
FACULDADE DE CIÊNCIAS - Ano Letivo 2020/2021

DEPARTAMENTO DE CIÊNCIA DE COMPUTADORES

Projeto

Property-based testing of ERC-721 Ethereum smart contracts

Isac Daniel de Figueiredo Novo
200403278



Índice

1 Introduction 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3

2.1 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Ethereum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Smart Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 ERC-721 Non-Fungible Token Standard . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Test Framework 10

3.1 Property-Based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Property-Based Testing with Brownie . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 The Hypothesis framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.2 Test Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.2 Class Hierarchy and Project Organization . . . . . . . . . . . . . . . . . . . . . 17

4 Evaluation 18

4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Bug Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 22

1



1 Introduction

1.1 Motivation

Blockchain technology has been the subject of increasing interest by researchers and industry en-
trepreneurs alike. This is due in big part to BitCoin’s major success as a cryptocurrency, but also
thanks to the distributed protocol inherent to the blockchain technology. Yet, despite cryptocurrencies
still being the leading topic of discussion regarding blockchains, this emergent technology offers a wide
array of possible applications.

While some blockchain applications can still be financial in nature, its distributed public ledger scheme
makes it ideal for any application that relies on the bookkeeping and managing of assets. These can
be, but are not limited to, managing physical or digital property, domain names, tracking votes, and
so on.

These general-purpose applications of blockchains are enabled with the deployment of what is know
as smart contracts. Literally, a smart contract is program code that implements a set of standard
rules for transactions and a plethora of arbitrarily user-defined functions.

Ethereum [23] is the leading blockchain for the development and deployment of smart contracts, that
are written in languages such as Solidity [19] and Vyper [22], whose target bytecode is the Ethereum
Virtual Machine (EVM). The EVM stores both a smart contract’s bytecode and state, executing the
contract’s functions as blockchain transactions, that usually involve manipulating Ether - Ethereum’s
own cryptocurrency.

As promising as they are, being decentralized applications, smart contracts are still in the early stages
of its constant development, and with an ever-growing macrocosm of valuable assets, are prone to a
number of errors and malicious attacks. Aside from these, the implementation of Ethereum contracts
is oftentimes unreliable. For instance, albeit the most widely used language for writing contracts,
Solidity is still on its alpha stage of development. Vulnerabilities also seem to arise from the disparity
between Solidity’s semantics and blockchain specifics. Concretely, the lack of constructs that handle
domain-specific aspects, such as the persistence of smart contracts in the blockchain, their interaction
amongst themselves and with external services, or the fact that computation steps are registered on
a public data structure - at which point they can be unpredictably reordered or delayed.

1.2 Problem Statement

There are several documentations for Ethereum that aims to improve smart contract functionality
and implementation; one such document - ERC-721 - provides a standard interface for non-fungible
tokens.

In this project, we tested five Ethereum smart contracts for errors. The contracts in question were
0xcert, Decentraland, Ethereum Name Service, OpenZeppelin, and Su Squares; that implement the
ERC-721 standard.

Verification on those contracts was done by property-based testing, an approach that generates a

2



random number of test cases according to predefined strategies and derives test cases following a
set of given rules following a model of correctness which, as mentioned, was based on the ERC-721
standard. By employing this method, a programmer can focus their attention on the desired properties
of the software alongside a model for input generation, rather than having to construct a finite set of
test cases - as is the case for unit testing.

This approach allows for more tests to be executed with less lines and code, and does not have to
rely on the programmers insight regarding the code. Thus, being more efficient at deriving tests that
detect edge cases and less common interaction that could otherwise be missed.

The entire project code and environment - including the five tested contracts - is available as a public
GitHub repository [9].

The remainder of this report is organised as follows. Section 2 provides the necessary background for
this project, regarding blockchains, smart contracts, and the ERC-721 standard. Section 3 describes
the ERC-721 test framework implemented in this project. Section 4 describes an evaluation of the test
framework for 5 ERC-721 implementations. Finally, Section 5 concludes the report with an overall
assessment.

2 Background

2.1 Blockchain

A blockchain is a data structure akin to a distributed public ledger in which all committed transactions
are stored in a continuously growing chain of blocks, hence the name. BitCoin [bitcoin], proposed in
2008 and later implemented in 2009 by Satoshi Nakamotom, was the first decentralized cryptocurrency
employing a peer-to-peer network as solution for the double-spending problem [14] - that is, the
potential flaw in a digital currency system by which the same single digital token can be spent more
than once [4].

Bitcoin was also the first digital asset without any backing or intrinsic value as well as simultaneously
no centralized issuer or controlling authority. By working with a collection of nodes, peer-to-peer,
without the need for a trusted third-party authority, blockchains offer decentralization, persistency,
anonymity, and still auditability.

A blockchain, as the name suggests, consists of a series of appending blocks. As illustrated by Figure
1, each block holds an hash value of the previous one that serves both as pointer to it - the parent
block - thus linking them in a chain, as well as to prevent the tampering of a single block without
compromising the entire chain down the line. A Unix time timestamp of the block’s creation that,
while also being used as a source for the block hash, is to be validated by other clients and difficult
adversarial manipulation, allowing for a certain clock skew. A nonce, a central part to the Proof of
Work consensus done by the network, has to be determined so that the block’s hash value is below
a certain target value. And finally, as a complete list of all transaction records performed up to that
point in the form of a Merkle root hash.

By using a Merkle tree, where every subsequent block confirms its parent via the cryptographic hash,

3



Figure 1: Simplified depiction of a blockchain’s block data fields as well as the Merkle tree’s hash

all the way up to the first block on the chain - the genesis block - blockchains offer robustness of
design and resistance to data corruption. This is thanks to the aforementioned block structure and
the cryptographic security therein, as well as the underlined consensus protocols based on Proof of
Work mechanisms that offer high byzantine fault tolerance - that is to say, are not very susceptible to
wrong information or errors exhibited by some of the nodes on the distributed system.

2.2 Ethereum

Other than for cryptocurrencies, blockchains can be employed on many different applications controlled
by code implementing arbitrary rules - smart contracts. Of particular interest to this project are smart
contracts that govern non-fungible assets that are tied to physical or digital property.

Ethereum [3, 23] is a decentralized, open-source blockchain that supports smart contracts. It is cur-
rently the second largest cryptocurrency by market capitalization and the most used blockchain after
Bitcoin. A programmable blockchain, it is a community-built technology behind not only the de-
velopment of thousands of blockchain applications, as well as of the built-in Ether (ETH) tradeable
cryptocurrency. The latter being used to pay for the fees associated with running code by the former.

The blockchain aims to provide a protocol for building decentralized applications, or DApps, with
different sets of useful trade-offs and an emphasis on the swift development of diverse yet secure
applications able to interact amongst themselves. Without the need for a central administrative
authority, it falls to a peer-based network to enforce good practices, as stipulated by guidelines in akin
to Request for Comments publications, as will be delved into in Section 2.4.

In order to accomplish this, the blockchain model offers the built-in Turing-complete Ethereum Virtual
Machine, with core support for programming languages such as Vyper [22] and Solidity [19] - the one
used on this project. This allows for the development of smart contracts encoding arbitrary state
transition functions. Each application having its own unique set of rules for ownership, transaction
formats, and state transaction functions.

4



2.3 Smart Contracts

The Ethereum blockchain’s state is comprised of account objects, each defined by a 20-byte address.
State transitions occur with the direct transfer of value and information between account, as is depicted
on Figure 2.

Figure 2: Ethereum state transition [3]

Ethereum accounts can be either be externally owned, controlled by private keys and with no associated
code, or smart contract accounts, regulated by EVM bytecode that is associated to the account. The
state of an account is defined by four fields: a nonce counter to assure that each transaction is only
processed once, the account’s current ether balance, the account’s code in the case of smart contract
accounts, and the account’s storage (initially empty).

The code of a smart contract is activated every time the account receives a message, enabling it to read
and write to internal storage and send follow-up messages or create subsequent contracts. All messages
sent and received as part of code execution have several fields. Standard ones for cryptocurrency
include recipient, sender’s signature, and the amount to be transferred. There is also an optional data
field that is meant to be accessed by the receiver if needed, depending on the application. For example,
for a domain name service, a name and IP address could be sent in order to perform a registration
between the two.

Finally, two last fields, known as the gas limit and the gas price, set the maximum number of com-
putational steps that the transaction execution is allowed to perform and the fee to be paid by the
sender per computational steps. All transaction fees, associated with a code execution gas cost, are
paid with Ether. The gas mechanism inhibits denial-of-service, by preventing accidental or hostile
heavy computation (e.g. infinite loops). Computational steps in a transaction are billed according to
the EVM bytecode they execute, where each EVM instruction has its own gas price.

5



Figure 3: In CryptoKitties, an Ethereum-based DApp that uses the ERC-721 standard, each NFT
represents a unique digital asset - A CryptoKitty [6]

2.4 ERC-721 Non-Fungible Token Standard

ERC stands for Ethereum Request for Comments and are technical standards for Ethereum-based
tokens, available online as EIPs - Ethereum Improvement Proposals [10]. EIPs include what are
known as core protocol specifications, that encompass those that have been implemented and released,
or those that are planed to be so, alongside client APIs and contract standards.

ERCs comprise application-level standards and conventions for Ethereum including, but not restricted
to, smart contract and token standards. And, while ERC-20 specifies the standard token interface,
providing a model implementation for a smart contract token API, ERC-721 does so for non-fungible
tokens [8]. There are two major standards for tokens: ERC-20 [21] for fungible tokens (FTs), and
ERC-721 [8] for non-fungible tokens (NFTs). FTs represent different quantities of identical (fungible)
assets, and are many times employed for the implementation of crypto-currencies on top of Ethereum.
NFTs in turn can represent ownership of several kinds of distinct assets, for instance physical property
such as houses or unique artwork, or collectibles like virtual pets or game cards. Figure 3 provides an
example of a real-world usage for NFTs.

The ERC-721 standard provides basic functionality for the tracking and transferring of NFTs in its
smart contract API, taking into account not only when the tokens are transacted by their individual
owners, as well as by consigned third parties. These authorized mediators can be brokers, wallets, or
auctioneers, and are known as operators in this context. It also allows for these broker/wallet/auction
applications to work with any NFT on Ethereum, while providing for both simple smart contracts as
well as those that track a large number of NFTs.

Let us illustrate how ERC-721 contracts work using the code of a well-known reference implementation,
OpenZeppelin [17]. Listing 1 contains the code of the Solidity interface for ERC-721 tokens, and Listing
2 contains a fragment of corresponding implementation.

As shown in Listing 1, a contract’s interface is expressed by events and functions. Events correspond
to information emitted onto the blockchain transaction logs by the code of a smart contract. Event
allow for efficient queries and provide lower-cost data storage when the data is not required to be
accessed on-chain. Functions in turn correspond to code that can be called within a transaction. We
next describe the events and functions that are defined by the ERC-721 standard.

6



1 pragma s o l i d i t y ˆ 0 . 5 . 2 ;
2

3 import ” . . / . . / i n t r o s p e c t i o n / IERC165 . s o l ” ;
4

5 /∗∗
6 ∗ @ t i t l e ERC721 Non−Fung i b l e Token Standard b a s i c i n t e r f a c e
7 ∗ @dev see h t t p s : // e i p s . ethereum . org /EIPS/ e ip −721
8 ∗/
9 con t r a c t IERC721 i s IERC165 {

10 event Tran s f e r ( addres s indexed f rom , addre s s indexed to , u int256 indexed t o k e n I d ) ;
11 event Approva l ( addres s indexed owner , addre s s indexed approved , u int256 indexed t o k e n I d

) ;
12 event App ro va l Fo rA l l ( addre s s indexed owner , addres s indexed ope r a t o r , boo l approved ) ;
13

14 f u n c t i o n ba lanceOf ( addres s owner ) pub l i c v iew r e t u r n s ( u int256 ba lance ) ;
15 f u n c t i o n ownerOf ( u int256 t ok en I d ) pub l i c v iew r e t u r n s ( addre s s owner ) ;
16

17 f u n c t i o n approve ( addres s to , u int256 t ok en I d ) pub l i c ;
18 f u n c t i o n getApproved ( u int256 t ok en I d ) pub l i c v iew r e t u r n s ( addre s s op e r a t o r ) ;
19

20 f u n c t i o n s e tApp r o v a l F o rA l l ( addre s s ope ra to r , boo l approved ) pub l i c ;
21 f u n c t i o n i sApp r o v edFo rA l l ( addre s s owner , addre s s op e r a t o r ) pub l i c v iew r e t u r n s ( boo l ) ;
22

23 f u n c t i o n t r a n s f e rF r om ( addre s s from , addres s to , u int256 t ok en I d ) pub l i c ;
24 f u n c t i o n s a f eT ran s f e rF rom ( addre s s from , addre s s to , u int256 t ok en I d ) pub l i c ;
25

26 f u n c t i o n s a f eT ran s f e rF rom ( addre s s from , addre s s to , u int256 token Id , bytes memory data )
pub l i c ;

27 }

Listing 1: OpenZeppelin’s IERC-721 (interface) standard

2.4.1 Events

ERC-721 defines the following events:

— Transfer (address indexed from, address indexed to, uint256 indexed tokenId)

• Emitted whenever ownership of any NFT is changed by any mechanism, including during the
creation or destruction of a token - by resorting to address 0 for sender or receiver, respectively.
An exception to this rule is during contract creation, when any number of NFTs can be created
and assigned without emitting Transfer.

• Whenever Transfer is fired, all approved addresses for that token are reset.

— Approval(address indexed owner, address indexed approved, uint256 indexed tokenId)

• Emitted whenever an approved address for a given NFT is changed or reaffirmed. The zero
address indicates that there are no approved addresses for that token. It is also emitted alongside
Transfer to reset the approved address.

— ApprovalForAll(address indexed owner, address indexed operator, bool approved)

• Emitted when an operator is approved for all NFTs of the holder.

7



1 con t r a c t ERC721 i s ERC165 , IERC721 {
2 mapping ( u int256 => addres s ) p r i v a t e tokenOwner ;
3 mapping ( u int256 => addres s ) p r i v a t e t o k enApp rova l s ;
4 mapping ( addre s s => Counte r s . Counter ) p r i v a t e ownedTokensCount ;
5 mapping ( addre s s => mapping ( addres s => boo l ) ) p r i v a t e op e r a t o rApp r o v a l s ;
6 . . .
7 f u n c t i o n ba lanceOf ( addres s owner ) pub l i c v iew r e t u r n s ( u int256 ) {
8 r e q u i r e ( owner != addre s s (0 ) ) ;
9 r e t u r n ownedTokensCount [ owner ] . c u r r e n t ( ) ;

10 }
11 f u n c t i o n ownerOf ( u int256 t ok en I d ) pub l i c v iew r e t u r n s ( addre s s ) {
12 addre s s owner = tokenOwner [ t ok en I d ] ;
13 r e q u i r e ( owner != addre s s (0 ) ) ;
14 r e t u r n owner ;
15 }
16 f u n c t i o n approve ( addres s to , u int256 t ok en I d ) pub l i c {
17 addre s s owner = ownerOf ( t ok en I d ) ;
18 r e q u i r e ( to != owner ) ;
19 r e q u i r e (msg . s ende r == owner | | i sApp r o v edFo rA l l ( owner , msg . s ende r ) ) ;
20 t o k enApp rova l s [ t ok en I d ] = to ;
21 emit Approva l ( owner , to , t ok en I d ) ;
22 }
23 f u n c t i o n getApproved ( u int256 t ok en I d ) pub l i c v iew r e t u r n s ( addre s s ) {
24 r e q u i r e ( e x i s t s ( t ok en I d ) ) ;
25 r e t u r n t o k enApp rova l s [ t ok en I d ] ;
26 }
27 f u n c t i o n s e tApp r o v a l F o rA l l ( addre s s to , boo l approved ) pub l i c {
28 r e q u i r e ( to != msg . s ende r ) ;
29 op e r a t o rApp r o v a l s [ msg . s ende r ] [ to ] = approved ;
30 emit App ro va l Fo rA l l (msg . sender , to , approved ) ;
31 }
32 f u n c t i o n i sApp r o v edFo rA l l ( addre s s owner , addre s s op e r a t o r ) pub l i c v iew r e t u r n s ( boo l ) {

r e t u r n op e r a t o rApp r o v a l s [ owner ] [ o p e r a t o r ] ; }
33 f u n c t i o n t r a n s f e rF r om ( addre s s from , addres s to , u int256 t ok en I d ) pub l i c {
34 r e q u i r e ( i sApprovedOrOwner (msg . sender , t ok en I d ) ) ;
35 t r a n s f e r F r om ( from , to , t ok en I d ) ;
36 }
37 f u n c t i o n s a f eT ran s f e rF rom ( addre s s from , addre s s to , u int256 token Id , bytes memory da ta )

pub l i c {
38 t r a n s f e rF r om ( from , to , t ok en I d ) ;
39 r e q u i r e ( checkOnERC721Received ( from , to , token Id , da ta ) ) ;
40 }
41 f u n c t i o n t r a n s f e r F r om ( addre s s from , addres s to , u int256 t ok en I d ) i n t e r n a l {
42 r e q u i r e ( ownerOf ( t ok en I d ) == from ) ;
43 r e q u i r e ( to != addres s (0 ) ) ;
44 c l e a rA p p r o v a l ( t ok en I d ) ;
45 ownedTokensCount [ from ] . decrement ( ) ;
46 ownedTokensCount [ to ] . i n c r ement ( ) ;
47 tokenOwner [ t ok en I d ] = to ;
48 emit Tran s f e r ( from , to , t ok en I d ) ;
49 }
50 . . .
51 }

Listing 2: ERC721 OpenZeppelin implementation overview

2.4.2 Functions

— balanceOf(address owner) external view returns (uint256)

8



• Returns the number of NFTs owned by the address, possibly zero. Throws exceptions for 0
address tokens, since those are considered invalid (Listing 2, lines 7-10).

— ownerOf(uint256 tokenId) external view returns (address)

• Returns the address corresponding to the given NFT’s owner. Zero address tokens are, once
again, considered not valid (2, lines 11-15).

— transferFrom(address from, address to, uint256 tokenId) external payable

• Unsafe version of safeTransferFrom. Transfers ownership of an NFT. Sender must be token’s
current owner, an authorized operator, or the approved address for the token that is to be
transferred. Furthermore, the owner address must be that of the token’s holder. Also, the token
needs to be a valid one and remain that way, therefore the receiver cannot be the zero address
(Listing 2, lines 33-36 and 41-49).

• The function is unsafe in the sense that it is up to the caller to check that the receiver is able
to receive NFTs. If not, tokens may be permanently “lost” by becoming associated to accounts
that prevent further manipulation of the token.

—safeTransferFrom(address from, address to, uint256 tokenId) external payable
and safeTransferFrom(address from, address to, uint256 tokenId, bytes data) external payable

• Behaves like transferFrom, but disallows “unsafe” transfers by checking if the receiver is a smart
contract able to receive ERC-721 tokens, throwing an exception if not (Listing 2, lines 37-40).
For that purpose, a special function called onERC721Received is called for the receiver’s address

• The second variant of the method (not shown in the listing) has an additional data parameter
that may be passed on top the onERC721Received call.

— approve(address approved, uint256 tokenId) external payable16

• Changes or reaffirms the approved address for an NFT. The zero address is used to indicate that
there is no approved address for a given token. The sender must be the owner or authorized
operator, otherwise an exception is thrown (Listing 2, lines 16-22).

— setApprovalForAll (address operator , bool approved) external

• Authorizes or revokes the authorization of a third party operator for all of the sender’s tokens.
A contract must allow multiple operators per holder (Listing 2, lines 27-31).

— getApproved(uint256 tokenId) external view returns (address)

• Returns the approved address for a single NFT, zero if there is none. The token must have a
valid id, otherwise an exception is thrown (Listing 2, lines 23-26).

— isApprovedForAll(address owner, address operator) external view returns (bool)

• Queries if a given address is an approved operator for the given NFT (Listing 2, lines 32-32).

9



3 Test Framework

3.1 Property-Based Testing

Property-based testing (PBT) is a methodology for software testing that automatically generates test
cases using random inputs according to a model of correctness for the software under test. PBT looks
for examples of incorrect behavior model, and then, in a process known as shrinking, tries to reduce the
examples’ complexity (e.g., in terms of values and example length) to facilitate human understanding
of the bugs that may be staked. The PBT approach was born with QuickCheck for Haskell [5], and
rapidly become a popular approach for other languages, e.g., Hypothesis for Python [13], or Scalacheck
for Scala and Java [15] among many others.

PBT contrasts with unit example-based testing, also known as unit testing, in which a pre-generated
finite set of inputs are respectively fed to a program and the expected outputs matched against the
execution results. In comparison, PBT may generate a vast quantity of test cases in automated
manner, which may make it easier to reproduce edge-case scenarios, increase code coverage, and cover
interactions that may easily be missed by a programmer when coding unit tests.

Using PBT, a programmer may focus on specifying the properties of interest and input generation
constraints through a model, and an arbitrary number test cases may be generated at random in model-
driven manner. Shrinking is the other important aspect of PBT. Shrinking tries to automatically
simplify test cases, when a violation of the PBT model is found. The purpose is to narrow the test
cases in an attempt to locate the boundary values and/or interactions by which a property fails. This
also helps with producing human readable examples for such failing examples.

Two distinct types of PBT are normally considered: stateless and stateful PBT. Stateless PBT verifies
single interactions with the software under test, while stateful PBT considers sequences of interactions
while keeping track of a “model state” of the software being tested. Stateful PBT is normally expressed
by rule-based state machines, such that each rule implements an interaction of interest and test cases
are formed by a sequence of several rules with varying length.

Specification Model Hypothesis

Test reports

Report and shrink
failures

Validate states

Smart contract

Generated examplesRules, strategies,
invariants

Figure 4: Schematic of the employed PBT methodology.

10



3.2 Property-Based Testing with Brownie

In this project, we employed the PBT approach for verifying ERC-721 contracts, following up on
previous work that used PBT with ERC-20 contracts [18]. We make use of Brownie [2], an Ethereum
Virtual Machine smart contract development and testing framework. Brownie employs the Hypothesis
Python library for PBT [13] and the Ganache development blockchain [12].

A synopsis of this approach is illustrated in Figure 4 and described bellow:

• Brownie resorts to the Hypothesis framework for generating examples and validating state tran-
sition on the smart contract blockchain to be tested [2, 13].

• It then reports falsifiable test case instances or, in other words, generated inputs for which the
ascertained properties of a functions did not match an expected or desired behaviour

• Alternatively, it can conduct shrinking to determine the smallest established failing case, reducing
report complexity and promoting human readability, as previously mentioned.

Stateful test execution by Hypothesis, relies on a state machine class which defines an initial state,
a number of structure-outlining actions for execution, and optional intransgressible invariants. These
are all defined by rules, which are class methods that draw values from strategies and passes them to
user defined functions, some examples of which are detailed further below. These rules can then be
chained together and interact with each other in all sorts of ways.

3.2.1 The Hypothesis framework

The major considerations of this methodology, specifically in relation with the Hypothesis framework,
are as follows:

• Strategies

– We specified strategies in Brownie for the generation of random test cases, be it unsigned
256 bits integers for token addresses, or booleans for setApprovalForAll . Then, the generated
examples are fed to the smart contract blockchain and consequently validated thanks to
the Hypothesis framework.

• Rules

– A desirable trait of this PBT library, is that other than having to test for properties
such as the associative, commutative, or distributive properties, we can perform data-
driven and interaction-driven testing as well. Specifically and respectively, stateless and
stateful testing, where it is possible to ascertain the state transitions sustained by the
EVM blockchain as a result of the transaction induced by the smart contract.

– While for stateless testing a model for a single expected state transition is applied, for
stateful-driven testing a sequence of defined actions are ran in a number of different ways
in an attempt to reproduce a failure. Stateful testing is therefore suitable for complex
contracts with many possible interactions.

11



Take snapshot

setup()

rule 1

rule n

teardown()

Revert to snapshot

Blockchain
(Ganache)

Test driver
(Brownie)

...

Figure 5: Brownie stateful testing procedure diagram

• Coverage

– Lastly, the produced test reports, in lieu of identifying falsifiable examples, where the state
transition did not occur as supposed, can produce a coverage report. This report denotes
the perceptual portion of the contract code that was executed during testing, as well as
highlights these relevant code lines.

– Coverage analysis is useful in designing future test models - be it by adapting or even
creating new rules, strategies, and so forth - that incorporate more of the smart contract
to be tested.

3.2.2 Test Execution

The steps regarding this procedure are summarized in Figure 5. As illustrated, stateful text execution
follows a straight sequence, albeit allowing room for variance.

Each test cycle begins with a snapshot of the blockchain, followed by running a setup phase and then
a random and variable (user-defined) number of rules. The cycle terminates either once all the rules
(the number of test execution steps that were set) are done, or immediately as soon as an error is
found.

Regardless, the state machine is teared down and the blockchain is reverted to the taken snapshot.

As previously mentioned, rules can be executed with our without shrinking or, alternatively, a coverage
report can be produced instead.

The stages of this procedure are detailed below, both in regards to each single test cycle, as well as
the entire execution:

12



One-time initialization

• Prior to taking a snapshot of the blockchain, the init method, if present, passes external
data into the state machine, that persists throughout every test for that execution series.

Text execution cycle (per Hypothesis internally generated example)

• At the beginning of each test run, immediately after blockchain reversion to the taken snapshot,
the setup method is called. This method only affects the current test case.

• The test case example is formed by a randomly generated sequence of rule method invocations.
A test failure may results from a failed assertion in one of the rules in the sequence, in which
case the remaining rules are not executed. If no assertion fails over the entire sequence, the test
succeeds.

• teardown is called after the rule sequence, regardless of whether the test case succeed or not,
before chain reversion via the taken snapshot. This method can also be seen on Listing 4.

• These previous three steps are repeated for fixed number of times defined by the number of
maximum examples. Note that the execution does not end on the first test failure, there can be
multiple test failures.

3.3 Implementation

1 c l a s s StateMach ine :
2 # Inpu t g e n e r a t i o n s t r a t e g i e s
3 . . .
4 # Test l i f e c y c l e methods
5 de f i n i t ( s e l f , w a l l e t s , c on t r a c t , DEBUG=None ) :
6 . . .
7 de f s e tup ( s e l f ) :
8 . . .
9 de f teardown ( s e l f ) :

10 . . .
11 # Rule s
12 de f r u l e t r a n s f e r F r om ( s e l f , s t owner , s t r e c e i v e r , s t t o k en , s t s e n d e r ) :
13 . . .
14 de f r u l e s a f eT r a n s f e r F r om ( s e l f , s t owner , s t r e c e i v e r , s t t o k en , s t s e n d e r ) :
15 . . .
16 de f r u l e a p p r o v e ( s e l f , s t s e n d e r , s t t o k en , s t r e c e i v e r ) :
17 . . .
18 de f r u l e s e t A p p r o v a l F o r A l l ( s e l f , s t s e n d e r , s t r e c e i v e r , s t b o o l ) :
19 . . .
20 # Au x i l i a r y A s s e r t i o n methods
21 de f v e r i f yOwne r ( s e l f , t o k en I d ) :
22 . . .
23 de f v e r i f y B a l a n c e ( s e l f , wIdx ) :
24 . . .
25 de f v e r i f yApp r o v e d ( s e l f , token ) :
26 . . .
27 # othe r a s s e r t i o n methods . . .

Listing 3: ERC-721 state machine - methods overview.

13



3.3.1 State Machine

An overview of the state machine methods is shown on Listing 3.

Input generation strategies, life-cycle methods, rules, and auxiliary assertion methods are detailed on
subsequent Listings.

Strategies and life-cycle methods

• Listing 4 highlights input generation strategies as well as the methods used to instantiate tokens,
wallets, the contract, as well as define address ranges for each cycle - i.e., init and setup.
The teardown method is also shown.

1 c l a s s StateMach ine :
2 s t owne r = s t r a t e g y ( ” u i n t256 ” , m in va l u e =0, max va lue=Opt ions .ACCOUNTS − 1)
3 s t s e n d e r = s t r a t e g y ( ” u i n t256 ” , m in va l u e =0, max va lue=Opt ions .ACCOUNTS − 1)
4 s t r e c e i v e r = s t r a t e g y (
5 ” u in t256 ” , m in va l u e =0, max va lue=Opt ions .ACCOUNTS − 1
6 )
7 s t t o k e n = s t r a t e g y ( ” u i n t256 ” , m in va l u e =1, max va lue=Opt ions .TOKENS)
8 s t b o o l = s t r a t e g y ( ” boo l ” )
9

10 de f i n i t ( s e l f , w a l l e t s , c on t r a c t , DEBUG=None ) :
11 s e l f . w a l l e t s = w a l l e t s
12 s e l f . a dd r2 i d x = { addr : i f o r i , addr i n enumerate ( w a l l e t s ) }
13 s e l f . a dd r2 i d x [ 0 ] = −1
14 s e l f . a dd r2 i d x [ b rown ie . c on v e r t . t o a d d r e s s ( ’ 0 x0000000000000000000000000000000000000000 ’ )

] = −1
15 s e l f . t oken s = range (1 , Opt ions .TOKENS + 1)
16 s e l f . c o n t r a c t = con t r a c t
17

18 de f s e tup ( s e l f ) :
19 # token I d −> owner add r e s s − must match c o n t r a c t ’ s ownerOf ( t oken I d )
20 s e l f . owner = { t ok en I d : s e l f . c o n t r a c t . a dd r e s s f o r t ok en I d i n s e l f . t oken s }
21

22 # add r e s s −> number o f tokens − must match c o n t r a c t ’ s ba lanceOf ( add r e s s )
23 s e l f . b a l anc e = { addr : 0 f o r addr i n range ( Opt ions .ACCOUNTS) }
24

25 # token I d −> approved add r e s s − must match c o n t r a c t ’ s getApproved ( add r e s s )
26 s e l f . approved = { t ok en I d : −1 f o r t ok en I d i n s e l f . t okens }
27

28 # add r e s s −> l i s t o f approved o p e r a t o r s − f o r each add r e s s x i n o p e r a t o r s [ a dd r e s s ]
29 # i sApp r o v edFo rA l l ( add re s s , x ) must r e t u r n t r u e
30 s e l f . o p e r a t o r s = { addr : s e t ( ) f o r addr i n range ( Opt ions .ACCOUNTS) }
31

32 # Ca l l b a c k f o r i n i t i a l s e tup ( con t r a c t−dependent )
33 s e l f . onSetup ( )
34 . . .
35 de f teardown ( s e l f ) :
36 i f Opt ions .DEBUG:
37 p r i n t ( ” teardown ( ) ” )
38 s e l f . dumpState ( )
39 . . .

Listing 4: ERC-721 state machine - strategies for input generation and life-cycle methods ( input ,
setup, and teardown.

14



1 de f r u l e t r a n s f e r F r om ( s e l f , s t owner , s t r e c e i v e r , s t t o k en , s t s e n d e r ) :
2 i f Opt ions .DEBUG:
3 p r i n t (
4 ” t r an s f e rF r om ( owner {} , r e c e i v e r {} , token {} [ s ende r : {} ] ) ” . fo rmat (
5 s t owner , s t r e c e i v e r , s t t o k en , s t s e n d e r
6 )
7 )
8 i f s e l f . c anT ran s f e r ( s t s e n d e r , s t owner , s t t o k e n ) :
9 t x = s e l f . c o n t r a c t . t r a n s f e rF r om (

10 s e l f . w a l l e t s [ s t owne r ] ,
11 s e l f . w a l l e t s [ s t r e c e i v e r ] ,
12 s t t o k en ,
13 {” from” : s e l f . w a l l e t s [ s t s e n d e r ]} ,
14 )
15 s e l f . owner [ s t t o k e n ] = s t r e c e i v e r
16 s e l f . approved [ s t t o k e n ] = −1
17 s e l f . b a l anc e [ s t owne r ] = s e l f . b a l ance [ s t owne r ] − 1
18 s e l f . b a l anc e [ s t r e c e i v e r ] = s e l f . b a l ance [ s t r e c e i v e r ] + 1
19

20 s e l f . v e r i f yOwne r ( s t t o k e n )
21 s e l f . v e r i f yApp r o v e d ( s t t o k e n )
22 s e l f . v e r i f y B a l a n c e ( s t owne r )
23 s e l f . v e r i f y B a l a n c e ( s t r e c e i v e r )
24 s e l f . v e r i f y E v e n t (
25 tx ,
26 ” T r an s f e r ” ,
27 {
28 ” f rom” : s e l f . w a l l e t s [ s t owne r ] ,
29 ” t o ” : s e l f . w a l l e t s [ s t r e c e i v e r ] ,
30 ” t o k e n I d ” : s t t o k e n
31 } ,
32 )
33 e l s e :
34 with brown ie . r e v e r t s ( ) :
35 s e l f . c o n t r a c t . t r an s f e rF r om (
36 s e l f . w a l l e t s [ s t owne r ] ,
37 s e l f . w a l l e t s [ s t r e c e i v e r ] ,
38 s t t o k en ,
39 {” from” : s e l f . w a l l e t s [ s t s e n d e r ]} ,
40 )
41 de f r u l e s a f eT r a n s f e r F r om ( s e l f , s t owner , s t r e c e i v e r , s t t o k en , s t s e n d e r ) :
42 . . .
43 de f r u l e a p p r o v e ( s e l f , s t s e n d e r , s t t o k en , s t r e c e i v e r ) :
44 . . .
45 de f r u l e s e t A p p r o v a l F o r A l l ( s e l f , s t s e n d e r , s t r e c e i v e r , s t b o o l ) :
46 . . .

Listing 5: ERC-721 state machine - rules.

Rules

• Listing 5 exemplifies one rule for testing the transferFrom function of ERC721. The methods
starts by calling the auxiliary method canTransfer that checks whether the transfer is being
emitted by the token’s owner or by an approved operator for it, as well as if the token’s current
address (ownership) is that of the st owner argument passed. It reverts the test otherwise
identifying an error.

15



• The method then calls the contract function in question and inspects if the expected state
changes on the blockchain took place. Namely, it internally updates the token’s owner to be
that of the receiver’s address, removes third party approval for that token, and performs the
corresponding updates to each account address’ balance. It then verifies if those changes were
successfully carried out by the blockchain, by calling a series of verification methods - transversal
to other rule methods.

1 de f v e r i f yOwne r ( s e l f , t o k en I d ) :
2 s e l f . v e r i f y V a l u e (
3 ”ownerOf ({} ) ” . fo rmat ( t oken I d ) ,
4 s e l f . owner [ t ok en I d ] ,
5 s e l f . a dd r2 i d x [ s e l f . c o n t r a c t . ownerOf ( t oken I d ) ]
6 )
7

8 de f v e r i f y B a l a n c e ( s e l f , wIdx ) :
9 s e l f . v e r i f y V a l u e (

10 ” ba lanceOf ({} ) ” . fo rmat ( wIdx ) ,
11 s e l f . b a l anc e [ wIdx ] ,
12 s e l f . c o n t r a c t . ba lanceOf ( s e l f . w a l l e t s [ wIdx ] ) ,
13 )
14

15 de f v e r i f yApp r o v e d ( s e l f , token ) :
16 s e l f . v e r i f y V a l u e (
17 ” getApproved ({} ) ” . fo rmat ( token ) ,
18 s e l f . approved [ token ] ,
19 s e l f . a dd r2 i d x [ s e l f . c o n t r a c t . getApproved ( token ) ]
20 )
21

22 de f v e r i f y S e tApp r o v e dFo rA l l ( s e l f , s ender , r e c e i v e r ) :
23 . . .
24 de f v e r i f y E v e n t ( s e l f , tx , eventName , data ) :
25 . . .
26 de f v e r i f yR e t u r nVa l u e ( s e l f , tx , e xpec t ed ) :
27 . . .
28 de f v e r i f y V a l u e ( s e l f , msg , expected , a c t u a l ) :
29 . . .
30 de f v e r i f y V a l u e ( s e l f , msg , expected , a c t u a l ) :
31 i f e xpec t ed != a c t u a l :
32 s e l f . v a l u e f a i l u r e = True
33 r a i s e A s s e r t i o n E r r o r (
34 ”{} : e xpec t ed v a l u e {} , a c t u a l v a l u e was {}” . fo rmat (
35 msg , expected , a c t u a l
36 )
37 )
38 . . .

Listing 6: ERC-721 state machine - overview of auxiliary methods.

Assertion Methods

• Sample verification methods can be examined on Listing 6. All of these methods follow equivalent
steps, where they verify if the expected value matches the one read from the blockchain.

• The actual value verification method is verifyValue and, as straightforward as it is, was placed
on a separate method simply for abstraction purpose, while writing the remaining auxiliary
verification methods.

16



RuleBasedStateMachine

BrownieStateMachine

Hypothesis

Brownie

StateMachine

Custom State Machines

0xcert Token Decentraland Token ENS Token OpenZeppelin Token SuSquares Token

Token instances

(a) Test Class Hierarchy.

erc721-pbt/

OpenZeppelin/

SuSquares/

contracts/

SuMain.sol

. . .

reports/

coverage.json

tests

test_SuSquares.py

conftest.py

. . .

. . .

erc721_pbt.py

pbt

(b) Directory structure.

Figure 6: Project organization.

3.3.2 Class Hierarchy and Project Organization

Test classes are hierarchically structured as depicted on Figure 6a. The infrastructure is built, as
shown, supported on Hypothesis then Brownie, following the ERC-721 state machines of this project’s
PBT framework and, ultimately, test instantiations for the contracts.

The PBT framework of Hypothesis defines the RuleBasedStateMachine class, upon which Brownie
adapts it into the BrownieStateMachine class. In this way, the general stateful testing framework of
Hypothesis is polished into one that abstracts aspects related to blockchain setup, snapshots, and
state rollbacks, in order to allow for test isolation.

Brownie, following its custom norms, defines rule-based state machines as specified by the code, and as
this project’s ERC-721 StateMachine serves as example. State machine classes can then be subclassed
for contracts through the test scripts.

Directory structure for defining this PBT framework is schematized on Figure 6b.

At the root level sits the files erc721 pbt.py and pbt. The former contains the PBT implementation,
while the latter is the bash script used for text execution. Each ERC-721 smart contract is given its
own sub-directory, inside of which there is a Brownie project containing follow-up sub-directories that,
of these, it is important to highlight a few. Namely, specific contract source code that is placed inside
contracts/; test scripts, which can be found in tests /; and, finally, coverage reports and logs that are
located in reports/.

17



4 Evaluation

4.1 Methodology

Table 1: Brief summary of the tested Ethereum ERC-721 contracts

Contract Description

Decentraland [7] Virtual reality platform where users can create, discover, experience, and monetize content and applications

Ethereum Name Service [11] Domain Name service for addresses, including wallets and websites

Su Squares [20] Provides a homepage with blocks, available for purchase, and containing a website link and picture attached

0xcert [1] Reference Implementation

OpenZeppelin [16] Reference Implementation

In order to ascertain the impact produced by the number of steps per test cycle, we carried out two
batches of tests with a different number of steps each. At the lower end, only a maximum of five steps
for each test cycle were made, while at the higher end a total of one hundred steps could be taken.
Ten executions were performed for each series of tests with a given number of steps. Half of them
with shrinking, and half without.

We conducted testing on five Ethereum ERC-721 smart contracts, written in Solidity, out of which
three are real-world contracts and two are reference implementations. The tested contracts are outlined
on Table 1.

4.2 Overall Results

Table 2: Overall results per contract with a max of 100 examples each.

Time (s) Time w/Shrinking (s)

Contract Steps # Bugs Average Deviation Average Deviation Coverage (%)

0xcert 5 1 155.6 2.7 160.2 2.5 70.2

0xcert 100 1 979.3 7.2 988.4 5.2 72.6

Decentraland 5 4 217.3 3.2 501.9 3.1 68.8

Decentraland 100 5 613.5 1.7 913.9 1.5 70.7

ENS 5 0 136.4 2.6 136.2 2.9 46.1

ENS 100 0 1457.1 4.6 1460.0 7.7 47.6

OpenZeppelin 5 0 135.7 1.2 136.1 2.7 80.9

OpenZeppelin 100 0 1311.3 29.4 1297.4 7.9 83.6

Su Squares 5 1 206.8 4.9 216.3 2.3 38.7

Su Squares 100 1 697.7 4.4 711.4 2.2 38.7

Table 2 lists the results for two sets of test executions for the five ERC-721 property-based tested
contracts.

As was to be expected, a higher number of steps took longer to execute, but also yielded a better
coverage and could expose further errors. As also anticipated, test executions with shrinking entailed

18



significant time overhead. This overhead is heavily dependent on the smart contract in question, no
doubt due to how the ERC-721 standard is being implemented in code.

Pointing to this fact, is the discrepancy between the minor increase in time for two out of three
contracts where bugs were found, and the major time increment that occurred with the third one -
the Decentraland contract.

Of note that this time parameter holds no significance for smart contracts that did not exhibit errors,
since shrinking only takes place when a test fails. Specifically, this is demonstrated by the averages
for the Ethereum Name Service smart contract, which are almost similar. Otherwise, while still on
this subject and pertaining to the OpenZeppelin contract, the higher time value obtained without
shrinking - for one hundred steps - can be explained by taking into account the larger than usual
deviance, responsible for skewing this average. In turn, this deviance increase is most likely due to
fortuitous concurrent background processes, as well as system overload caused by performing a large
amount of examples and steps for a long period of time.

Further testing could be done to obtain more representative values and with greater confidence, but
the figures obtained already allow to draw these solid inferences. This is substantiated by the overall
small deviation in execution times, that points to the fact that the results thus obtained are sufficiently
robust and consistent across the board.

1 con t r a c t : SuMain − 38.7%
2 SuNFT . getApproved − 100.0%
3 SuNFT . i sApp r o v edFo rA l l − 100.0%
4 SuNFT . s e tApp r o v a l F o rA l l − 100.0%
5 SuPromo . grantToken − 100.0%
6 SuNFT . t r a n s f e r − 95.0%
7 Acce s sCon t r o l . s e tO p e r a t i n gO f f i c e r − 75.0%
8 SuNFT . ba lanceOf − 75.0%
9 SuNFT . t r an s f e rF r om − 70.8%

10 SuNFT . s a f eT r an s f e rF r om − 50.0%
11 SuNFT . ownerOf − 50.0%
12 SuNFT . sa f eT ran s f e rF rom − 50.0%
13 SuNFT . approve − 41.7%
14 Acce s sCon t r o l . s e t E x e c u t i v eO f f i c e r − 0.0%
15 Acce s sCon t r o l . s e t F i n a n c i a l O f f i c e r − 0.0%
16 Acce s sCon t r o l . w i thdrawBa lance − 0.0%
17 SuNFT . name − 0.0%
18 SuNFT . symbol − 0.0%
19 SuNFT . tokenBy Index − 0.0%
20 SuNFT . tokenOfOwnerByIndex − 0.0%
21 SuNFT . tokenURI − 0.0%
22 SuOperat ion . p e r s o n a l i z e S q u a r e − 0.0%
23 SuVending . pu r chase − 0.0%
24 S u p p o r t s I n t e r f a c e . s u p p o r t s I n t e r f a c e − 0.0%
25

26 con t r a c t : TokenRece ive r − 0.0%

Listing 7: Coverage report for the Su Squares contract

Regarding coverage, once more there is a small increase - in most cases - to the contract code that
is covered with PBT, the more number of steps it is performed. Still, upon analysis of the coverage
logs, we can deduce that most of the contract code that is not run during testing belongs to methods

19



specific to each DApp itself, and are therefore themselves not covered by the ERC-721 standard. The
coverage report shown on Listing 7 serves as an example to this. Furthermore, the higher coverage
obtained for the standard implementations further substantiates this claim.

Still, further analysis and tweaking of the strategies and rules defined by our test code could provide
for better coverage.

4.3 Bug Analysis

Table 3: Bug summary.

Contract Function Summary description of function and detected er-
ror(s)

0xcert setApprovalForAll Enable or disable 3rd party operator for approval. Transaction
did not revert for sender = receiver (assertion error).

Decentraland approve Change or reaffirm the approved address for an NFT. Function
threw exception for reaffirmation when it shouldn’t (receiver
already an approved operator). Function does not fire for
multiple individual approve events.

Decentraland safeTransferFrom Safe version of tranferFrom, that changes ownership of NFT.
Third party approved operator attempted to transfer NFT
from holder to itself (owner = receiver).

Decentraland setApprovalForAll Enable or disable 3rd party operator for approval. Transaction
did not revert for sender = receiver (assertion error). Threw
exception when clearing approval from approved operator.

Su Squares approve Change or reaffirm the approved address for an NFT. Trans-
action did not revert for sender = receiver (assertion error).

A summary of all the bugs found, and brief description thereof, can be reviewed on Table 3.

It is clear that both the OpenZeppelin and the Ethereum Name Service smart contracts contain no
apparent faulty implementations of the ERC-721 standard. On the other hand, one bug was found on
the 0xcert and Su Squares contracts - of a different nature each.

Once again, the Decentraland smart contract stood out, by revealing to contain more errors than the
remaining contracts.

Most of the falsifiable examples, which translates into bad implementations of the standard, are
related to the methods for approval. With property-based testing we found one instance on the Su
Squares smart contract where the transaction did not revert. For Decentraland, an error occurred
when performing a larger number of steps that involved multiple approve events. There was also a
test instance where the reaffirmation of an approved operator returned an exception.

Again, the bug that was discovered in the setApprovalForAll function of 0xcert was related to a failure
to revert operator approval. It is relevant to indicate that all these failures pertaining to approval
reversal occurred when the contracts in question did not account for the sender and the receiver being
the same address. Decentraland also presented this bug.

The last bug that was found, and also on Decentraland, was on the safeTransferFrom method, when

20



an approved third party attempted to transfer a token to its already current owner.

1 F a l s i f y i n g example :
2 s t a t e = BrownieStateMach ine ( )
3 s t a t e . r u l e s e t A p p r o v a l F o r A l l ( s t b o o l=True , s t r e c e i v e r =3, s t s e n d e r =1)
4 s t a t e . r u l e s e t A p p r o v a l F o r A l l ( s t b o o l=True , s t r e c e i v e r =3, s t s e n d e r =2)
5 s t a t e . r u l e t r a n s f e r F r om ( s t owne r =2, s t r e c e i v e r =1, s t s e n d e r =2, s t t o k e n=5)
6 s t a t e . r u l e s e t A p p r o v a l F o r A l l ( s t b o o l=True , s t r e c e i v e r =2, s t s e n d e r =1)
7 s t a t e . r u l e a p p r o v e ( s t r e c e i v e r =0, s t s e n d e r =3, s t t o k e n=6)
8 s t a t e . teardown ( )
9 Traceback (most r e c e n t c a l l l a s t ) :

10

11 F i l e ”/home/ ha l c yon / erc721−pbt / e r c 721 pb t . py” , l i n e 162 , i n r u l e a p p r o v e
12 s e l f . w a l l e t s [ s t r e c e i v e r ] , s t t o k en ,{ ” from” : s e l f . w a l l e t s [ s t s e n d e r ]}
13 brown ie . e x c e p t i o n s . V i r t u a lMach i n eE r r o r : r e v e r tT r a c e s t ep −1, program coun t e r 1601 :
14 F i l e ” c o n t r a c t s /ERC721Base . s o l ” , l i n e 172 , i n ERC721Base . approve :
15 ∗/
16 f u n c t i o n approve ( addres s ope ra to r , u int256 a s s e t I d ) e x t e r n a l {
17 addres s ho l d e r = ownerOf ( a s s e t I d ) ;
18 r e q u i r e (msg . s ende r == ho l d e r | | i s App r o v e dFo rA l l (msg . sender , h o l d e r ) ) ;
19 r e q u i r e ( o p e r a t o r != ho l d e r ) ;
20 i f ( ge tApprovedAddre s s ( a s s e t I d ) != op e r a t o r ) {

Listing 8: Example of a PBT output, for the Decentraland contract, detailing one found bug

1 F a l s i f y i n g example :
2 s t a t e = BrownieStateMach ine ( )
3 s t a t e . r u l e a p p r o v e ( s t r e c e i v e r =0, s t s e n d e r =0, s t t o k e n=1)
4 s t a t e . r u l e s e t A p p r o v a l F o r A l l ( s t b o o l=True , s t r e c e i v e r =0, s t s e n d e r =1)
5 s t a t e . r u l e a p p r o v e ( s t r e c e i v e r =0, s t s e n d e r =0, s t t o k e n=1) s t a t e . teardown ( )
6 Traceback (most r e c e n t c a l l l a s t ) :
7 F i l e ”/home/ ha l c yon / erc721−pbt / e r c 721 pb t . py” , l i n e 162 , i n r u l e a p p r o v e
8 s e l f . w a l l e t s [ s t r e c e i v e r ] , s t t o k en ,{ ” from” : s e l f . w a l l e t s [ s t s e n d e r ]}
9 brown ie . e x c e p t i o n s . V i r t u a lMach i n eE r r o r : r e v e r tT r a c e s t ep −1, program coun t e r 1601 :

10 F i l e ” c o n t r a c t s /ERC721Base . s o l ” , l i n e 172 , i n ERC721Base . approve :
11 ∗/
12 f u n c t i o n approve ( addres s ope ra to r , u int256 a s s e t I d ) e x t e r n a l {
13 addres s ho l d e r = ownerOf ( a s s e t I d ) ;
14 r e q u i r e (msg . s ende r == ho l d e r | | i s App r o v e dFo rA l l (msg . sender , h o l d e r ) ) ;
15 r e q u i r e ( o p e r a t o r != ho l d e r ) ;
16 i f ( ge tApprovedAddre s s ( a s s e t I d ) != op e r a t o r ) {

Listing 9: The same bug as that of Listing 8, now with shrinking

Finally, regarding the outputs of the tests, and on the subject of shrinking, Listing 8 illustrates the
section relevant to a falsifiable example, for a typical test output. As shown, the output indicates the
generated inputs and rules for which the bug could be reproduced, as well as the covered code on the
smart contract itself.

Listing 9 gives the output for the same bug but with shrinking. As can be observed, shrinking
significantly reduces the size of the output, in its attempt to find a smallest reproducible failing
example and improve readability, thus making it easier to detect the cause for the error in question.

For this particular case, by evidencing that the bug happened for an approval reaffirmation, shrinking
helps identify that the error is due to the call of function isApprovedForAll having the msg.sender and

21



holder arguments swapped. Since this was a reaffirmation, and an authorized third party is allowed
to emit approvals, Brownie was not expecting an exception to be fired on that line of code. On the
given function, instead of verifying if the approval was being sent by an authorized operator, it was
checking if the owner of the asset in question was instead an operator on behalf of the sender - who
is the actual operator.

5 Conclusion

In this project, we presented a PBT framework for ERC-721 contracts. The model, relying on rule-
based state machines, was built on top of Brownie development framework, and made possible by
its incorporation of the Hypothesis library for PBT. Evaluations were conducted on five different
Ethereum non-fungible token smart contracts, out of which three are real-wold contracts - specifically
Decentraland, Ethereum Name Service, and Su Squares - and two are reference implementations -
0xcert and OpenZeppelin.

We reached the following conclusions, as highlighted below:

• Two of the three real-world implementations contained bugs, the Su Squares and the Decentra-
land ones, with the latter displaying a significant larger amount than all the rest. One reference
implementation, 0xcert, also contained a bug. This provides evidence that several ERC-721
contracts may exhibit bugs and discrepancies to the standard.

• The PBT approach was able to obtain consistent results throughout the several test execution
for each contract, proving to be as sturdy an approach as unit testing might have been, while
allowing for the generation of hundreds of examples across multiple tests and free from the
constraint of the programmers insight regarding the code.

• Most of the bugs that were found pertained, in one way or another, with the methods for third-
party operator approval. This could hint that the most lacking aspect of ERC-721 on current
implementations might still be smart contract interaction with external services.

• That the Decentraland smart contract presented an error on a safe transfer method, not only
does not bode well for it, as it alerts to the possibility that many other existing contracts may
contain similar or even worse faulty implementations of vital functions.

With our findings, we can generally conclude that property-based testing constitutes a promising
approach for exposing bugs in ERC-721 contracts, and potentially other types of Ethereum smart
contracts.

References

[1] 0xcert erc-721 token — reference implementation - github repository. https://github.com/

0xcert/ethereum-erc721. [Accessed: September 2020].

22

https://github.com/0xcert/ethereum-erc721
https://github.com/0xcert/ethereum-erc721


[2] Brownie - property-based testing. https://eth-brownie.readthedocs.io/en/stable/

tests-hypothesis-property.html. Accessed: 2021-02-08.

[3] Vitalik Buterin. Ethereum whitepaper. https://ethereum.org/en/whitepaper/, 2013. [Online;
accessed 01/02/2021].

[4] Usman W. Chohan. The double spending problem and cryptocurrencies. SSRN, 2017.

[5] Koen Claessen and John Hughes. QuickCheck: A Lightweight Tool for Random Testing of Haskell
Programs. In Proc. ICFP’2000. ACM, 2000.

[6] CryptoKitties collect and breed digital cats. https://www.cryptokitties.co/. Accessed: 2021-
02-08.

[7] Decentraland erc 721 - github repository. https://github.com/decentraland/erc721. [Ac-
cessed: September 2020].

[8] William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721: Erc-721 non-
fungible token standard. https://eips.ethereum.org/EIPS/eip-721. Accessed: 2021-02-08.

[9] Erc-721 property-based testing. https://github.com/RoninKingfisher/erc721-pbt. [Ac-
cessed: March 2021].

[10] Ethereum improvement proposals. https://eips.ethereum.org/. Accessed: 2021-02-08.

[11] Ens: Base registrar implementation. https://etherscan.io/address/

0x57f1887a8bf19b14fc0df6fd9b2acc9af147ea85#code. [Accessed: September 2020].

[12] Ganache. https://github.com/trufflesuite/ganache-cli. [Accessed: September 2020].

[13] Hypothesis documentation. https://hypothesis.readthedocs.io/en/latest/index.html.
Accessed: 2021-02-08.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/

bitcoin.pdf, 2008.

[15] Rickard Nilsson. ScalaCheck: The Definitive Guide. Artima, 2014.

[16] Openzeppelin - github repository. https://github.com/OpenZeppelin/

openzeppelin-contracts/tree/v2.2.0. [Accessed: September 2020].

[17] OpenZepplin - ERC 721. https://docs.openzeppelin.com/contracts/2.x/api/token/

erc721.

[18] Célio Rodrigues. Property-based testing of ERC-20 smart contracts. Master’s thesis, Universidade
do Porto, 2020.

[19] The Solidity Contract-Oriented Programming Language. https://github.com/ethereum/

solidity.

23

https://eth-brownie.readthedocs.io/en/stable/tests-hypothesis-property.html
https://eth-brownie.readthedocs.io/en/stable/tests-hypothesis-property.html
https://ethereum.org/en/whitepaper/
https://www.cryptokitties.co/
https://github.com/decentraland/erc721
https://eips.ethereum.org/EIPS/eip-721
https://github.com/RoninKingfisher/erc721-pbt
https://eips.ethereum.org/
https://etherscan.io/address/0x57f1887a8bf19b14fc0df6fd9b2acc9af147ea85#code
https://etherscan.io/address/0x57f1887a8bf19b14fc0df6fd9b2acc9af147ea85#code
https://github.com/trufflesuite/ganache-cli
https://hypothesis.readthedocs.io/en/latest/index.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/v2.2.0
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/v2.2.0
https://docs.openzeppelin.com/contracts/2.x/api/token/erc721
https://docs.openzeppelin.com/contracts/2.x/api/token/erc721
https://github.com/ethereum/solidity
https://github.com/ethereum/solidity


[20] Su squares ethereum contract - github repository. https://github.com/su-squares/

ethereum-contract. [Accessed: September 2020].

[21] Fabian Vogelsteller and Vitalik Buterin. ERC-20 token standard, 2015. Ethereum Foundation –
https://eips.ethereum.org/EIPS/eip-20.

[22] Vyper: Pythonic Smart Contract Language for the EVM. https://github.com/vyperlang/

vyper.

[23] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum Foun-
dation, 2014.

24

https://github.com/su-squares/ethereum-contract
https://github.com/su-squares/ethereum-contract
https://eips.ethereum.org/EIPS/eip-20
https://github.com/vyperlang/vyper
https://github.com/vyperlang/vyper

	Introduction
	Motivation
	Problem Statement

	Background
	Blockchain
	Ethereum
	Smart Contracts
	ERC-721 Non-Fungible Token Standard
	Events
	Functions


	Test Framework
	Property-Based Testing
	Property-Based Testing with Brownie
	The Hypothesis framework
	Test Execution

	Implementation
	State Machine
	Class Hierarchy and Project Organization


	Evaluation
	Methodology
	Overall Results
	Bug Analysis

	Conclusion

