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Abstract 
Motivation: Geospatial cloud computing platforms such as Google Earth Engine (GEE) are providing 

exciting new opportunities to handle, process and model large volumes of Earth Observation (EO) data 

at speeds much higher than those of desktop-based environment. Despite these advantages, platforms 

such as GEE are missing required processing algorithms such as a time-series smoothing algorithms 

(e.g. Whitaker-Anderson). Such routines are important for improving the signal-to-noise ratio in EO-

based spectral vegetation indices (VI) time-series used to proxy quantify ecosystem’s primary produc-

tion dynamics and its spatiotemporal change. 

Results: The Moving Average Smoother (MAS) preserves more the time-series while the Whittaker 

Smoother (WS) is less affected by extreme values. We also observed greatest anomalies in the centre-

left of the Iberian Peninsula and positive trends in the mountain areas of the Iberian Peninsula. 

Supplementary information: Supplementary data are available at the end of the report (Appendix). 

 

 

1 Introduction  

Monitoring vegetation and/or land surface dynamics is crucial to assess 

global changes and predict future events (such as droughts and wildfires). 

Remote Sensing (RS)/Earth Observation (EO) can be used for this pur-

pose. Remote sensing consists in acquiring information about the Earth’s 

surface without actually being in contact with it. This is done by sensing 

and recording reflected or emitted light and processing this data (Joseph, 

2005). Data products of RS are available at multiple spatial and temporal 

resolutions thus supporting multiple applications in environmental and 

ecological sciences.  

For instance, RS can provide biophysical descriptors of ecosystem func-

tion, known as Ecosystem Functional Attributes (EFAs) (Alcaraz-Segura, 

et al., 2017). EFAs describe the exchanges of matter and energy between 

the biota and the physical environment, in particular, indicators of produc-

tivity, seasonality and phenology of carbon gains (Alcaraz-Segura, et al., 

2017). The use of EFAs derived from satellite data as predictor variables 

for monitoring and modelling has numerous advantages. First, they can be 

easily monitored though RS at different spatial scales and over large ex-

tents, using a common protocol (Foley, et al., 2007). Second, EFAs show 

a rapid response to environmental changes than structural or compositional 

attributes (for example land-cover and species richness) (Mouillot, et al., 

2013), possibly allowing to anticipate and predict future events. Third, 

EFAs offer an integrative response to environmental changes, so species 

changes can be linked to pressures on the functioning of the ecosystem.  

Some spectral indexes derived from satellite data are related to functional 

variables of ecosystems, such as primary production, surface temperature, 

and albedo (Alcaraz-Segura, et al., 2009). Currently, several spectral veg-

etation indices exist and perhaps the most widely used one is the 

Normalized Difference Vegetation Index (NDVI) (Gonçalves, et al., 

2016). This spectral index is a linear estimator of the fraction of absorbed 

photosynthetically active radiation intercepted by vegetation (Alcaraz-Se-

gura, et al., 2009). The main control of carbon gains is through radiation 

interception, so the NDVI has been widely used to describe regional pat-

terns of primary net productivity, which is the most integrative indicator 

of ecosystem functioning (McNaughton, et al., 1989; Virginia and Wall, 

2001). The NDVI, as a descriptor of ecosystem functions, has been shown 

to greatly contribute for application in conservation biology, ecosystem 

management and in analyzing ecological responses to environmental 

changes (Alcaraz-Segura, et al., 2009). In addition, NDVI time series ob-

tained from RS sources are valuable for exploring trends in land-surface 

phenology as well as seasonality (Alcaraz-Segura, et al., 2009). 

Complementarily, geospatial cloud computing platforms such as Google 

Earth Engine (GEE) are providing exciting new opportunities to handle, 

process and model large volumes of Earth Observation (EO) data at speeds 

much higher than those of desktop-based environments (Gorelick, et al., 

2017). Despite these advantages, platforms such as GEE are challenging 

due to their steep learning curve and, also, because many required pro-

cessing algorithms are still lacking from its core API. An example is the 

inexistence of time-series smoothing algorithms (e.g., Whitaker-Ander-

son). Such routines are important for improving the signal-to-noise ratio 

in EO-based spectral vegetation indices (VI) time-series used to proxy 

quantify ecosystem’s primary production dynamics and its change. Google 

Earth Engine is a cloud-based platform for planetary-scale environmental 

data analysis. This platform is available through two client libraries (Ja-

vascript and Python) that provide wrappers around the web API. Both 

APIs do not run the code directly on the Earth Engine servers at Google. 

Instead, the client library encodes the script into a set of JSON objects, 
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sends the objects to Google and waits for a response. No processing is 

done on the server until that result is explicitly requested i.e., ‘lazy evalu-

ation’ (Gorelick, et al., 2017).  

The main objective of this project was to evaluate the potential of GEE to 

calculate measures of Ecosystem Functional Attributes (EFAs, mainly re-

lated to the annual dynamics of primary productivity and energy-matter 

flows), based on NDVI time series available in the MODIS product 

MOD13Q1. In order to achieve this overarching objective, we devised 

three more specific goals (Fig. 1): 

i. The development of computational solutions which use the 

GEE to calculate annual measures related to EFAs based on 

time-series of NDVI currently available on this platform; 

ii. To implement time-series smoothing to improve image data 

and reduce noise; 

iii. Use the calculated annual EFA indicators to evaluate changes, 

trends and dynamics in ecosystems and land surface. 

This report is structured as follows. Section 2 consists in the description of 

the routines used in this project. The section 3 comprises the results ob-

tained and section 4 the discussion of these results. The last section con-

tains the main conclusion from the conducted work. 

2 Methods 

2.1 Proposed workflow 

Bellow, we present the proposed workflow for this project (Fig.1.) 

Fig. 1. Proposed workflow 

2.2  Study area description 

The study area chosen was the Iberian Peninsula and it is bounded by 

10.151 °W – 4.307 °E longitude and 35.496 °N – 44.151 °N. This area is 

a very heterogeneous region in terms of biogeography, climate, orography, 

geology, and soil types. As several studies have mentioned, this region has 

many desirable properties for RS studies (LLoyd, 1989; Lobo, et al., 

1997). Regardless of the small size (581 000 km2), it has an enormous 

landscape diversity because of its climate, geological features and bioge-

ographical location (Alcaraz, et al., 2006). 

2.3 Spectral vegetation indices and MODIS products 

Satellite data are often used in the form of spectral indices. These indices 

are mathematical combinations of two or more spectral bands selected to 

describe the parameters of interest (Gonçalves, et al., 2016). As mentioned 

above, the NDVI is one of the most widely used vegetation indices (Gon-

çalves, et al., 2016) and is a linearly related to the fraction of absorbed 

photosynthetically active radiation intercepted by vegetation (Alcaraz-Se-

gura, et al., 2009). The NDVI is calculated from the reflectance in the red 

(R) (580 – 680 nm) and near-infrared (NIR) (725 – 1100 nm) wavelengths 

as follows:  

𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅)⁄  

The index varies between -1.0 and 1.0, with mid to high positive values 

for healthy vegetation, low positive values for sparsely vegetated soils and 

very low positive and negative values for water bodies or urban areas 

(IEAGHG). Despite its usefulness, NDVI has got some limitations related 

to, for example:  

• Measurements can be affected by moisture and aerosols; 

• Occurrence of saturation when there are high levels of bio-

mass or high leaf area index; 

• Interference of the clouds with the measurement can occur if 

they cover the whole area or if they create shadows, leading to 

misinterpretations of the NDVI values (IEAGHG). 

In this study, we used image data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS), namely the MODIS Terra Vegetation Indi-

ces 16-Day L3 Global 250m version-6 MOD13Q1 product, available in 

Google Earth Engine platform. This data set consists of 16-day composites 

with a spatial resolution of 250m. For this study, we used the NDVI band 

for the period of time from 2001 to 2018 (however, only complete years 

currently available from MODIS archive were used to calculate annual 

metrics). More information on the MODIS MOD13Q1 product is available 

in Table 1. 

Table 1.  Main characteristic of the bands of the MODIS MOD13Q1 

product 

Description of band Units Valid Range 
Scale 

Factor 

16-day NDVI average NDVI -2000 to 10000 0.0001 

16-day EVI average EVI -2000 to 10000 0.0001 

VI quality indicators Bit field 0 to 65534 N/A 

Surface Reflectance Band 1 Reflectance 0 to 10000 0.0001 

Surface Reflectance Band 2 Reflectance 0 to 10000 0.0001 

Surface Reflectance Band 3 Reflectance 0 to 10000 0.0001 

Surface Reflectance Band 7 Reflectance 0 to 10000 0.0001 

View zenith angle of VI Pixel Degree 0 to 18000 0.01 

Sun zenith angle of VI pixel Degree 0 to 18000 0.01 

Relative azimuth angle of VI pixel Degree -18000 to 18000 0.01 

Day of year VI pixel Julian day 1 to 366 N/A 

Quality reliability of VI pixel Rank 0 to 3 N/A 

2.4 Implementing analysis/processing routines in Google 

Earth Engine 

As mentioned above, the GEE is a computing platform that allows users 

to perform geospatial analysis either through the Javascript or the Python 

API. To start working with GEE, we first select the product we want to 

analyse (that will be an ImageCollection). Then, we select the band we 

want to analyse (in this example the NDVI), then we filter the collection 

by date and region of interest (the complete 2017 year and the Iberian Pen-

insula). To filter by bounds, there are several ee.Geometry types available 

at GEE. After selecting the ImageCollection, we can extract annual metrics 

(1) 
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(in this example median), through the use of a reducer (ee.Reducer). This 

process is illustrated bellow (Code Snippet 1): 

 

Code Snippet 1. Getting MODIS MOD13Q1 collection in GEE. Example to show how 

to get the product to analyze, select bands, filter by date and bounds and the use of a reducer. 

In GEE, the reducer is used to obtain an individual image (Fig. 2) from a 

collection of images. The reducers are very useful for the extraction of 

annual metrics, calculation of trends and other statistics. In this project, we 

also needed to use the ee.Array type available in the GEE, to help the im-

plementation of the Whittaker algorithm, such as creation the auxiliary 

matrixes and to solve the system of equations. The GEE represents 1-D 

vectors, 2-D matrices, 3-D cubes, and higher dimensional hypercubes with 

the ee.Array type. The dimension of an array is the number of axes along 

which the data varies. For instance, 0-D arrays are scalar numbers, 1-D 

arrays are vectors, 2-D arrays are matrices, 3-D arrays are cubes, and >3-

D arrays are hypercubes. 

Fig. 2.  Illustration of a reducer applied to an ImageCollection (Adapted from 

https://developers.google.com/earth-engine/reducers_image_collection) 

When working with the GEE, some processes can be automated through 

functions, so we created an ancillary library with some of the functions we 

used the most (see Appendix A). As mentioned above, we first need to 

select a collection and then filter it by date and the required spatial bounds. 

In order to do this, we defined a function (getCollection) for retrieving and 

filtering an ImageCollection (Code snippet 2).  

Code snippet 2. Getting MODIS MOD13Q1 collection in GEE. 

Then if the collection has missing values, we can replace them with the 

function setValueForMaskedPixels. This function creates a mask in the 

selected band in order to replace the missing values (Code Snippet 3):  

Code Snippet 3. Function setValueForMaskedPixels for replacing missing values 

After this pre-processing stage, we will test and compare two smoothing 

algorithms: (i) the moving average smoothing (MAS)  and (ii) Whittaker 

smoothing (WS) (Eilers, 2003). The MAS algorithm had already a 

proposed solution using the GEE Javascript API 

(https://gis.stackexchange.com/questions/250426/moving-averages-and-

seasonality-filters), so we only had to adapt for the Python API and 

generalize some of its input parameters. The WS algorithm was not 

implemented in the GEE API, so we implemented it, using the GEE 

Python API. In order to validate our GEE implementation of the WS 

algorithm we compared it against other implementation that we also 

developed using only Python (and without GEE processing). Finally, we 

extracted two annual metrics from the NDVI time series, the median 

(related to productivity) and the interquantile range (related to the annual 

seasonal variation). Addicionally, we also annalysed the trends through 

the Kendall's Tau-b rank correlation. 

2.4.1     Moving average smoothing 

The MAS is a simple algorithm that creates a new data set where each 

value is the average of the n neighbours of a given focal point in time. In 

this study and considering that our data has a frequency of 16-days, we 

tested two and four nearest neighbours (i.e., either 17 (equation (2)) or 33 

days). 

𝑝̅𝑖 =   
𝑝𝑛−1 + 𝑝𝑖 + 𝑝𝑛+1

3
 

There was already a proposed solution to implement this algorithm in the 

GEE Javascript API, so we only adapted to the GEE Python API and cre-

ated a function with this solution (Code Snippet 4). 

Code snippet 4. GEE implementation of the Moving Average Smoother (MAS). 

2.4.2     Whittaker smoothing 

In the beginning, we have a time series y, of length m and we want to fit a 

series z to y. To do this, we have to balance two points: first, the fidelity to 

the original data and, second, the roughness of z. The smoother the z is, the 

more it will deviate from the original data. The fidelity to the original data 

can be measured as the sum of squares of differences: 𝑆 =  ∑ (𝑦𝑖 − 𝑧𝑖)2
𝑖 . 

For measuring the roughness of z, we can use differences (∆𝑧𝑖 = 𝑧𝑖 −

𝑧𝑖−1). Squaring and summing these differences gives us a simple and ef-

fective measure of the roughness of z:  𝑅 =  ∑ (∆𝑧𝑖)2
𝑖 . A balanced combi-

nation these two points is the sum 𝑄 = 𝑆 +  𝜆𝑅, where λ is a number cho-

sen by us. The goal of the penalized least squares is to find the series z that 

minimizes Q. The larger the λ, the stronger the influence of R on the Q is, 

making z smoother. This can make the fit of the data worse (Eilers, 2003). 

To make the calculations easier, we will use matrices and vectors: 

𝑄 = |𝑦 − 𝑧|2 +  𝜆|𝐷𝑧|2 

Where |𝑎|2 =  ∑ 𝑎2
𝑖𝑖  indicates the quadratic norm of any vector a, and D 

is a matrix such as 𝐷𝑧 =  ∆𝑧. To find the vector of partial derivatives, we 

use results from matrix calculus: 

 
𝜕𝑄

𝜕𝑧𝑇
=  −2(𝑦 − 𝑧) + 2𝜆𝐷𝑇𝐷𝑧 

And when we solve the equation to 0, we get the following linear system 

of equations: 

 (𝐼 + 𝜆𝐷𝑇𝐷)𝑧 = 𝑦 

Where I is the identity matrix.  

In order to be able to handle missing data, the missing elements of y are 

simply set to an arbitrary value, and a vector w of weights is introduced, 

(2) 

(4) 

(3) 

(5) 

https://gis.stackexchange.com/questions/250426/moving-averages-and-seasonality-filters
https://gis.stackexchange.com/questions/250426/moving-averages-and-seasonality-filters


B. Ferreira 

with wi = 0 for missing observations and wi = 1 otherwise. Then, we get 

the following final system of equations that allow us to calculate z: 

(𝑊 + 𝜆𝐷𝑇𝐷)𝑧 = 𝑊𝑦 

Where W = diag(w), a diagonal matrix with w on its diagonal (Eilers, 

2003). This last approach was not implemented in this project.  

In order to do this using the GEE, we created a function (whit-

takerSmoother) that creates the matrixes I, D and converts the ImageCol-

lection into an array. Then we solve the previous equations for finding z 

(Code Snippet 5). 

Code snippet 5. GEE implementation of the Whittaker smoother. 

3 Results 

3.1 Smoothing methods 

3.1.1     Validation 

Numerical comparison (Table 2) between the GEE implementation of 

Whittaker’s smoothing algorithm (Code Snippet 5) and a version of 

the algorithm implemented using the numpy Python library (Appen-

dix A, whittakerSmoothNumpy method). 

Table 2.  Max absolute error between GEE implementation of Whittaker 

and the Python version 

Type of region Max Absolute Error 

Urban 1.8 x 10-12 

Agriculture 4.5 x 10-12 

Broadleaf 3.6 x 10-12 

Coniferous 3.6 x 10-12 

3.1.2    Comparison between smoothers 

As we can see from the plots of Fig. 3, the MAS when d = 17 is more 

sensitive to negative outliers, which are related to clouds, but it has a better 

performance on the positive peaks (typically with much less measurement 

uncertainty and related to the maximum vigour of vegetation during the 

annual cycle). However, we can see that for certain types of soil (Broad-

leaf) the d = 33 is better because it is less sensitive to extreme negative 

outliers (the time series is ‘smoother’). 

When we compare the λ = 3 and the λ = 5 in the WS, we can see that the 

results are very similar, but, as we expected, the λ = 5 has a higher smooth-

ing effect on the outliers. In general, we can see a higher smoothing in the 

agriculture and urban classes. 

Regarding the comparison between smoothers, the difference is higher. In 

particular, the MAS preserves better the annual peaks of NDVI. This will 

lead to higher intra-annual values, and also, higher differences between the 

calculated metrics, such as the interquartile range. In particular, as we can 

see from the plots in Figure 3, the agriculture zones might be the most 

affected by the difference between the algorithms. 

3.2 Extraction of annual metrics from time-series  

Regarding the median, we can see in the maps (Figure 4) that the highest 

values of NDVI are located in the north area of the Iberian Peninsula and 

the lowest values are located in the highest altitude of the Pyrenees Moun-

tains and some agriculture regions. In the maps, we can also see that in 

2005 and 2010 and increasing in vegetation (higher NDVI value) in the 

centre-left region of the Iberian Peninsula. 

Regarding the interquartile range, the NDVI highest values are located the 

Pyrenees Mountains and the Cantabrian Mountains. The lowest values of 

NDVI are located in the northwest and the southeast coastline of the Ibe-

rian Peninsula. In the maps, we can also see that in 2005 and 2010 and 

increasing in vegetation (higher NDVI value) in the centre-left region of 

the Iberian Peninsula for both metrics. 

3.3 Changes and trends in Earth Surface in the Iberian 

Peninsula 

In the map from Fig. 6, we can see that the greatest anomalies occur in the 

center-left of the Iberian Peninsula. In Portugal, we can clearly see this 

difference in the Arga Mountain Range.  

As we can see from the map with the Kendall’s Tau-b rank (Fig. 7), in 

general, we can see positive trends, namely in the regions with mountains, 

the negative trends are located in to the region to the South of Valencia 

and the region to the Southeast of the Cabañeros National Park. 

4 Discussion 

4.1 Smoothing algorithms 

The lack of time-series smoothing algorithms in the GEE platform provide 

a challenge in the analysis of data. As we can see from the results, both 

algorithms tested are valid and correctly implemented. In terms of perfor-

mance the MAS algorithm is faster than the WS algorithm because the first 

one only calculates the average and the second involves solving systems 

of equations. In terms of extraction of annual measures of Ecosystem 

Functioning, both algorithms affect the interquartile range (although in the 

WS the effects are higher), in the way that the smoother the time-series, 

the smaller the interquartile range will be. However, the smoothing algo-

rithms can be helpful in reducing the influence of extreme values. Also, 

the performance will vary depending on the target land cover class and the 

distribution of clouds across the Iberian Peninsula.  

The WS implementation in this project has a limitation of not being able 

to convert the obtained ee.Array with the smoothed time-series in an Im-

ageCollection with the timestamps needed for the construction of the map. 

4.2 Annual metrics 

As mentioned above, the median of NDVI is higher in the Eurosiberian 

region, as expected because of the presence of broadleaf deciduous or mar-

cescent forests. In contrast, the median NDVI is generally lower in agri-

culture areas but this may vary depending on crop type and cycle (for ex-

ample annual crops will have bare soil in some parts of the annual cycle 

leading to a strong decrease in NDVI). In the north and northwest of the 

Iberian Peninsula with temperate climate, we can see high levels of vege-

tation activity in comparison with the other Iberian Peninsula regions with 

mediterranean climate. This difference might be due to the availability of 

water supplies throughout the year. Regarding the interquartile range, the 

highest values of NDVI are observed at mountains with seasonal snow 

coverage, at forests with deciduous trees and, agricultural regions with  

(6) 
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Fig.3. Plots representing the Moving Average Smoother (MAS) and the Whittaker Smoother (WS) on different areas. The MAS was tested with two different days (17 and 32) and 

the WS was tested with two different λ (3 and 5). The regions are located at: Agriculture – 41.715 °N, 8.786 °W; Urban - 41.691 °N, 8.832 °W; Broadleaf – 41.818 °N, 8.284 °W; Conif-

erous – 41.696 °N, 6.979 °W 
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annual crops or with evergreen plantations without irrigation. If the agri-

culture region has annual crops, it is when the highest values of the inter-

quartile range of NDVI occur. This might be due to the fact that we ob-

serve extreme values of NDVI, for example when the plantation is starting 

we observe the lowest value of NDVI and before harvesting we observe 

the highest NDVI values. This leads to a higher interquartile range. 

Regarding the anomalies observed (Fig.6.), we can clearly see in the region 

zoomed (Arga Mountain Range) that we have a high deviation from the 

median, this is expected since there was a major wildfire in the region in 

2004. Overall, areas affected by disturbances (such as forest fires or 

droughts) or by the change of the land usage (such as cutting forest areas 

will present lower stability/ higher fluctuations (thus higher MAD values). 

 

 

The Kendall’s Tau-b rank express the variation or trends in the long term. 

The observed positive trends (Mountains regions) are in accordance with 

those found in the literature (Alcaraz-Segura, et al., 2008; Gonzalez-

Alonso, et al., 2004). The negative trends observed might be due to a 

change in land usage or a change in the management of vegetation (Al-

caraz-Segura, et al., 2008). In general, a positive trend in the median means 

that there was a cumulative increase in the biomass and vegetal coverage. 

The negative trends observed might suggest progressive changes of loss 

of vegetal coverage (artificialization of the land). 

 

 

 

 

Fig. 4. Maps of annual metrics (median and interquartile range) for different years (2005, 2010, 2015). 
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5  Conclusion 

In this project, we showed an application for the GEE platform in pre-

processing the data and extracting metrics for quantifying several Ecosys-

tem Functioning Attributes. In turn, these allow to evaluate several im-

portant characteristics regarding ecosystem dynamics both regarding their 

seasonal variation but also across multiple years thus portraying changes 

and trends in Earth’s surface. This platform presents a great opportunity 

for managing large volumes of data since the computation is made on the 

GEE servers and therefore it does not require a high computational power. 

However, there is a steep learning curve since it requires some program-

ming skills.  

RS variables also present some challenges in analysis due to missing val-

ues coming from various sources (for example clouds). This is why it is  

 

 

 

important to implement smoothing algorithms, and, in this project, we 

were able to test two algorithms. However, the WS implemented in this 

project has a limitation of not being able to extract a map for better visu-

alization (at least in this first version of the implementation). 

This project is a starting point to start using the GEE for ecosystem studies. 

Future perspectives for the continuation of this study, include the imple-

mentation of the WS to be able to extract maps from the GEE, calculate 

other metrics (average, minimum and maximum) and use other vegetation 

indexes available at the GEE. Additionally, it would be interesting to scale 

this work for the global scale. 

 

 
 

 

 

Fig. 5. Maps with the original data, after the moving average smoothing and the difference between the original data and the smoothing for two different metrics: median and 

interquartile range. The extreme values of differences are outliers. 
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Fig.7. Map with the Kendall’s Tau-b rank over the median of NDVI. Positive trends 

are colored red and negative trends colored grey/black. 
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Appendix A 

 

 

Fig.6. Map with the median absolute deviation (MAD) for the years between 2001 and 2017. Detailed region of the Arga Mountain Range. The extreme values of differences are 

outliers. 
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