that is installed in devices for data collection and a cloud-based
infrastructure for global region-based programming and dissemination. The Android service main-
tains a set of regions that may be (re)configured through the network for the host device and ex-
ecutes sensing tasks for the regions that become active over time. Tasks are programmed using
a domain-specific language and received by devices in a compiled bytecode format amenable to
safe execution by a low-footprint virtual machine within the Android service. For region dissem-
ination, Flux employs a cloud broker that holds a changeable set of region configurations, plus
gateways that propagate these configurations through different network access points to which de-
vices may connect. The idea is that, if necessary, gateways can typically be deployed near the edge
of the network (e.g., as special-purpose access points or cloudlets), alleviating the burden and/or
functioning as proxy for the centralised broker. Sensing data is streamed by devices to gateways
and then back to the broker. Data-processing clients may in turn interface with the broker using
a publish/subscribe API to access live or archived data streams.

To illustrate the applicability of Flux, we asked volunteer students to install the Flux service
in their smartphones and conducted two case-study experiments in the physical space of our de-
partment building and surrounding gardens. In the first case-study, we defined a single region
where geo-referenced WiFi coverage data was sampled. The streams generated by the personal
devices as the students moved through the survey area were gathered and post-processed to pro-
vide a real time map of the WiFi coverage at the facilities. In the second case-study, we defined a
three-region setting where we took geo-referenced measures of (1) audio noise in the department
building, (2) places-of-interest based on (absence of) device movement in surrounding gardens,
(3) and temperature in the entire survey area.

The remainder of the article is structured as follows. Section 2 provides an overview of Flux in
terms of underlying requirements, architecture, and component sub-systems. Section 3 describes
how the region-based programming works, in terms of region specification, the domain-specific
language used to define tasks, and the virtual machine used to execute them. Section 4 describes
the main traits of the implementation in technical terms, along with a performance evaluation
for the Android service. Section 5 describes our two case-study experiments. Section 6 discusses
related work, and Section 7 concludes the article with a discussion of ongoing work and future
research topics.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:4 N. Silva et al.

Fig. 2. The Flux architecture.

2 FLUX OVERVIEW

2.1 Requirements

The use of mobile devices for sensing purposes is subject to a number of constraints when com-
pared to static sensing infrastructures such as WSN. First, there is no guarantee that a mobile
device always has an active data connection. Unlike in WSN this may not be due to the faulty
nature of wireless connections but rather because the device’s owner may impose radio silence.
Users can also, without warning, kill the sensing software running on the device. More often, how-
ever, this software must share with many other applications the resources of the mobile device,
namely processor time and storage. The issue of safety, in the sense that the execution of the sens-
ing software will not disrupt the normal functioning of the device, is crucial as otherwise users
will not participate in sensing activities. Finally, the definition of regions and the distribution of
the corresponding sensing tasks must be totally transparent from the device’s owner perspective,
to minimize the impact on the usability of the device.

With these concerns in mind, we considered the following five general requirements for the Flux
framework: (a) it must be able to disseminate sensing tasks to be performed by mobile devices and
aggregate the captured data to be forward to interested clients; (b) it must allow the specification
of regions and their associated task pools and to automatically download and activate the tasks
once the mobile devices enter the regions; (c) it must operate in the background without requiring
user intervention; (d) it must be able to run tasks in any type of mobile device as long as the
sensor requirements are met, and; (e) it must have a low execution footprint in terms of resource
consumption, e.g., processor time, storage, and battery.

2.2 Architecture

Flux has a typical three-layer architecture where a set of clients, connected to the Internet, access
data streams generated by mobile devices through a publish/subscribe broker. The streams are

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:5

Fig. 3. The Flux Android Service.

sent from mobile devices in a region to gateway devices that act as proxies of the broker. Figure 2
shows a high-level representation of these three layers and their relations.

2.2.1 Data Layer. A Flux gateway is a proxy for the publish/subscribe broker that forwards
data streams from the devices to the broker and region and task operations (e.g., install, remove,
updates) from the broker to the devices.

Sensing tasks are executed by the Android Flux Service running on the mobile devices, as il-
lustrated in Figure 3. Through its gateway interface, the service discovers gateways and registers
itself. Over time, it receives commands from the gateways to be performed locally, e.g., install a
region and its task pool. The region manager periodically checks whether the device is within one
of the stored regions and, if so, adds the corresponding tasks to an Earliest-Deadline First (EDF)
queue for execution. The tasks are executed according to their periodicity in a virtual machine that
makes use of the sensor interface to get sensor readings. The data is sent back to the gateways via
the gateway interface.

Regions are specified using a domain-specific programming language, the Flux Task Language
(FTL), described in Section 3. FTL extends a language originally designed for WSN devices (Ferro
et al. 2015), by allowing regions to be specified in addition to corresponding sensing tasks. Thus,
a subset of the language concerns region specification, and a different subset is used to program
the actual sensing tasks. FTL is a statically typed language that is parametric in the set of sensors
available in each device, abstracting away from hardware and low-level operating system details,
whilst also providing a number of runtime safety properties. FTL source code for tasks is compiled
to machine-independent bytecode that can in turn be scheduled for periodic execution using the
EDF scheme mentioned above. The bytecode is executed by the FTL virtual machine with very
low memory and processor time footprint, as illustrated by the evaluation later given in Section 4.

2.2.2 Processing Layer. The processing layer is composed of a publish/subscribe broker that
keeps track of a set of gateways, contributing with data streams, and a set of clients that subscribe
to the data streams. The data is live-streamed from gateways to clients according to subscription
parameters (e.g., split per task). The broker also maintains a database where data streams are
logged for a (configurable) time window, making it possible for clients to access streams that
were captured in the recent past rather than live-streamed. Finally, the broker provides an

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:6 N. Silva et al.

Fig. 4. A Flux client showing live data streaming on a web browser.

administration interface through which programmers can provide new region specifications and
associated task pools, which it then injects in the gateways.

2.2.3 Client Layer. Flux clients connect to the broker by first requesting a list of available
streams and then selecting which to receive through subscription commands. An example client
takes the form of a web browser app, depicted in Figure 4, where live or logged data streams can
be visualised. A command-line tool is also available that can readily be composed in Unix style
(e.g., using pipes) with arbitrary data-processing scripts, e.g., to preprocess and forward the data
to a cloud service.

3 REGION PROGRAMMING

As mentioned earlier, Flux uses FTL, a domain specific programming language, to specify regions
and their associated task pools. The FTL compiler takes a region specification and produces a
binary representation that is suitable for installation in devices. The representation includes the
region’s constraints and the bytecode for all associated tasks. After a region is setup in a device,
the Flux Android service takes care of monitoring its activation, and (when active) executing the
bytecode of the region’s tasks in safe manner.

3.1 FTL Regions

A region is defined as a subset of the k-dimensional attribute space associated with n sensors
required to define it. Notice that k ≥ n as some sensors, e.g., the accelerometer or the GPS, have
multiple outputs. The subset is defined as a conjunction of constraints on the outputs of the sensors.
If all the constraints hold, then the device is said to be in the region. Thus, to define a region, we
need to specify a set of required sensors that must be available in the devices participating in the
crowd-sensing activity, and we also need to specify the set of constraints that define the region
boundaries. Last but not least, we must define the set of tasks associated with the region. The
execution of these tasks is triggered once a device enters the region, and disabled when the device

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:7

Fig. 5. A specification for a region.

leaves it. A task in a region is defined by the location of the corresponding source code file as well
as other pertinent attributes such as its period in milliseconds and a short textual description.

Figure 5 shows an example of a specification for a region in our faculty department
(FC6_Building). The sensors block discriminates the sensors required by the devices to partici-
pate in the crowd-sensing activity and the constraints block defines the region boundaries. In the
example, all devices within a geographical rectangle defined by the coordinates shown and with
a battery level higher than 25%, will run the tasks. The hostnames of 2 Flux gateways that will
disseminate the region specification are identified next in the gateways block; after receiving the
region’s specification, the Flux broker will push it to the identified gateways. Then, in the tasks

block, two tasks are specified that periodically measure: (1) the available WiFi coverage every 4
seconds, i.e., the number of available WiFi networks at each device location and the maximum
signal strength, and; (2) the noise level in the region with a period of 1s.

3.2 FTL Tasks

Tasks associated with a given region are programmed using another subset of FTL. The code for
FTL tasks code is compiled into very compact bytecode sequences run by the virtual machine
embedded in the Flux Android Service, at each device. Both FTL and the virtual machine were
designed to minimize the processing and memory footprint as well as to provide assurances of
runtime safety.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:8 N. Silva et al.

Fig. 6. FTL source code the WiFi coverage task.

3.2.1 Source Code. Figure 6 shows the FTL source code for the WiFiCoverage task specified
for the FC6_Building region in Figure 5. The code starts with the type of the stream generated by
the task (only one type of stream per task is allowed), the stream block. Each item in the stream
is described in terms of component fields, their type, label, and some textual information. The
requires section contains a description of the sensors required by the task, where each sensor
is defined by a type signature. The init block declares and initialises task variables, that persist
in memory across task invocations. Finally, the loop block contains the actual instructions that
execute every time the task is activated; recall that the activation period itself is not defined by the
task’s code, but instead configured in the region specification, as discussed earlier. The loop block
illustrates the FTL support for sensor reading, variable assignments, conditional branching (the if

construct), and data transmission (the radio instruction). The code proceeds by first reading the
WiFi and GPS measurements onto task variables, and then transmitting if the GPS accuracy does
not exceed a threshold of 10 meters; the accuracy value corresponds to the horizontal dilution of
precision (HDOP) reported for each GPS reading. Beyond the constructs shown in the example,
FTL also provides support for other common (e.g., arithmetic, relational, logical) operators over
32-bit integer and floating-point scalar values.

3.2.2 The Virtual Machine. The listing shown in Figure 7 depicts the bytecode for the FTL task
given in Figure 6 in human-readable form; the actual binary representation is just 137 bytes. The
execution of bytecode follows the familiar scheme of a stack-based VM, i.e., each operation pops
operands from a stack and/or pushes its results onto to the stack.

As shown in the figure, the bytecode has three sections: data, stack, and text. The data section
contains all the space for the program variables, corresponding initial values, and other program
constants. The stack, whose size is precomputed statically, is used for data manipulation (e.g.,
arithmetic, argument passing and storage of return values) and, finally, the text section contains
the actual instructions to be executed. As should be reasonably intuitive from the listing, instruc-
tions in the text block include loads (ld) onto the stack, stores (st) from the stack onto memory,
sensor reads (rd), and radio transmission (rad). Other assorted instructions relate to arithmetic and

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:9

Fig. 7. Bytecode for the WiFi coverage task.

flow control logic. For instance, the bf 60 instruction at address 44 is a conditional branch to the
instruction at address 60, where ret (the “return” instruction) ends the execution for a task activa-
tion; the flow corresponds to bypassing radio transmission, when the accuracy value exceeds 10,
as in the original FTL code.

3.2.3 Runtime Safety Properties. By construction, FTL is quite constrained to provide guaran-
tees of safe execution and predictable memory footprint; we discuss possible extensions of the
language as future work in Section 7. In terms of control flow, branching is strictly limited to plain
if-else blocks as in the example task. Thus, FTL provides no support for iteration, function calls,
or recursion. This guarantees proper termination of each task activation, while, in our view, still
providing reasonable expressiveness for plain data sensing.

To guarantee memory access safety, FTL provides support for scalar types only, excluding com-
posite types like arrays or lists for instance, which could make it extremely complex to guarantee
memory access safety at compile-time. The type constraints also imply that a precise memory
footprint is inferred by the compiler for a task. This footprint is bounded by the task variables’
memory plus the maximum possible size of the stack (discussed previously).

The use of the FTL language and VM also defines a secure sand-box, as opposed to a
scheme where arbitrary binary code may be downloaded and used for data sensing tasks, raising

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:10 N. Silva et al.

well-known security issues that are complex to detect and mitigate; e.g., see Arzt et al. (2014), Das
et al. (2010), and Enck et al. (2011).

4 IMPLEMENTATION

In this section, we describe the details of the prototype implementation of the Flux architecture
and present a basic performance and resource footprint evaluation for the Flux Android Service.

4.1 Programming Framework

We used Java as the development language for all components, except for the Web browser client
that was implemented in Javascript. The gateway and P/S broker were implemented as Apache
Tomcat web-services,1 the Flux service was programmed on Android Studio2 to run on Android 4.4
or higher, and the FTL compiler was implemented using the ANTLR compiler infrastructure.3 All
components of the Flux architecture communicate using a common message format, specified
using Google’s Protocol Buffers.4 Plain TCP/IP sockets were used for gateway-device communica-
tions and Web-sockets for interactions of the broker with gateways, administration module, and
clients. For logging data streams at the broker, we used an SQLite database.5

4.2 The Flux Broker

4.2.1 Region Administration and Dissemination. The Flux broker maintains a list of all the re-
gion specifications uploaded to the broker by authenticated users using the administrative inter-
face. Users upload a region specification plus the source code of FTL tasks used by it. The source
code of tasks are compiled by the broker into Flux virtual machine bytecode, and then packaged
together with the region specification for delivery to the gateways specified by it (cf. the gateways

block, Section 3.1).
For each sensing task in a region, the broker also considers the meta-data information for the

task’s data stream (cf. the stream block, Section 3.2) to create a corresponding SQLite database
table. The table will store values received for the data stream, hence it will have the same fields as
defined for the stream, along with extra information identifying data collection timestamps plus
the originating devices and gateways.

4.2.2 Client Interface. Clients interface with the broker through a publish/subscribe service.
Clients specify the data streams they are interested in from a list of available data streams provided
by the broker. Subscriptions may optionally be bounded by a time window, possibly in the past. In
a live stream setting, data received from gateways is published (forwarded) immediately to clients
who subscribed to it. Archived data streams in the broker’s database are also supplied to clients if
the data for the specified time window is available.

4.3 Flux Gateways

4.3.1 Gateway Discovery and Region Dissemination. Each gateway manages a set of regions,
previously uploaded by the broker, that will be injected or updated in mobile devices that connect
to it. The gateways advertise themselves over wireless networks, so the Flux Android Service does
not need any prior knowledge of the location or IP address of any gateway, i.e., it just probes the
network for possible gateway advertisements. When a mobile device connects to the gateway, the

1http://tomcat.apache.org.
2https://developer.android.com/studio/.
3http://www.antlr.org.
4https://developers.google.com/protocol-buffers.
5http://sqlite.org.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

http://tomcat.apache.org
https://developer.android.com/studio/
http://www.antlr.org
https://developers.google.com/protocol-buffers
http://sqlite.org

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:11

Fig. 8. The Flux service Android application.

latter compares the registered pool of regions to the ones running on the device and sends the
updates to the device. This synchronization also takes into account whether a given device meets
all the requirements for running a region’s tasks, i.e., if it has all the necessary sensors (cf. the
sensors block in region specification described in Section 3.1). If the sensor requirements are not
fully met by a device, then it does not download the region.

4.3.2 Data Stream Handling. When a task is activated in a device, i.e., the device enters the
task’s governing region, the corresponding data stream is uploaded to the current gateway the
device is engaged with. Data stream chunks, possibly aggregated from various tasks, may be up-
loaded with a configurable period or continuously, as described later in the text. If the connection
is temporarily lost, then data can be received later by the gateway when the connection is resumed.
It is possible that connection is resumed with a different gateway, but any data from buffered data
streams is forwarded in any case (even if the region is not currently programmed or has been
removed in the meanwhile) so it still eventually reaches the broker.

4.4 Flux Android Service

The implementation of the Android service follows the organisation earlier depicted in Figure 3. It
is composed of five main modules: the gateway interface, the region manager, the task scheduler,
the FTL virtual machine, and a sensor interface. As a service, it runs in the background without
need for user interaction. A user-interface application, shown in Figure 8, can in any case be used
to turn the gateway connection on or off, or the entire service on or off, besides providing basic
information regarding the state of running tasks.

The basic rationale and functionality of the scheduler and the virtual machine modules were
discussed earlier in the article (Sections 2 and 3), hence, we merely provide some complementary
details regarding the implementation of the region manager, the sensor interface, and the gateway
interface.

4.4.1 Region Manager. The region manager monitors the constraints associated to the regions
presently configured on the device. When the constraints associated with a region are satisfied,
the corresponding tasks are passed on to the scheduler for execution. The evaluation of such
constraints uses values provided by the sensor interface, which is notified of which sensors are
required for evaluating the constraints when a new region is downloaded to the device. This con-
trol of the active regions is done periodically, according to a global configuration parameter with
a default value of 1min. A region is kept in the device so long as it does not stay inactive for

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:12 N. Silva et al.

too long, currently 24h. Likewise, it can be removed when a gateway command is received to
disable it.

4.4.2 Sensor Interface. The sensor interface is responsible for obtaining sensor readings, inter-
acting with assorted Android OS APIs for that purpose. In addition to the requests from the region
manager, the task scheduler also uses the sensor interface to enable sensors on/off as tasks are
scheduled for execution, so the virtual machine can obtain the sensor readings at runtime. The
scheduler implements an adaptive activation/de-activation strategy for sensors. Active sensors
may consume significant battery power (e.g., GPS), whilst their repeated initialisation/shutdown
may cause unnecessary latency. In particular, initialisation may imply high latency until valid
readings are obtained (e.g., again GPS).

The sensor activation strategy takes into account the periodicity of tasks with respect to the
sensors they read. For a task with small period (high-frequency), below a certain threshold, the
sensors it uses are enabled before the first task activation and henceforth left on. Otherwise, for a
task with larger period (low-frequency), the sensors it uses are turned on and off respectively be-
fore and after each task activation. In the latter case, to avoid stale reads when the task is activated
again, the module also takes care to schedule the sensor activation for a configurable amount of
time before the deadline of the next task activation is reached. The period threshold is configured
per each type of sensor, attending to a (for now empirical) balance between initialisation latency
and battery consumption (e.g., the current value is set to 2 minutes for GPS).

4.4.3 Gateway Interface. Regarding the gateway interface, the Android service employs some
built-in data buffering mechanisms for network resilience and for reducing battery/bandwidth
consumption. Data produced by tasks is buffered when a connection to the gateway is lost, making
the service robust to network outages. Moreover, time and buffer size limits may be set and fine-
tuned if desired, so that transmission to the gateway occurs periodically using buffered data, rather
than continuously using live data.

4.5 Performance Evaluation

We conducted an evaluation of the Android service in terms of resource consumption and virtual
machine performance during bytecode execution. For the evaluation, we used a Google Nexus
tablet running Android 6.0 with 2GB of RAM and a dual-core 2.3GHz CPU, plus a gateway installed
on a 4-core machine with 12GB of RAM that was connected to the same network as the mobile
device. This was done to mitigate exterior interference on the communication between the device
and the gateway, as we wished to evaluate the performance of the service in isolation. Note also
that a much more lightweight configuration can be used for hosting a gateway (and/or a broker),
like the one for the case-study experiments discussed in Section 5.

The service was setup using five distinct configurations. The first configuration had no tasks
running, with the purpose of measuring the footprint of the service when idle. The four other con-
figurations resulted from successively increasing the number of running tasks by one and doubling
the frequency of each new task by a factor of two. The four tasks were: (1) the example WiFi survey
task running at 1Hz, (2) an atmospheric pressure sensing task at 2Hz, (3) a gyroscope sensing task
at 4Hz, and (4) an accelerometer sensing task at 8Hz.

For each configuration, we then conducted five monitoring sessions of a 2min run of the ser-
vice using the Android Debug Shell (adb). In terms of resource consumption, we sampled the CPU
utilisation and RAM usage in 1s intervals, plus the total of the TCP/IP data transmitted by the ser-
vice in each 2min interval. We also measured the power consumption by sampling the remaining
energy on the device battery (watt-hours) before and after each configuration, through the use of

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:13

Table 1. Resource Consumption

Tasks CPU (%) RAM (KB) Net. (bytes/s) Battery (J/min)
None (∅) 0.17 ± 0.04 9731 ± 2.8 6.2 ± 1.1 12.8 ± 0.6
WS 0.25 ± 0.06 9851 ± 3.3 86.3 ± 15.8 31.7 ± 2.8
WS + AP 0.32 ± 0.06 9864 ± 3.3 139.0 ± 25.0 34.2 ± 3.3
WS + AP + GS 0.58 ± 0.08 9877 ± 3.8 288.9 ± 52.4 35.9 ± 2.9
WS + AP + GS + AS 1.39 ± 0.10 9915 ± 5.6 576.6 ± 104.0 36.5 ± 3.6

WS: WiFi survey (1Hz); AP: atmospheric pressure sensing (2Hz);

GS: gyroscope sensing (4Hz); AS: accelerometer sensing (8Hz).

the Android BatteryManager API, converted to the scales of Joules. To withdraw the total energy
consumed by the device, we calculated the difference between the sampled values. The evaluation
was performed with the device screen turned off, seeking to minimize the power consumption un-
related to the Flux Android service, but with WiFi turned on to measure the consumed network
bandwidth. The results for the resource consumption (with the corresponding 95% confidence in-
tervals) are shown in Table 1, in terms of average CPU and RAM usage during the interval, the
average network bandwidth used to send the sensed data and the power consumption measured
in Joules per minute.

Overall, we can observe that the service has a very low footprint for all the measures we consid-
ered. On average, CPU usage is below 2% in all configurations, the RAM used is under 10MB, and
the consumed network bandwidth is less than 1KB/s. Moreover, the implementation scales well
as the number of tasks increase: The CPU and RAM overhead of adding one more task at double
the frequency is almost negligible, whereas the consumed network bandwidth increases naturally
owing up to the need of transmitting more sensed data.

Regarding battery consumption, we can observe that the service consumes little battery. When
no tasks are running, the average consumption observed was 12.7J/min. This value is significantly
increased to 31.7J/min for the second configuration: the WiFi survey task activates the GPS sen-
sor, that is the most power-hungry of all the sensors used on this evaluation. In the remaining
configurations, even though we introduced tasks with higher frequencies, the increment in the
power consumption was small, namely, because the remaining sensors are more constraint in en-
ergy consumption. Overall, the peak value of battery consumption is close to 40 J/min. To put this
in perspective, given that the devices at stake have a nominal battery capacity of 96, 480J, assum-
ing an average voltage of 4V, 40J per minute represent a battery consumption of roughly 2.5% of
the battery capacity per hour. This is not to say that, in proportion, the Android service should
withstand about 40h of operation non-stop. Power consumption levels do not generally evolve
linearly, depend on several factors, and are reasonably complex to reason on (Tarkoma et al. 2014).
In addition, note that our evaluation considers the device in stand-by mode with the screen turned
off, mitigating interference from apps and services that are active (or more active) during normal
use of a device.

In addition to resource consumption, we also measured the performance of bytecode execution
within the virtual machine. This was done in terms of the average execution time per activation for
each of the four benchmarking tasks. This was done for the last evaluation configuration, the one
with all tasks enabled. The results (with the corresponding 95% confidence intervals) are shown in
Table 2, that lists the byte-code size and average execution time in milliseconds per each of tasks.
Again, a low-footprint pattern is observed. The WiFi survey task, with larger code size, is the most
time-consuming but still takes less than 5ms on average to run. All other tasks run in less than
0.5ms, on average.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:14 N. Silva et al.

Table 2. Bytecode Size and Execution Time

Task Size (bytes) Exec. time (ms)
WiFi survey (WS) 137 4.55 ± 0.20
Atmospheric pressure sensing (AP) 26 0.23 ± 0.01
Gyroscope sensing (GS) 74 0.44 ± 0.02
Accelerometer sensing (AS) 74 0.42 ± 0.01

5 CASE STUDIES

In this section, we present two case-studies that aim to demonstrate: (a) the dynamic injection and
activation of tasks in mobile devices moving around in a given region, with the acquisition of the
corresponding data streams, and; (b) the activation/de-activation of tasks as devices roam between
regions. For each experiment, we also present a synthetic analysis of the data streams gathered
during the experiments.

5.1 WiFi Coverage Case-Study

5.1.1 Outline. For evaluating the base functionality of Flux, we conducted a controlled real-
world experiment where WiFi service quality was surveyed over a certain area. For this, we pro-
grammed Flux using a single region constrained to the geographical zone of interest, and a sin-
gle sensing task. Volunteer users carried Android devices and walked through prescribed paths
along the survey area, while the Flux Android service executed the sensing task to collect GPS-
referenced WiFi signal data and streamed that data to a Flux gateway. The experiment was also
useful to validate the Android service across a heterogeneous set of devices in terms of device
types (smartphones or tablets), manufacturers, and Android versions.

5.1.2 Setup. The survey area, depicted in Figure 9, has a dimension of roughly 100 × 150m, and
comprises the Computer Science department building that is part of the Faculty of Science of our
university (A in the figure), plus walkways in a garden north of the same building.6 The figure
also depicts an outline of the paths followed by volunteer users carrying mobile devices, covering
corridors within the department building plus walkways outside. The walkways pass through the
outside of two other university buildings (B and C in the figure).

Open-air GPS precision was better than within the building (as expectable), but anyway judged
to be fair enough in both vicinities (as discussed below). The department building has two floors,
but data was sampled only for the second floor, since most of the ground floor has reserved access
(there is only a small portion of corridors).

The WiFi network subject to monitoring is the eduroam7 instalment at our university, the most
commonly used campus network by students and staff. For sensing, we defined a single region
geographically constrained to the zone of interest and with one sensing task associated to it. The
task is the same as described earlier in Section 3, with the single difference that no accuracy filter
is set when transmitting to the gateway (i.e., the if guard condition in Figure 6 is omitted), and
was configured to run with a periodicity of 4s. Thus, it is programmed to collected two items of
information over time and space: the WiFi signal strength, and the number of nearby networks also

6The satellite and map imagery used in this article was obtained from Google Earth, in compliance with Google’s terms

(https://www.google.com/permissions/geoguidelines.html), and Open Street Maps, in compliance with the ODbL license

(http://www.openstreetmap.org/copyright).
7http://eduroam.org.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

PLX-HTTPS://www.google.com/permissions/geoguidelines.html
http://www.openstreetmap.org/copyright
http://eduroam.org

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:15

Fig. 9. Survey area for WiFi coverage analysis.

detected by Android. The aim was to analyse a suspected inverse correlation between eduroam’s
WiFi signal strength and interference from other active networks, in addition to physical location.

In terms of the cloud setup, we used a CentOS Linux virtual machine (CentOS VM) with two
cores and 1,837MB of RAM, hosted on a OpenStack cloud infrastructure. An Apache Tomcat appli-
cation server instance runs on the VM, hosting a Flux gateway and a Flux P/S broker. The CentOS
VM is accessible over the Internet, allowing devices running the Flux Android service to install
tasks (and relay data) from (to) the gateway, and external clients to access the P/S broker. This is a
relatively simple setup, but one that served the purpose of the experiment; note that, as mentioned
earlier in the article, multiple gateways running on different hosts can be used, interacting with a
broker on another, possibly distinct, host.

For measurements, we used a total of 23 devices, divided in two groups: 9 Google Nexus tablets
running Android 6.0 that we provided the volunteers for use, plus 12 personal smartphones owned
by the volunteer themselves from various vendors and running assorted Android versions, pre-
dominantly Android 6.0 (the 9 Google tablets + 9 smartphones) but also 7.0, 5.1, and 4.4 (one device
per each version). Table 3 summarises the basic characteristics of these devices. The Android ser-
vice was installed in each of the devices, followed by an automatic download and installation of
the FTL task for the survey by the service itself, as soon as it got a connection to the gateway.

5.1.3 Results. After setup, the volunteers conducted 33 trips along the prescribed survey paths,
resulting in the collection of 2,726 data sample measurements, 1,193 inside the department build-
ing and 1,533 outside. For data analysis, we filtered out measurements for which the GPS accuracy
exceed 10 meters, reducing our data set to 1,922 samples (69% of the original) inside the build-
ing and to 1,212 samples (79% of the original) outside. Figure 10 depicts the filtered data set as

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:16 N. Silva et al.

Table 3. Android Device Characteristics

Type Version Vendor
Tablet 6.0 Google (9)

Smartphone 7.0 Samsung (1)
6.0 Asus (1), Huawei (1), Lenovo (1),

LG (1), OnePlus (2), Vodafone (1),
Wiko (2)

5.1 Xiaomi (1)
4.4 Alcatel (1)

Fig. 10. WiFi coverage survey—data plots.

geo-referenced “heat maps”, in terms of the eduroam WiFi signal strength (Figure 10(a)), the num-
ber of detected WiFi networks (Figure 10(b)), and the GPS HDOP (Figure 10(c)). In the plots, ren-
dered using QGis,8 the colors depicts the average measure for data points within each hexagon
that forms the heat map (buildings are marked A to C as in Figure 9).

From the plots, we can make a few direct observations. Regarding eduroam’s WiFi signal
strength, clearly it is significantly weaker in the outside area. An immediate decrease in WiFi
signal is observable just a few meters outside the building, and the signal only tended to go up as
users move north and get near the two other university buildings. In contrast, the quality of geo-
referencing is less reliable inside the building (as would be expectable), given that HDOP measures
are clearly better (lower) outside (as also highlighted by the HDOP threshold filtering discussed
above).

Regarding interference between eduroam and other networks, we can observe areas inside the
building where a significantly higher number of networks are active, on the west side particularly,
where a considerable number of computer labs are concentrated, the D “hotspot” in the plots of
Figure 10(b). From the plot it seems apparent that these do not interfere with eduroam’s WiFi
signal significantly, however. To clarify the analysis, we depict a scatter plot in Figure 11 relating
the WiFi signal and the number of networks; no correlation pattern emerges, as illustrated by the

8http://www.qgis.org.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

http://www.qgis.org

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:17

Fig. 11. WiFi signal vs. number of WiFi networks inside the department building.

relatively uniform distribution of scatter points per network count, and the point is reinforced
by the trend line shown for the average signal. We did not pursue an exhaustive analysis of this
finding, but conjecture that it relates to the fact that there are several eduroam’s access points
scattered around the building, and suspect that they should also typically have a stronger signal
than more modest special-purpose WiFi access points/routers operating in computer labs.

5.2 Region Roaming Case-study

5.2.1 Outline. For evaluating the activation and deactivation of regions, we considered roughly
the same area as for the WiFi coverage case-study as a target for sensing, but defined three Flux
regions over it, and distinct sensing tasks for each region: (1) in an indoor region, we measured
audio noise levels, (2) stop-points for users outdoors, and (3) temperature in a region that enclosed
the first two. As before, volunteer users carried Android devices and walked through prescribed
paths along the survey area, triggering Flux to activate different regions/tasks over time.

5.2.2 Setup. The survey area and Flux regions are depicted in Figure 12, along with an outline
of the paths followed by volunteer users. As shown, the survey area again comprises our depart-
ment building and part of the surrounding gardens. The three regions, marked A to C, were defined
with different geographical constraints and geo-referenced sensing tasks:

• Region A encompasses the entire survey area. For this region we programmed a task mea-
suring internal battery temperature with a period of 2s. The devices we had at hand for
testing (like most Android devices currently in the market) did not have a built-in ambient
temperature sensor, which would be a better choice for environmental monitoring. How-
ever, internal temperature correlates and normally flows in line with variations in ambient
temperature, which makes the former an interesting proxy measure for the latter (Overeem
et al. 2013).

• Region B covers part of the garden area. For this region, we programmed a movement de-
tection task, using the step detector “meta-sensor” provided by the Android API, with a

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:18 N. Silva et al.

Fig. 12. Multi-region survey area.

period of 1 second. To impose stopping points, we instructed volunteers to stop near two
prescribed points in the garden walkways, marked as stars in Figure 12, for approximately
10s.

• Region C corresponds to the department building. For this region we programmed an audio
noise sensing task using built-in device microphones, also with a period of 1s. The aim was
to get a sense of possible noise variations in different parts of the building, e.g., possibly
higher levels of noise near classrooms, and less so near offices.

The hardware setup for the broker and gateway were the same as for the WiFi coverage case-
study. As for mobile devices, we employed six of the Google Nexus tablets also used in the previous
experiment. We decided not to use heterogeneous devices, given that internal temperature and
audio measurements may vary widely for distinct devices.

The volunteers walked several times along the prescribed survey paths over a period of two
hours. As in the WiFi survey experiment, we filtered out measurements for which the GPS accu-
racy exceeded 10m, obtaining 3,161 data sample measurements, 1,031 of which inside the depart-
ment building and the remaining 2,130 outside. Figure 13 depicts this data set as geo-referenced
“heat maps” for temperature measurements (Figure 13(a)) and audio noise levels (Figure 13(c)) rep-
resenting average values in regions A and C, and as a scatter plot for stop-point/movement data
(Figure 13(b)) in region B.

5.2.3 Results. Regarding the temperature data in Figure 13(a), the plots show an overall varia-
tion of internal battery temperature between 20 and 30 Celsius degrees. Higher temperatures are

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:19

Fig. 13. Multi-region survey—data plots.

Fig. 14. Temperature measurements outdoors over time.

more frequently observed inside the building, which has air conditioning, and colder temperatures
outdoors (ambient temperature was about 10 degrees). Observe that for outdoors data, if we ac-
count for the direction of survey paths (sketched in the figure, and originally depicted in Figure 12),
the overall trend is that battery temperature decreases with progressive exposure to open air. This
is best illustrated in the scatter plot of Figure 14, where we depict the temperature outside as a func-
tion of walking time, and a trend line that clearly indicates that temperature decreases over time.

Regarding the stop-points/movement analysis in Figure 13(b), the scatter plot clearly indicates
the absence of movement near the two prescribed stop-points, previously identified by star sym-
bols in Figure 12.

Finally, for audio noise level measurements, the data captured by the task was the maximum
absolute amplitude measured in recordings of 1s (the task’s period), as indicated by the absolute
reading (an unsigned 16-bit value) from the uncalibrated microphone sensor the devices we used.
The dB values are estimates from these amplitude values, assuming a 30dB value for an empty
office room with air conditioning turned on. We can observe in Figure 13(c) that there are roughly
two identifiable zones in the building. The south area of the building is more silent, with estimated

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:20 N. Silva et al.

noise predominantly lower than 51dB, coinciding with the zone where staff offices can be found,
while the remaining areas are louder, with estimated noise usually between 52 and 62dB, coinciding
with rooms used for classes and by the student union.

6 RELATED WORK

6.1 MCS Platforms

We now survey some state-of-the-art MCS platforms and then make an overall comparison with
Flux.

The Medusa (Ra et al. 2012) platform is designed for general purpose crowd-sensing using An-
droid smartphones, in interface with Amazon Mechanical Turk (AMT) to recruit workers for sens-
ing tasks and manage monetary incentives. Each task is defined in MedScript, an XML-based
domain-specific language, as a sequence of stages. Stages may define human actions (e.g., tak-
ing a photo) or passive sensing, and are supported by binary modules that are downloaded (once)
when needed. For security, these binary modules are verified by static Java bytecode analysis that
detects the use of disallowed APIs. Medusa is not reconfigurable in the sense of Flux regions, as
tasks and stages do not have associated constraints, instead the dynamics of the system are driven
by the AMT crowd-sourcing model. Like FTL bytecode, the use of MedScript makes for compact
task specifications, which the authors found to several orders of magnitude small to equivalent
binary modules in a few examples.

Sensus (Xiong et al. 2016) is an Android and iOS crowd-sensing application oriented toward
human studies surveys. Human studies surveys can be scheduled or sensor-triggered, and also
integrate sensor data in survey responses, including internal and external smartphone sensors like
Bluetooth LE beacons or smart-watch sensors. Sensus is self-contained in the sense that the same
mobile application is used both for programming surveys, taking them, and storing the results. The
Amazon S3 cloud service can also be used for storage, and an R toolkit library (SensusR) allows
for processing, analysis, and visualisation of aggregated data. Tasks, called sensing protocols, are
specified using the app stored on a cloud server, and disseminated using email, URLs, or other
means. Sensing protocols are expressed in a domain-specific JSON-based language. As in Flux,
constraints may be specified for sensing, e.g., geographical locations for triggering user surveys.

In PRISM (Das et al. 2010), implemented for Windows Mobile smartphones, sensing tasks are
disseminated from a central server using a push model that implements a two-level predicate
characterisation for task installation, overall in line with the aims of Flux regions. A high-level
predicate is defined by a set of coarse-grained geographical regions, the required devices in each
region, and the required sensors for a task. A low-level predicate, evaluated per device, may be ex-
pressed accounting for more fine-grained conditions for task activations, such as precise locations
and speed or temperature ranges. Tasks take form as executable binaries that may be untrusted,
raising concerns of safety and security. To cope with these, tasks run in sandboxed environment
where all system calls are relayed through the PRISM daemon through a system call interposi-
tion scheme. The daemon uses access control and dynamic taint analysis mechanisms to regulate
sensor access and obtained data, and monitors execution to terminate tasks that cause resource
depletion (e.g., CPU and memory), or to enforce limit for resource usage in other cases (e.g., sensor
and file system access).

AnonySense (Cornelius et al. 2008), a platform for Linux-based PDAs and iPhones, allows ap-
plications to submit sensing tasks to mobile devices to obtain sensed data reports in return. A task
is programmed using a declarative language, AnonyTL, that specifies acceptance conditions based
on device characteristics (e.g., sensor payload), data report statements, and an expiration time for
sensing. Report statements express the desired sensor data, along with conditions for reporting

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:21

them, expressed, for instance, in terms of a geographical area, periodicity, or time of day. Appli-
cations inject tasks and receive back data in interface with the AnonySense server, organised as a
set of services for device registration, task dissemination, and data streaming. Security, in general,
and anonymization, in particular, are core concerns of the system, by employing the use of mix
networks, trust models, and peer certification.

USense (Agarwal et al. 2013) is an Android smartphone crowd-sensing platform for environmen-
tal sensing. Tasks, called sensing moments, are programmed using an XML-based domain-specific
language. They have a periodic or event-based nature to monitor specified sensor values, and can
be configured with sensing constraints such as geographical location and time. Additionally, an
utility value from 0 to 1 denotes the urgency or importance of the task. A significant feature of the
runtime system is the use of adaptive sampling strategies, enabling and disabling sensors on-the-
fly, that factor in event detection and task utility values that seek to minimize energy consumption.
As discussed in Section 4, the current version of Flux, in spite of having low-footprint, follows very
simple heuristics in this regard.

SARANA (Hari et al. 2008) supports the development of applications that execute tasks on re-
mote devices based on the services they can provide (e.g., camera, image analysis). It provides
a language and a run-time system that allow programmers to express spatial regions of interest
as well as resource constraints needed to run the tasks, in particular device location may be ac-
counted for when assigning tasks. SARANA makes use of a domain-specific language, a superset of
Java, that provides macro-programming abstractions for device discovery, task distribution under
spatial, temporal, and resource constraints, and processing of aggregated data.

Summarising the above discussion of MCS frameworks, Flux more closely relates with Anony-
Sense, Medusa, Sensus, SARANA, USense, in the sense of using a domain-specific language for
expressing sensing tasks and associated execution environment. We believe these approaches are
more principled to promote safety and security, as opposed to relatively more complex handling of
these issues in arbitrary binary code as the PRISM platform is obliged to. Like Flux, AnonySense,
Medusa, PRISM, Sensus, SARANA, and USense provide the necessary infrastructure to inject sens-
ing tasks into the mobile devices. In the spirit of Flux regions, most platforms allow the specifi-
cation of constraints to parameterise task dissemination, except Medusa, which relies on Amazon
Mechanical Turk’s crowd-sourcing engine for that purpose. Unlike Medusa and Sensus, but similar
to AnonySense, PRISM, SARANA, and USense, Flux tasks run in the background gathering sensor
data, without user participation in sensing.

To finish this survey, we additionally make a brief reference to MCS frameworks where the
“human” is the sensor, more often called crowd-sourcing frameworks, since sensor data does
not play a pivotal role, apart from typically GPS for geo-tagging purposes. Two examples are
Zooniverse (Simpson et al. 2014) and Ushahidi (Okolloh 2009). Zooniverse is a quite successful
citizen-science platform that allows users of mobile devices to contribute to scientific projects,
typically by helping with the processing of large datasets with classification tasks. Ushahidi, in
its cloud and mobile app form, is a general purpose system to aggregate data supplied by humans
using disparate means (e.g., SMS, Twitter) and its use has been specially noteworthy for crisis
management in disaster scenarios.

6.2 WSN Platforms

Flux comes in sequence to previous work on the SONAR (Ferro et al. 2015) and Callas (Lopes and
Martins 2016) systems for programming static WSN deployments. As in Flux, SONAR’s architec-
ture is organised in terms of client, broker, and data layers. SONAR, however, does not support
the notion of regions. FTL is an extension of the SONAR Task Language (STL) with support for
the specification of regions, and the virtual machine that runs FTL bytecode for sensing tasks is

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:22 N. Silva et al.

essentially a Java/Android port of the STL virtual machine originally written in C. Similar to Flux
and SONAR, Callas used a domain-specific language and an associated virtual machine environ-
ment. Like SONAR, Callas does not support regions. The Callas language is quite different in nature
from STL and FTL, as it takes a process-calculi approach to define running modules in a WSN. STL
and FTL are simpler, as their expressiveness is limited to simple periodic sensing tasks that run in
logical isolation without any explicit concurrency constructs.

The concept of regions in Flux is similar to attribute-based regions proposed for WSN in Welsh
and Mainland (2004), where a region can be defined based on several criteria, such as device lo-
cation, radio connectivity, or values for sensed data. WSN languages like Regiment (Newton and
Welsh 2004), for example, use regions in combination with data streams as fundamental program-
ming abstractions, but as a functional macro-programming language, Regiment does not support
the dynamical reconfiguration of the tasks, since the sensor network needs to be reprogrammed
as a whole. Agilla (Fok et al. 2009), however, implements a mobile-agent programming flavour for
WSN, where each agent (a task) can proactively migrate across the network, executing code that
depends on the conditions sensed at each node. Agilla differs from Flux in that nodes are typically
geographically fixed, whereas tasks may migrate across devices.

The driving goals for the use of regions in the WSN setting are to enable online data pre-
processing or aggregation to reduce the bandwidth and energy required to send the streams to
the base stations. In the mobile setting, however, bandwidth and energy limitations are much less
strict, but device mobility and churn are important factors to account for, unlike in WSN that are
typically composed of a fixed set of static nodes.

6.3 MCS Applications

There are several crowd-sensing applications powered by the use of personal devices. We highlight
a few key areas of interest and related works.

For environmental sensing, crowd-sensing smartphone applications have been successfully used
to collect data that serves monitoring, modelling or forecasting purposes. For instance, noise levels
from a region for the purpose of generating accurate noise models as in NoizCrowd (Wisniewski
et al. 2013) smartphones, sensor readings for barometric pressure can be used for weather mon-
itoring and forecasting as in PressureNet (Mass and Madaus 2014) and WeatherSignal (Price and
Shachaf 2017), custom sensors can be connected to smartphones to monitor air pollution as in Gas-
Mobile (Hasenfratz et al. 2012), and (as illustrated in our second case-study experiment) internal
battery temperature can be used as a proxy value for ambient temperature (Overeem et al. 2013).

Another common application is monitoring urban infrastructure such as networks or roads.
Large-scale coverage maps of cellular networks have been derived using OpenSignal (OpenSignal
2010) and Epitiro (Wakefield 2011), and other applications like Palz (Radu et al. 2013) can be used
to monitor WiFi networks. Urban traffic can also through sensing or road incident reports from
users, as in the works for Crotis (Roopa et al. 2013), SignalGuru (Koukoumidis et al. 2011), or
SmartRoad (Hu et al. 2015), besides well-known commercial apps that engage millions of users
like Waze or Google Traffic.

We finish by reporting on applications that monitor mobile device usage, as enablers for data
analytics. The DeviceAnalyzer project (Wagner et al. 2013, 2014) is particularly noteworthy. The
project’s application has been used over the years to collect data for mobile phone characteristics
and usage, building up a publicly available data set containing billions of records collected from
thousands of devices. This data set used by the research community at large for several studies,
e.g., as in Hintze et al. (2017) and Thomas et al. (2015). Similar initiatives to DeviceAnalyzer are Or-
ange’s D4D challenge (Blondel et al. 2012) and the Lausanne data collection campaign (Kiukkonen
et al. 2010).

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:23

7 CONCLUSIONS

In this article, we presented the Flux framework for streaming sensor data from dynamically re-
programmable tasks injected into mobile devices. The fundamental concept is that of a region, a
subset of the multi-dimensional “sensor space” (the cartesian product of the sets of sensor ranges).
Regions are thus defined through constraints on the output of a set of sensors plus a set of asso-
ciated sensing tasks. As devices move through the sensor space they alternatively enter and leave
regions, activating and de-activating the corresponding task pools, respectively. Regions are spec-
ified using a domain-specific programming language called FTL. The subset used to implement
tasks is sufficiently expressive for basic sensing operations and provides compile time guarantees
of runtime safety. FTL source code is compiled into a compact bytecode that is in turn executed
with a low-footprint virtual machine in the devices. We implemented a complete prototype of
the framework and two case-studies that demonstrate: (a) the dynamic injection and activation of
tasks in mobile devices moving around in a given region, with the acquisition of the corresponding
data streams, and; (b) the activation/de-activation of tasks as devices enter/leave regions.

The key issues in the implementation of regions are, of course, related to the way their bound-
aries are detected and their impact on activation/de-activation semantics. There are issues related
to sensor readings we wish to address as future work. For instance, missing a reading or getting an
imprecise value may make it difficult to establish whether or not a device is still within a region’s
boundaries. Moreover, errors related to rapidly changing conditions, e.g., devices moving too fast
between regions, may make it hard to enforce region activation constraints accurately. We are also
looking at event-driven activation for tasks, beyond the current support for strict periodic activa-
tion. The motivation is that many sensing activities are not continuous over time but are instead
triggered explicitly by users or by the onset of certain environmental conditions in complement
to (possibly too coarse-grained) region constraints.

Extending FTL for more expressive online data processing, whilst preserving runtime-time
safety guarantees, is another topic worthy of future research. Currently, the language is quite min-
imalistic with scalar types, simple sensor and network interfaces, and basic arithmetic and control
flow. Adding constructs, e.g., in support of iteration or array types, can in principle be built-in into
the FTL compiler leveraging technologies like SMT solvers (Lahiri and Qadeer 2008) to preserve
runtime safety. Furthermore, FTL currently has no communication constructs that allow neigh-
bouring nodes to exchange data for aggregation or pre-processing purposes. This is particularly
desirable given the rich networking capabilities of mobile devices, in particular in the context of
mobile edge-clouds, where nearby devices form a network to work collaboratively, a topic we are
also currently working on (Rodrigues et al. 2017, 2018; Silva et al. 2017).

Finally, a few technical implementation aspects are worth future work, such as: extending the
platform to accommodate for sensing actions with user intervention, e.g., as is normally required
for crafted image acquisition or guided sensing steps; support for interface with external sen-
sors, e.g., Bluetooth LE beacons, sensors embedded in smart-watches, or generic IoT sensors;
and a more principled approach toward battery management and its relation with sensor acti-
vation/deactivation or data uploading through the network.

REFERENCES

V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal. 2013. USense—A smartphone middleware for community sensing.

In Proceedings of the MDM, Vol. 1. IEEE, 56–65.

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. 2002. A survey on sensor networks. IEEE Commun. Mag. 40, 8

(2002), 102–114.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel. 2014. FlowDroid:

Precise context, flow, field, object-sensitive, and lifecycle-aware taint analysis for Android apps. In Proceedings of the

PLDI. ACM, 259–269.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

20:24 N. Silva et al.

V. D. Blondel, M. Esch, C. Chan, F. Clérot, P. Deville, E. Huens, F. Morlot, Z. Smoreda, and C. Ziemlicki. 2012. Data for

development: The D4D challenge on mobile phone data. arXiv preprint arXiv:1210.0137 (2012).

C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Triandopoulos. 2008. Anonysense: Privacy-aware people-

centric sensing. In Proceedings of the MobiSys. ACM, 211–224.

T. Das, P. Mohan, V. N. Padmanabhan, R. Ramjee, and A. Sharma. 2010. PRISM: Platform for remote sensing using smart-

phones. In Proceedings of the MobiSys. ACM, 63–76.

W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. 2011. A study of Android application security. In Proceedings of the

SEC. USENIX, 21–21.

G. Ferro, R. Silva, and L. Lopes. 2015. Toward out-of-the-box programming of wireless sensor-actuator networks. In Pro-

ceedings of the CSE. IEEE, 110–119.

C. L. Fok, G. C. Roman, and C. Lu. 2009. Agilla: A mobile agent middleware for self-adaptive wireless sensor networks.

ACM Trans. Auton. Adapt. Syst. (2009), 16:1–16:26.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. 2003. The nesC language: A holistic approach to

network embedded systems. In Proceedings of the PLDI. ACM, 1–11.

B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang, and X. Zhou. 2015. Mobile crowd sensing and computing: The review

of an emerging human-powered sensing paradigm. ACM Computi. Surveys 48, 1 (2015), 1–31.

P. Hari, K. Ko, E. Koukoumidis, U. Kremer, M. Martonosi, D. Ottoni, L.-S. Peh, and P. Zhang. 2008. SARANA: Language,

compiler and run-time system support for spatially aware and resource-aware mobile computing. Philos. Trans. Roy.

Soc. A 366 (2008), 3699–3708.

D. Hasenfratz, O. Saukh, S. Sturzenegger, and L. Thiele. 2012. Participatory air pollution monitoring using smartphones. In

Proceedings of the MobiSys. ACM, 1–5.

D. Hintze, P. Hintze, R. D. Findling, and R. Mayrhofer. 2017. A large-scale, long-term analysis of mobile device usage

characteristics. Proceedings of the IMWUT 1, 2 (2017), 13.

S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher. 2015. SmartRoad: Smartphone-based crowd sensing for traffic regulator

detection and identification. ACM Trans. Sensor Netw. (2015), 55:1–55:27.

N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. 2010. Toward rich mobile phone datasets: Lausanne data

collection campaign. Proceedings of the ICPS.

E. Koukoumidis, L. S. Peh, and M. R. Martonosi. 2011. SignalGuru: Leveraging mobile phones for collaborative traffic signal

schedule advisory. In Proceedings of the MobiSys. ACM, 127–140.

S. Lahiri and S. Qadeer. 2008. Back to the future: Revisiting precise program verification using SMT solvers. In Proceedings

of the POPL. ACM, 171–182.

N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. 2010. A survey of mobile phone sensing. IEEE

Commun. Mag. 48, 9 (2010), 140–150.

L. Lopes and F. Martins. 2016. A safe-by-design programming language for wireless sensor networks. J. Syst. Arch. 63 (2016),

16–32.

C. F. Mass and L. E. Madaus. 2014. Surface pressure observations from smartphones: A potential revolution for high-

resolution weather prediction?Bull. Amer. Meteorol. Soc. 95, 9 (2014), 1343–1349.

R. Newton and M. Welsh. 2004. Region streams: Functional macroprogramming for sensor networks. In Proceedings of the

DMSN. ACM, 78–87.

O. Okolloh. 2009. Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis information. Participat. Learn. Action 59,

1 (2009), 65–70.

OpenSignal. 2010. OpenSignal. Retrieved from https://opensignal.com/.

A. Overeem, J. C. R. Robinson, H. Leijnse, G. H. Steeneveld, B. K. P. Horn, and R. Uijlenhoet. 2013. Crowdsourcing urban

air temperatures from smartphone battery temperatures. Geophys. Res. Lett. 40, 15 (2013), 4081–4085.

P. Piejko. 2017. Global Mobile Statistics 2017. Retrieved from https://mobiforge.com/research-analysis/13-statistics-on-

mobile-web-performance-in-2017.

C. Price and H. Shachaf. 2017. Using smartphone data for studying natural hazards. In EGU General Assembly Conference

Abstracts (EGU General Assembly Conference Abstracts), Vol. 19. EGU, 2659.

M.-R. Ra, B. Liu, T. F. La Porta, and R. Govindan. 2012. Medusa: A programming framework for crowd-sensing applications.

In Proceedings of the MobiSys. ACM, 337–350.

V. Radu, L. Kriara, and M. K. Marina. 2013. Pazl: A mobile crowdsensing based indoor WiFi monitoring system. In Proceed-

ings of the CNSM. IEEE, 75–83.

J. Rodrigues, E. R. B. Marques, L. Lopes, and F. Silva. 2017. Toward a middleware for mobile edge-cloud applications. In

Proceedings of the MECC. ACM, Article 1, 1:1–1:6 pages.

J. Rodrigues, E. R. B. Marques, J. Silva, L. Lopes, and F. Silva. 2018. Video dissemination in untethered edge-clouds: A case

study. In Proceedings of the DAIS (to appear). Springer.

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

https://opensignal.com/
https://mobiforge.com/research-analysis/13-statistics-on-penalty -@M mobile-web-performance-in-2017
https://mobiforge.com/research-analysis/13-statistics-on-penalty -@M mobile-web-performance-in-2017

Flux: A Platform for Dynamically Reconfigurable Mobile Crowd-Sensing 20:25

T. Roopa, A. N. Iyer, and S. Rangaswamy. 2013. Crotis – crowdsourcing based traffic information system. In Proceedings of

the BDC. IEEE, 271–277.

P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva. 2017. Using edge-clouds to reduce load on traditional

WiFi infrastructure and improve quality of experience. In Proceedings of the ICFEC. IEEE, 61–67.

R. Simpson, K. R. Page, and D. De Roure. 2014. Zooniverse: Observing the world’s largest citizen science platform. In

Proceedings of the WWW. ACM, 1049–1054.

The Internet Society. 2015. Internet Society Global Report 2015—Mobile Evolution and Development of the Internet. Re-

trieved from https://www.internetsociety.org/globalinternetreport/2015/assets/download/IS_web.pdf.

S. Tarkoma, M. Siekkinen, E. Lagerspetz, and Y. Xiao. 2014. Smartphone Energy Consumption: Modeling and Optimization.

Cambridge University Press.

D. R. Thomas, A. R. Beresford, and A. Rice. 2015. Security metrics for the Android ecosystem. In Proceedings of the 5th

Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices. ACM, 87–98.

D. T. Wagner, A. Rice, and A. R. Beresford. 2013. Device analyzer: Understanding smartphone usage. In Proceedings of the

MobiQuitous. Springer, 195–208.

D. T. Wagner, A. Rice, and A. R. Beresford. 2014. Device analyzer: Large-scale mobile data collection. ACM SIGMETRICS

Perform. Eval. Rev. 41, 4 (2014), 53–56.

J. Wakefield. 2011. 3G mobile data network crowd-sourcing map by BBC News. Retrieved from http://www.bbc.com/news/

business-14574816.

M. Welsh and G. Mainland. 2004. Programming sensor networks using abstract regions. In Proceedings of the NSDI. USENIX

Association.

M. Wisniewski, G. Demartini, A. Malatras, and P. Cudré-Mauroux. 2013. NoizCrowd: A crowd-based data gathering and

management system for noise level data. In Proceedings of the MobiWIS. Springer, 172–186.

H. Xiong, Y. Huang, L. E. Barnes, and M. S. Gerber. 2016. Sensus: A cross-platform, general-purpose system for mobile

crowdsensing in human-subject studies. In Proceedings of the UbiComp. ACM, 415–426.

Received January 2018; accepted March 2018

ACM Transactions on Sensor Networks, Vol. 14, No. 3–4, Article 20. Publication date: November 2018.

https://www.internetsociety.org/globalinternetreport/2015/assets/download/IS_web.pdf
http://www.bbc.com/news/business-14574816
http://www.bbc.com/news/business-14574816

