
Dolphin:
A Domain-Specific
Language for
Autonomous
Vehicle Networks

Keila Mascarenhas de Oliveira Lima
Mestrado Integrado em Engenharia de Redes e
Sistemas Informáticos
Departamento de Ciência de Computadores
2017

Orientador
Eduardo Resende Brandão Marques,Professor Auxiliar Convidado, Faculdade
de Ciências da Universidade do Porto

Coorientador
José Carlos de Queirós Pinto, Assistente de Investigação, Faculdade de
Engenharia da Universidade do Porto

Todas as correções determinadas
pelo júri, e só essas, foram
efetuadas.

O Presidente do Júri,

Porto, ______/______/_________

Acknowledgements

I would like to thank my supervisors Eduardo and José for all the support
and guidance through this jorney. It has been a year full of knowledge and
learnings.
I would also like to thank my colleagues at LSTS and professor João Sousa
for the collaboration and availability shown during this period.
All this process could not be possible without the inconditional love and sup-
port of my family and friends that helped me keep the balance between my
academic and personal life.
At last I would also like to thank the Capeverdian government for the finan-
cial support through my academic journey in Portugal and the oportunity
to study abroard.

Agradecimentos

Gostaria de agradecer os meus orientadores Eduardo e José por todo o apoio
prestado durante esta jornada. Tem sindo um ano cheio de conhecimento e
aprendizagem.
Gostaria também de agradecer aos meus colegas do LSTS e ao professor João
Sousa pela colaboração e disponibilidade demonstrada durante este peŕıodo.
Todo este processo não seria posśıvel sem o carinho e apoio incondicional da
minha famı́lia e amigos, que ajudaram a manter o equiĺıbrio entre a minha
vida académica e pessoal.
Por fim, gostaria de agradecer ao governo Caboverdiano pelo apoio financeiro
durante o meu percurso académico aqui em Portual, e pela oportunidade de
estudar no estrangeiro.

Abstract

Current research efforts regarding autonomous vehicles lead to a intensifica-
tion of its usage in the real world as applied to several operational scenarios.
An example of such is the usage of sets of autonomous underwater, surface
and aerial vehicles in oceanographic and military operations, working to-
gether to achieve a common goal. These vehicles are composed of sensors
and actuators that allow them to complete their tasks. The usage of its
capabilities is only possible with the support systems, software and human
operators that interact with these vehicles forming a heterogeneous network.
Apart from these characteristics, we have to take into account that the en-
vironment in which these vehicles operate does not favour the complexity of
its operation, increasing the necessity to develop tools to help simplify the
interaction within these networks.
With this motivation, we present a domain-specific language called Dolphin
for coordinated task execution in a network of autonomous vehicles. Dol-
phin expresses tasks that are allocated to vehicles dynamically selected from
a network, in integration with an open-source toolchain developed at the
Laboratório de Sistemas e Tecnologia Subaquática (LSTS)/FEUP. Dolphin
tasks are defined compositionally for multiple vehicles through operators for
concurrency, sequence or event flow, building on the base case of elementary
tasks expressed as maneuver plans, encoded in the IMC protocol developed
by LSTS.
Dolphin is implemented in Groovy/Java and has been integrated with Nep-
tus, the command and control software also developed by LSTS, and has
been evaluated in several field tests, including open-sea tests conducted in
collaboration with the Portuguese Navy.

Resumo

A investigação que tem sido feita na área de véıculos autónomos resultou
na intensificação da utilização dos mesmos em casos reais aplicados a vários
cenários de operação. Como exemplo dessa utilização temos o uso de conjun-
tos de véıculos autónomos subaquáticos, de superf́ıcie e aéreos em operações
oceonográficas e militares, trabalhando em conjunto para atingir um obje-
tivo comum. Estes véıculos são compostos por sensores e actuadores que
os permitem completar as suas tarefas. A utilização das suas capacidades é
posśıvel devido a sistemas de suporte às operações, software e operadores hu-
manos que interagem com os véıculos formando uma rede heterogénia. Para
além destas caracteŕısticas, temos que ter em conta que o ambiente em que
os véıculos operam fazem aumentar a complexidade das operações, fazendo
aumentar a necessidade do desenvolvimento de ferramentas que simplifique
a interação nessas redes.

Com essa motivação, apresentamos a linguagem de domı́nio espećıfico,
denominada Dolphin, para coordenação da execução de tarefas em redes de
véıculos autónomos. A Dolphin expressa tarefas que são alocadas a véıculos
selecionados dinamicamente na rede, em integração com as ferramentas de
software de código aberto desenvolvidas no Laboratório de Sistemas e Tec-
nologia Subaquática (LSTS)/FEUP. Essas tarefas são definidas de forma
composicional para múltiplos véıculos através de operadores de concorrência,
sequência ou de fluxo de eventos, constrúındos sobre tarefas elementares ex-
pressas como planos de manobras, codificadas no protocolo IMC desenvolvido
pelo LSTS.
A linguagem Dolphin foi implementada em Groovy/Java e foi integrada com
Neptus, o software de comando e controlo também desenvolvido pelo LSTS,
tendo sido avaliada em vários testes de campo, inclusive em testes em mar
aberto conduzidos em colaboração com a Marinha Portuguesa.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 2
1.4 Thesis Structure . 3

2 Background 4
2.1 Laboratório de Sistemas e Tecnologia Subaquática 4

2.1.1 Autonomous Vehicles 5
2.1.2 Software . 9

2.2 Operational Scenarios . 14
2.2.1 Tracking . 14
2.2.2 Data Muling . 16
2.2.3 Mapping . 16
2.2.4 Patrolling . 17

2.3 NVL Language . 18
2.3.1 Expressiveness . 18
2.3.2 Architecture . 21

2.4 Related Work . 22
2.4.1 Common Control Language 22
2.4.2 Buzz . 22
2.4.3 BigActors . 23
2.4.4 Planning Domain Definition Language 24
2.4.5 Comparison . 24

2.5 Groovy . 25
2.5.1 Features . 25

3 The Dolphin Language 28
3.1 Overview . 29

3.1.1 Architecture . 29
3.1.2 Example . 30

3.2 Language features . 32
3.2.1 Vehicle Selection . 32
3.2.2 Task allocation and execution 33
3.2.3 Event-based task operators 34

3.3 The IMC DSL . 37
3.3.1 Example . 37
3.3.2 Features . 37

3.4 The Neptus Groovy Plug-in 39
3.4.1 Example . 40
3.4.2 Features . 40

4 Design and Implementation 42
4.1 Architecture . 42
4.2 Development tools . 43
4.3 Core Library . 44

4.3.1 Common Runtime . 44
4.3.2 DSL Support in Groovy 49
4.3.3 IMC plan Support . 50

4.4 IMC DSL . 51
4.5 Dolphin Neptus Plug-in . 51

4.5.1 Plug-in Architecture 51
4.5.2 Neptus Platform . 52
4.5.3 Editor . 52
4.5.4 Extensions . 53

4.6 Standalone IMC Runtime . 54
4.7 Groovy Plug-in . 54

5 Experimental Results 55
5.1 APDL field test . 56

5.1.1 Mission timeline . 56
5.1.2 Rendez-vous scenario reviewed 58
5.1.3 Results of the script execution 60

5.2 REP’17 tests . 62
5.2.1 Context . 62

5.2.2 Mission timeline . 63
5.2.3 Execution synchronization using events 64
5.2.4 Rendez-vous scenario with more combined features . . 68

5.3 The Neptus Groovy plug-in 71
5.3.1 DRiP - Douro River Plume tracking 71
5.3.2 Mission timeline . 72
5.3.3 Plan scripts . 73

6 Conclusions 79
6.1 Discussion . 79

6.1.1 Limitations . 80
6.1.2 Evaluation analysis . 80

6.2 Future Work . 81

A Dolphin scripts 87
A.1 Task Operators . 87
A.2 Vehicles Operators . 89
A.3 Failure Tests . 91

B Dolphin runtime logs 92
B.1 Runtime anonymous allocation by distance 92

C Generated data from vehicles logs 93
C.1 Rendezvous scenario at APDL 93

C.1.1 Execution Synchronization using Events 95
C.2 Rendezvous scenario reviewed at REP17 97

D Groovy Plug-in 99

List of Figures

2.1 LSTS systems scenario. 5
2.2 LAUV model. 6
2.3 UAV X8. 8
2.4 UAV Mariner. 8
2.5 Manta Communications Gateway. 9
2.6 IMC messages flow from IMC. 10
2.7 Example of Message Listening in Java implementation of IMC

from github.com/LSTS/imcjava/ 11
2.8 Example of Plan start request in Java implementation of IMC

from github.com/LSTS/imcjava/ 12
2.9 DUNE: tasks and message bus from [25]. 13
2.10 Neptus - Command, control and vehicles monitoring console. . 14
2.11 Neptus - data visualization and analysis. 15
2.12 Bathymetry data rendered in Neptus MRA from [25] 17
2.13 Programa NVL retirado de [14] 19
2.14 NVL program example - spacial distribution. 20
2.15 NVL program example - task flow. 20
2.16 NVL program execution. 20
2.17 NVL Architecture. 21
2.18 Buzz example program adapted from [23] 23
2.19 PDDL specification from [4]. 25
2.20 Groovy architecture in the Java platform from [13] 26
2.21 Example of a Gradle file . 27

3.1 Dolphin Architecture Overview. 28
3.2 Dolphin plug-in in Neptus. 29
3.3 Example script - Rendez-vous scenario 31
3.4 Execution diagram example in time 32
3.5 Building an IMC plan specification in a Dolphin script. 38

github.com/LSTS/imcjava/
github.com/LSTS/imcjava/

3.6 Groovy Plug-in Overview. 39
3.7 Groovy script to list Neptus console bindings. 41

4.1 Dolphin implementation architecture 42
4.2 Code fragment of platform interface in Java 45
4.3 Platform class diagram . 46
4.4 Task class hierarchy diagram 47
4.5 TaskExecutor class diagram 48
4.6 Dolphin plug-in editor in Neptus 53

5.1 APDL field test description 57
5.2 Rendez-vous scenario program 59
5.3 Rendezvous scenario - Vehicle’s execution plots 61
5.4 Rendezvous scenario - lauv-noptilus-1 multibeam sonar bathymetry

data from Neptus . 62
5.5 REP’17 exercises description 65
5.6 Events and synchronization 66
5.7 Events and Synchronization - plots 67
5.8 Rendezvous reviewed scenario 69
5.9 Rendezvous reviewed scenario - plots 70
5.10 DRiP Mission on August 13, 2017 72
5.11 Script to generate popups between yoyos maneuvers for each

350 meters . 74
5.12 Generated plan with yoyos and popup preview in Neptus . . . 75
5.13 Vehicle’s position plot . 75
5.14 Vehicle’s logged salinity and depth plot. Notice that salinity

as some erroneous data when the vehicle is at the surface due
to the sensor being momentarily out of the water. 76

5.15 Groovy Plug-in: Console Screenshot with the first attempt
script and plan preview. 77

5.16 Groovy Plug-in: Console Screenshot with the second attempt
script and plan preview. 78

A.6 Script with vehicles position usage as event trigger 90

B.1 Extract of Dolphin runtime log 92

C.1 APDL field tests UUVs timelines 93
C.2 APDL field tests UUVs timelines. 94

C.3 REP’17 day 1 - Events and synchronization LAUV-Xplore-
1/master timeline . 95

C.4 REP’17 day 1 - Events and synchronization slaves timelines . 96
C.5 REP’17 day 2 - Rendez-vous scenario LAUV-Xplore-1 execu-

tion timeline . 97
C.6 REP’17 day 2 - Rendez-vous scenario timelines 98

List of Tables

2.1 LSTS LAUV Specification. 7
2.2 LSTS UAV Specification . 8

3.1 Vehicle selection criteria for pick 33
3.2 Event-based operators . 35

4.1 Signals manipulation . 49
4.2 Dolphin Supported Units . 50

Acronyms

ACCU Android Command and Control Unit

APDL Administração dos Portos do Douro, Leixões e Viana do Castelo

API Application Programming Interface

ASV Autonomous Surface Vehicle

AUV Autonomous Underwater Vehicle

CCU Command and Control Unit

COTS Commercial Off-the-Shelf

DRiP Douro River Plume Tracking

DSL Domain Specific Language

GUI Graphical User Interface

IDE Integrated Development Environment

IMC Inter-Module Communication Protocol

LAUV Light Autonomous Underwater Vehicle

LSTS Laboratório de Sistemas e Tecnologia Subaquática

NVL Networked Vehicle Language

REP Rapid Environment Picture

ROV Remotely Operated Vehicle

UAV Unmanned Aerial Vehicle

UUV Unmanned Underwater Vehicle

Chapter 1

Introduction

1.1 Motivation

The research and investment on autonomous vehicles has been gradually in-
creasing lately due to their application in multiple scenarios such as scientific
surveys, military and transportation [9]. Its usage is also less expensive and
easy to handle than manned or remotely-operated vehicles as they do not re-
quire human operators to be attending their (often long and dull) operations.
One aspect that increases the number of possible scenarios is to coordinate
the execution of multiple autonomous vehicles, possibly of different types
(aerial, surface and underwater) with configurable payloads, changing the
requirements in each mission which increases the number of resources that
the operators have to manage, making their task more difficult. Another
characteristic to take into account is the physical mean where these vehicles
are deployed which has limited communication resources as the acoustic com-
munication used to communicate with the vehicles when they are submerged.

These vehicles are used in cooperation, combining their capabilities to
execute tasks in order to accomplish a common goal. Therefore it is essen-
tial the development of tools to simplify multiple vehicles monitoring and
operation taking into account the environment and conditions which they
operate. In the last few years, the Laboratório de Sistemas e Tecnologias
Subaquáticas (LSTS) has been working in the development and deployment
of autonomous vehicles having a toolchain of open-source software to sup-
port their operations. In the recent work developed in LSTS, we can find
the Networked Vehicles’ Language (NVL [15, 14, 28]) and multiple vehicle

1

planner [27] which demonstrate some of the efforts and interest in the coor-
dination of multiple autonomous vehicles.

1.2 Problem Statement

This thesis addresses the specification of system-level multiple vehicle be-
haviour and its execution by heterogeneous vehicles in communications-restricted
environments. Even though command and control software generally allows
the manipulation of vehicles individually, the increase in the number of ve-
hicles in real-world applications makes joint coordination hard to program
and automate. One of the main advantages of multiple heterogeneous vehi-
cles comes from the possible combination of their different capabilities filling
possible gaps that might appear in their individual command. So there is a
need to coordinate the integrated use of these vehicles facilitating the oper-
ators load.
We developed Dolphin in an attempt to address this problem. Dolphin fol-
lows on a prior effort with similar goals, the NVL language [15, 14, 28]. In
Dolphin we strived for more expressiveness and flexibility, easier program-
ming, and a tighter integration with the LSTS toolchain programming. Con-
ceptually and technically, Dolphin builds on the valuable experience acquired
with NVL, but, considering the goals above, a decision was made to design
and implement Dolphin from scratch.
Validation of the language in real operation scenario is required in order
to adjust the behaviour to mutable conditions. To do so, LSTS’s software
toolchain was integrated with the language, making possible its usage with
their systems.

1.3 Contributions

The contribution of this thesis comprises three main aspects:

1. The Dolphin language itself, expressing tasks that are allocated to ve-
hicles dynamically selected from a network. Dolphin tasks are defined
compositionally for multiple vehicles through operators for concurrency,
sequence or event flow, building on the base case of elementary tasks
provided by a base platform. The core of the language is implemented

2

in Groovy and Java, facilitating integration with target platforms, and
has an extensible design.

2. Dolphin has been integrated with the open-source LSTS toolchain. The
base case of elementary tasks is expressed in the LSTS toolchain as
maneuver plans, encoded in the IMC protocol. This takes form as
a plug-in for the Neptus command and control software, and a stand-
alone runtime that builds solely on IMC. Furthermore, a IMC DSL and
a Neptus Groovy plug-in were also developed, aiding in the definition
of IMC plans.

3. Dolphin has been evaluated in several field tests, including open-sea
tests in collaboration with the Portuguese Navy, demonstrating its ap-
plicability to complex real-world scenarios.

1.4 Thesis Structure

The rest of this thesis is organized as described below:

• Chapter 2 presents the background for this thesis in terms of work
at LSTS, operational scenarios in autonomous vehicle networks, and
survey on related work.

• Chapter 3 presents the Dolphin language in terms of its architecture
and main features, along with the related developments of the IMC
DSL and the Neptus Groovy plug-in.

• Chapter 4 describes the design and implementation of Dolphin and the
other components mentioned above.

• Chapter 5 presents results from field tests used to validate our ap-
proach.

• Chapter 6 ends with a discussion of accomplishments, limitations and
directions for future work.

• Some appendices (A to D) are provided to support the contents pre-
sented in the evaluation chapter, such as scripts tested during the op-
erations, logs fragments and execution timelines.

3

Chapter 2

Background

In this chapter we present the necessary material for a better understanding
of the subject issued in this thesis. We introduce the Laboratório de Sis-
temas e Tecnologia Subaquática in Section 2.1, describing the currently used
systems and most relevant software of the laboratory toolchain. We continue
with the description of some operating scenarios for autonomous vehicles in
Section 2.2. Afterwards, in Section 2.3, we present the NVL language that
demonstrates the previous efforts made to issue the problem addressed in this
thesis. In Section 2.4 we present some implementations used to model robots
operations which includes some DSLs. We finished with a brief description of
the Groovy language in Section 2.5, in which Dolphin DSL was constructed.

2.1 Laboratório de Sistemas e Tecnologia Sub-

aquática

LSTS has been working in the design and construction of unmanned ocean
and air vehicles along with support systems and software for their operations,
including not only the software and communication protocols used by the
unmanned vehicles but also console software that allows human operators to
supervise and interact with such systems.
In this section we review some of the work developed in LSTS relevant to this
thesis which includes the currently used vehicles, the manta communication
support system and the main components of the LSTS software toolchain
(Neptus-IMC-Dune).

4

Figure 2.1: LSTS systems scenario.

2.1.1 Autonomous Vehicles

In this section we describe some of the systems currently used at LSTS for a
better understanding of the missions and operational scenarios described at
the section 2.2 and in the results at the chapter 5. To do so we presented a
table with some of the most relevant specifications of the vehicles, explaining
their operation mode. Notice that LSTS has developed other systems but
they are not part in the actual operational scenario. All the vehicles are made
with modular components which facilitates their construction, maintenance
and operation [9].

LAUV

These man-portable vehicles are the most used systems at LSTS, which can
endure up to 24 hours while travelling at 3 knots. In the table 2.1 we pre-
sented some characteristics these LAUVs. All of them have support for wire-
less communication via WIFI, GSM and acoustic modulation between com-
patible modems installed either in other vehicles or in the Manta gateway
(Section 2.1.1). In addition, some LAUVs have support for communication
via satellite with an Iridium antenna as we can see in the hardware configu-
ration column on the table 2.1 bellow. These vehicles can be configured with
additional sensors, considered as payload.
In terms of navigation, LAUV vehicles can use GPS whenever they are at
the surface but need to use alternative sensors when they are underwater.
Bottom-mapping LAUVs usually use an Inertial Navigation System (INS)

5

Figure 2.2: LAUV model.

composed by a compass, accelerometers and gyroscope as well as a Doppler
Velocity Log (DVL) acoustic sensor that measures the vehicle velocity in
relation to the bottom. Oceanographic LAUVs usually do not have DVL
and use a much cheaper MEMS-based INS system as they do not require
high navigation accuracy. Another additional configuration common to all
LAUVs is a secondary CPU that, in the case of the lauv-noptilus-3, is used
for the camera. Environmental payload to measure turbidity, pH, crude oil
or chlorophyll can also be configured (one at the time) in the front of the
nose section of the vehicles (Figure 2.2).

UAV

LSTS has being using several different UAV model types along the years.
In recent deployments, LSTS UAV fleet has been composed mainly by two
UAV types: X8 which is a fixed wing UAV (plane Figure 2.3) and the Mariner
(copter-style Figure 2.4). These UAVs have a shorter autonomy ranging from
20 minutes of operation up to 50 minutes (table 2.2), having low produc-
tion costs since they use several commercially available off-the-shelf (COTS)

6

Table 2.1: LSTS LAUV Specification.

Vehicle
Length
(cm)

Width
(cm)

Max Depth
(m)

Hardware Configuration

lauv-arpao 137 30 100 Iridium

lauv-noptilus-1 197 30 50
CTD, DVL,

IMU, Multibeam,
Sidescan

lauv-noptilus-2 193 30 50
DVL, Echo Sounder,

IMU, Sidescan,
Sound Velocity Sensor

lauv-noptilus-3 185 30 50

Camera, DVL,
Multibeam, Echo Sounder,

IMU, Sidescan,
Sound Velocity Sensor

lauv-xplore-1 184 30 60
CTD, Iridium, WET

Probes
lauv-xplore-2 200 30 60 Iridium, WET Probes

lauv-xtreme-2 205 30 100
DVL, Iridium,

Sidescan,
Sound Velocity Sensor

7

components such as the frame and the autopilot (Pixhawk). Their payload
includes high-resolution recording and streaming cameras used for mapping
or surveillance and with Wi-Fi range up to 30 kms which allows the usage of
this vehicles as a network extension (data mules).

Figure 2.3: UAV X8. Figure 2.4: UAV Mariner.

Table 2.2: LSTS UAV Specification

Vehicle
Length
(cm)

Width
(cm)

Endurance
Max Altitude

(m)
Mariner 55 55 20 min 1000

X8 60 212 50 min at 17 m/s 600

Manta Communications Gateway

The Manta (Figure 2.5) is a communication gateway that allows communi-
cation between software modules at the operational station and the vehicles.
The communication is made via WIFI/3G/Iridium or acoustic. It allows
communication between different means such as underwater, surface and air,
forwarding messages to the nodes connected to them. As an example, when
the vehicles are submerged, they can send data via an acoustic modem which
is received in a similar one connected to the Manta that converts the received
data to UDP datagrams to be disseminated in the network. This happens
when a vehicle sends an acoustic report which includes minimal information,
having the Manta to convert it to an IMC message, filling some parameters,
so it can now be understood by the other nodes.

8

Figure 2.5: Manta Communications Gateway.

2.1.2 Software

As we mentioned before, LSTS has been developing open-source software1 [25]
that supports the vehicles operation. We describe bellow some of the LSTS
software toolchain modules that somehow interacts with the implementation
made for this thesis: the IMC communication protocol, the Neptus com-
mand and control software and the software running onboard of the vehicles,
DUNE.

IMC

The IMC (Inter-Module Communication [16]) is the communication protocol
for vehicles and sensors networks based on messages. It is used in all the sys-
tems at LSTS ensuring interoperability between heterogeneous components,
such as the vehicle-to-vehicle communication or even internally between dif-
ferent components from the vehicle. The protocol message set is defined in
XML and it can be parsed in order to generate bindings for Java, C++ and
Python.

There are different types of messages (Figure 2.6), matching the levels of
control and capabilities of the vehicles:

• Mission Control Messages that allows the definition of a mission
(graph of maneuvers) life cycle.

• Vehicle’s Control Messages allows the interaction with the vehicle,

1LSTS software toolchain is available in http://github.com/LSTS

9

http://github.com/LSTS

Figure 2.6: IMC messages flow from IMC.

typically used in external sources or supervisor modules. It can be
used to command or monitor vehicle’s execution. An example of the
subscription to this type of messages can be found in the Figure 2.1.2,

• Maneuver Messages are used to define maneuvers and also actions
and states associated to their execution. As an example, in the Fig-
ure 2.1.2, we present an extract of Java code to create a plan start
request with two Goto maneuvers. We can notice that both maneu-
vers, which are an IMC message type, are embedded in a plan speci-
fication message that is used as an argument in the PlanControl type
exemplifying the message inlining in IMC.

• Guidance Messages defines the vehicles parameters such heading,
depth and velocity in each step.

• Navigational Messages reports the vehicle’s relative navigational
state.

• Sensor Messages reports the data collected by the sensors.

• Actuators Messages defines the interaction with the actuators hard-
ware controller which can be used in the vehicle’s guidance.

10

1 p u b l i c c l a s s Mes s ageL i s t en i ng {
2

3 @Consume
4 p u b l i c vo i d onState (E s t ima t edS ta t e s t a t e) {
5

6 System . out . p r i n t l n (” Rece i v ed Est imated S ta t e from ”+
7 s t a t e . getSourceName ()+” : ”) ;
8

9 System . out . p r i n t l n (s t a t e . getX ()+” , ”+
10 s t a t e . getY ()+” , ”+s t a t e . getZ ()) ;
11 }
12

13 @Consume
14 p u b l i c vo i d onAnnounce (Announce ann) {
15 System . out . p r i n t l n (” Rece i v ed Announce from ”+
16 ann . getSourceName ()) ;
17 }
18

19 p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s) {
20 IMCProtocol p r o t o c o l = new IMCProtocol (6 006) ;
21 p r o t o c o l . r e g i s t e r (new Mes s ageL i s t en i ng ()) ;
22 t r y {
23 Thread . s l e e p (100000) ;
24 }
25 ca tch (Excep t i on e) {
26 e . p r i n t S t a c kT r a c e () ;
27 }
28 }
29 }

Figure 2.7: Example of Message Listening in Java implementation of IMC
from github.com/LSTS/imcjava/

DUNE

The DUNE (DUNE Uniform Navigational Environment [25]) is the onboard
software used in the vehicles, Manta and oceanographic buoy. The soft-
ware is written in C++, requiring only the standard library of the language
which allows the portability to different operating systems (Linux, Windows,
SunOS) and CPU architectures (ex. x86, ARM,Sum SPARC) to real-time

11

github.com/LSTS/imcjava/

1 // Crea te goto maneuver
2 Goto gt = new Goto ()
3 . s e t L a t (Math . toRad ians (41))
4 . s e tLon (Math . toRad ians (−8))
5 . s e tZ (2)
6 . s e tZUn i t s (ZUni t s .DEPTH)
7 . s e tSpeed (1000)
8 . s e tSpe edUn i t s (SpeedUn i t s .RPM) ;
9

10 // Crea te ano the r goto maneuver based on p r e v i o u s one
11 Goto gt2 = new Goto (gt)
12 . s e t L a t (Math . toRad ians (4 1 . 0 0 0 1)) ;
13

14 // Crea te a p l an s t a r t r e q u e s t w i th the 2 maneuvers
15 P lanCon t r o l cmd = new P lanCon t r o l () ;
16 cmd . s e tArg (P l a n U t i l i t i e s . c r e a t eP l a n (p l an Id , gt , gt2)) ;
17 cmd . setOp (OP.START) ;
18 cmd . s e tR equ e s t I d (1) ;
19 cmd . setType (TYPE.REQUEST) ;

Figure 2.8: Example of Plan start request in Java implementation of IMC
from github.com/LSTS/imcjava/

tasks programming. DUNE is divided in tasks that represents different mod-
ules according to the associated layer of control, sensor, actuator, monitors,
supervisors or communication interfaces. Each DUNE task is executed con-
currently and in a modular way communicating with each other using the
publish/subscriber pattern [24]. The tasks exchange information with each
other using IMC through a message bus which is illustrated in the Figure 2.9.
DUNE also has support for a simulation mode allowing the users to test
their experiments or reproduce an mission prior to the deployment on real
autonomous vehicles.

Neptus

Neptus is the command and control open-source software developed in LSTS
that is used in multiple phases of the autonomous vehicles operation as [25]:

• Mission Planning (console in Figure 2.10) phase can be done before
the actual mission, where the operators have the ability to configure or

12

github.com/LSTS/imcjava/

Figure 2.9: DUNE: tasks and message bus from [25].

create a console defining the operational area in the map and projecting
the plans that can be saved on the console for future use. The plans
specification is done visually allowing the users to edit each maneuver
and its parameters along with payload definition according to the target
vehicles. Besides the map and plan configurations, the users can also
configure some vehicles parameters such as the frequency of the acoustic
reports or operational limits.

• Execution and Monitoring is made in real-time during the missions
allowing users to intervene in order to start, stop/abort or adjust the
plans being executed even while the vehicles are underwater, by using
acoustic communications.

• Mission Review and Analysis (Neptus MRA console in Figure 2.11)
happens after the missions, being used to visualize the data collected or
generated during vehicles operation. This feature gathers and presents
vehicles logged data, having also support for mission replay. The infor-
mation is presented in different customizable plots and reports being
able merge them to other vehicles logs and even export them to different
formats.

The software is written in Java which allows its portability to differ-
ent operating systems, having an easy to extend architecture through plug-
ins development. The plug-ins are dynamically included in the software li-
braries [24], allowing the addiction of new features both in the planning/ex-

13

ecution console and in the mission review and analysis console. These new
features can be selected configuring the consoles, allowing the users to shape
them according to their needs. As the other systems in LSTS, Neptus also
uses IMC to communicate with the other nodes in the network having a
manager to mediate the protocol usage.

Figure 2.10: Neptus - Command, control and vehicles monitoring console.

2.2 Operational Scenarios

In this section we describe some operational scenarios, some of them con-
templated by LSTS, which these autonomous vehicles are used to a better
understating of some examples in the upcoming sections/chapters2.

2.2.1 Tracking

In tracking we can identify two scenarios, both involving AUVs: one of them
is made iteratively according to the water parameters collected and the other

2Concrete mission descriptions of LSTS operation scenarios are also presented in Chap-
ter 5.

14

Figure 2.11: Neptus - data visualization and analysis.

is more spaced in time since the vehicles movement dependent on volatile
entities.

Plume Tracking

This scenario requires only AUVs which perform samples searching for envi-
ronmental disturbance (coastal fronts, pollution, etc). Multiple AUVs can be
deployed, in a pre-defined region, to map this disturbance moving iteratively
according to a certain criteria that adjusts their movement. Each vehicle
has a region to map per iteration making environmental measurements and
following a defined gradient to determine local maximum and minimum. To
make these measurements, the vehicles are equipped with temperature [3],
redox, salinity, chlorophyll and/or turbidity sensors attempting to infer the
pollution source (or any other distinct water property).
Currently, LSTS has been doing missions to track the Douro river plume and
detect their front involving two AUVs equipped with environmental sensors.

15

Fish Tracking

In this case the objective is to track one or more marine species identifying
them in different ways. In 2014 LSTS tested the detection and tracking of
sunfishes marked with tags that sent the current location by satellite when-
ever they were at surface [26]. After the fishes are detected, both AUVs and
UAVs were sent to the location to survey the environment surrounding them.
An alternative way to detect the targets evolve the usage of acoustic transduc-
ers in the tags along with one or more AUVs, measuring the distance to the
target from different positions. This method would allow the triangulation
of the transducers position [19]. After detecting the position, the vehicle(s)
follow(s) it, switching between moving in their direction and detecting a new
transducer position.

2.2.2 Data Muling

A data muling scenario appears with the necessity to transfer data between
different locations (normally remote ones). A possible scenario is the trans-
mission of data to operators located in a base station [7] for processing and
interpretation, required to defined the next step or task in a mission. This
scenario involves vehicles with two distinct roles, being one group responsi-
ble for the data collection, and the other responsible for transmission of the
collected data.
For example, in the sunfish tracking scenario previously described [26], UAVs
were also used as “data mules”. Another example, using UAVs, is referred
in [14] and described in section 2.3, being revised in chapter 5, where we
recreated this scenario in two similar approaches with Dolphin scripts. In
this scenario the UAV performs a rendezvous sequentially with the AUVs,
collecting the data from them.

2.2.3 Mapping

In a mapping scenario an area (typically polygonal) of interest is mapped
autonomously by vehicles normally equipped with proper sensors to generate
images when their data are processed. An example of mapping using sonar
sensors can be found in Figure 2.12, where an AUV measures the sea bed
bathymetry using a multibeam sonar and the geomorphology of the bottom
using a sidescan sonar. This type of sensors can scan laterally the bottom of

16

Figure 2.12: Bathymetry data rendered in Neptus MRA from [25]

the sea/river around 50 meters of distance from the vehicles, being necessary
to move them in order to map the whole area of interest. To do so, this area
can be divided to multiple vehicles so that their trajectory covers totally the
area of interest.
UAVs can also be deployed in mapping scenarios [18], being able to cover a
larger area using photogrammetry. These vehicles are equipped with payload
to allow image acquisition and geo-referencing used for 3D reconstruction
based on the image orientation and the camera calibration parameters.

2.2.4 Patrolling

In patrolling scenarios, an area of interest is also defined (e.g. a border), re-
quiring periodic coverage normally performed by more than one autonomous
vehicles. If the surveillance is continuous, it has to support vehicle replace-
ment in order to recharge or in case of error.
As an example, the Portuguese coast surveillance is made by manned fighter
jets that could be replaced by multiple UAVs in the future that could lead

17

to a drastic decreasement of costs.

2.3 NVL Language

The Networked Vehicles Language was developed to coordinate multiple ve-
hicles, having their initial prototype been described in [15, 14, 28]. In this
section we review the language architecture, implementation and expressive-
ness discussing some limitations and improvements that can be done, some
of them addressed in this thesis.

2.3.1 Expressiveness

In a NVL program we are able to globally coordinate vehicles selected in
the network, allocating tasks to be executed by them. The base primitive of
the language allows the allocation of one task to one or more vehicles with
an associated time interval. It has other primitives which gives support to
sequential, concurrent, control flow and time restrictions in a program. To
ilustrate NVL’s expressiveness we can look into an example on Figure 2.13
from [14]. It addresses a data mulling scenario where there is data collection
by AUVs3 followed by a sequential rendezvous between an UAV and each
AUV. We can notice the main procedure where the program execution starts
having some auxiliary procedures (rendezvous in line 32) and declarations
(tasks definitions). The spacial distribution of the tasks and the execution
flow are shown in the Figures 2.14 and 2.15 respectively.
The program in Figure 2.13 begins with tasks declarations which specification
were defined outside the program, defining three survey areas (area 1, area 2
and area 3) and a cooperative rendezvous task (RV, lines 5-6). The vehicles
selection is made inside the main procedure with the select instruction (lines
10-11) with an associated time limit of 5 minutes. The instruction step (line
14), inside the then block makes the execution of the surveys concurrently
also with a time constraint, this time for 60 minutes. Concluded the surveys
tasks, the UAV is selected with 5 minutes time limit (line 20) to perform the
three rendezvous tasks sequentially (lines 24-26). The rendezvous is defined
in a procedure (lines 32-38) where an UAV collects data from one AUV at
the time in 15 minutes cycles having the step primitive to activate the RV
task.

3Also denoted as UUV in the program in Figure 2.13.

18

1// Task d e c l a r a t i o n s
2task a r e a 1 (v e h i c l e uuv) ;
3task a r e a 2 (v e h i c l e uuv) ;
4task a r e a 3 (v e h i c l e uuv) ;
5task RV (v e h i c l e uav , v e h i c l e uuv)
6y i e l d s done , moreData ;
7// Main p rocedu r e
8proc main () {
9// S e l e c t UUVs .
10s e l e c t 5 m {
11uuv1 uuv2 uuv3 (type : ”UUV”)
12} then {
13// Execute samp l ing t a s k s .
14s t e p 60 m {
15a r e a 1 (uuv1)
16a r e a 2 (uuv2)
17a r e a 3 (uuv3)
18}
19// S e l e c t UAV.
20s e l e c t 5 m {
21uav (type : ”UAV”)
22} then {
23// Execute r endezvous t a s k s .
24c a l l r endezvous (uav , uuv1)
25c a l l r endezvous (uav , uuv2)
26c a l l r endezvous (uav , uuv3)
27message ”done”
28}
29}
30}
31// Rendezvous e x e c u t i o n
32proc r endezvous (v e h i c l e uav , v e h i c l e uuv) {
33do {
34s t e p 15 m {
35r vRes = RV(uav , uuv)
36}
37}
38wh i l e (rvRes = moreData)
39}

Figure 2.13: Programa NVL retirado de [14]

19

In the Figure 2.16 we can see a possible execution timeline of the program
described above.We can see that the surveys tasks have to be done in one
hour and the rendezvous is performed after that time even if they finish early.
We can also note that the rendezvous are performed in a strict order: uuv1,
folowed by uuv2 and then uuv3.

area_1 area_2 area_3

RV RV RV

Figure 2.14: NVL program example - spacial distribution.

area_1

area_2

uuv3 area_3

uuv2

uuv1
RV

RV

RV

Figure 2.15: NVL program example - task flow.

area_1

area_2

area_3

uuv1 RV

uuv2

uuv3

RV

RV RV

RV

uav RV

select step select step step step

< 5m < 60 m < 5 m < 15 m < 15 m < 15 m

 network
delay

RV

RV

< 15 m

step

Figure 2.16: NVL program execution.

20

2.3.2 Architecture

in the execution of a step instruction. Regarding the rendezvous
stage, the figure illustrates that the rendezvous procedure may fire
the RV task more than once (shown for uuv1/uav).
Vehicle selection criteria. In the example program, the class of ve-
hicles is the single selection criterium: type: "UUV" (Fig. 2, line 11)
and type: "UAV" (21). Thus, any UUVs and UAV available in the
network can be selected by the program. NVL supports comple-
mentary selection criteria to attend to specific requirements of spa-
tial locality, vehicle payload, or a non-anonymous choice of vehi-
cle. For instance,

select . . . {
uav (type : "UAV" , i d : " eagle_1 " ,

area : (41.1830 , �8.7000, 1 . 0) ,
hasPayload : "Camera")

} then { . . . }
tries to select an UAV named eagle_1, located within a 1 km range
of latitude-longitude coordinates 41.1830 N 8.7 W, and with an
onboard camera as part of the payload.
Error handling. NVL supports or instruction blocks that are exe-
cuted in case of failure during the execution of select and step. The
general syntax is as follows: select ... then ... or { < instr>⇤ }
and step ... { ... } or { < instr>⇤ }. An or { exit } block is as-
sumed as default for both select and step. The exit instruction
releases all previously selected vehicles by the program from duty
and ends execution. Since the example program defined no or
blocks, it will then end execution if any of the select or step in-
structions fail. To handle an error due to the first select in the
example program, an or block could be used:

select . . .
then { . . . }
or {

delay 1h
continue main

}
In the variation above, the or block employs a delay instruction to
pause execution for one hour, and a continue instruction to subse-
quently restart executing the main procedure.

3. IMPLEMENTATION
Architecture. The architecture of the current NVL implementa-
tion is depicted in Fig. 4. Specific to NVL, there are three soft-
ware components: an integrated development environment (IDE)
for writing and validating NVL programs, a language interpreter
that executes programs, and NVL supervisors that run onboard un-
manned vehicles on behalf of program execution. The architecture
also employs three other components from the open-source soft-
ware toolchain for unmanned vehicles developed at Laboratório de
Sistemas e Tecnologia Subaquática (LSTS), described in [16] and
available from http://github.com/LSTS: DUNE is the system used
to program the onboard software of unmanned vehicles; Neptus
is a command-and-control system for human operators to config-
ure, plan, and monitor unmanned vehicles using GUI consoles; and
IMC is an extensible message-based protocol for networked inter-
operability.

NVL
IDE

NVL
interpreter

NVL supervisor

 DUNE

 Neptus

Network

NVL supervisor

 DUNE

Figure 4: Implementation architecture

NVL IDE. The NVL IDE is employed by a user to write and val-
idate a program within the popular Eclipse environment for soft-
ware development. The tool is developed using Xtext [2], an open-
source toolkit for implementing domain-specific languages. Xtext
provides convenient support for typical tasks in language design
and implementation, such as the definition of the language gram-
mar or semantic validation.
Execution environment. The execution of a program comprises
the interaction between the interpreter and the supervisors onboard
each NVL-enabled vehicle. The code of both these components
is written in Java, and executes using the low-footprint Java SE
Embedded runtime environment. Supervisors attend to the inter-
preter’s orders for task execution, and report back related state,
mediating access to the local DUNE instance that directly controls
the vehicle. Supervisors also launch controllers for tasks (that run
within the supervisor) to interface with that DUNE instance. When
cooperative tasks are at stake (like the rendezvous in our running
example), controllers in distinct vehicles also interact among them-
selves through supervisor-to-supervisor communication. The Nep-
tus system is used to design maneuver plans triggered by task con-
trollers and to monitor the progress of these plans during execution.
All communication between components in this environment takes
form through IMC messages transmitted over the network.

4. EXPERIMENTS
Simulation of the example program. To simulate the execution
of NVL programs, the software architecture described previously
can be configured to use physical simulation engines within DUNE
in place of actual vehicles [16]. Using this setup, we ran our ex-
ample program at the simulated physical location of the Leixões
harbour near Porto, where we also conducted subsequent field tests
described below. Data sampling tasks were defined by row-pattern
maneuver plans designed using Neptus. These plans were fired di-
rectly by NVL supervisors to DUNE instances. For the rendezvous
tasks, we also employed maneuver plans that were fired by ren-
dezvous controllers running within the NVL supervisors. Fig. 5

(a) Data sampling stage

(b) Rendezvous stage

Figure 5: Example scenario – simulation plots

333
Figure 2.17: NVL Architecture.

The language prototype architecture is illustrated in the Figure 2.17 which
is formed by the following components:

• NVL editor where a NVL program can be edited in the Eclipse IDE
using a plug-in that implemented the Xtext framework for DSLs. This
plug-in allowed the edition and validation of programs in a user friendly
way.

• NVL Interpreter which executes a validated NVL program and com-
municates with supervisors modules running onboard of the vehicles.

• NVL Supervisor that mediates the access to the vehicles, answering to
requests from the interpreter and interacting with DUNE instances to
make these requested tasks be accomplished locally.

• Neptus can be used by operators to define the tasks as IMC plan spec-
ifications that can also be sent to vehicles in the console.

21

2.4 Related Work

Contrasting general purpose language, DSLs are implemented to model a
specific problem/domain. The level of abstraction of a DSL should be as
the same level as the level of abstraction in the problem [11]. Domain Spe-
cific Languages (DSL) can be qualified as internal or external, taken into
account the way they are implemented. External DSLs are almost seen as
new languages since they require the implementation of processes like parsers
and runtime/interpreter. The semantics and syntax depends on the level of
complexity deployed in the language implementation. In the other hand,
internal DSLs (also known as embedded DSLs) take advantage of existing
languages to implement their semantics. The syntax can be limited to the
host language available infrastructure. Java Virtual Machine (JVM) lan-
guages presents features that make them good candidates to host internal
DSLs (described in [11]), besides the portability to different architecture of-
fered by the platform.
We present in this section some DSLs for robots, focusing on the ones that
were designed or tested with autonomous vehicles being aerial, surface, un-
derwater or even ground (see Section 2.4.2).

2.4.1 Common Control Language

Common Control Language (CCL) is a language for distributed problem
solving and can be deployed to control multiple autonomous unmanned ve-
hicles [8]. The initial objectives of the language were to standardize the com-
munication between the different agents and support the interaction between
operators and machine [6]. The language is composed by an onboard inter-
preter that receives tasks defined in CCL and translates them to processes
directives. These directives are instantiated with the Distributed Control
Environment (DICE) which was also implemented in the vehicles to main-
tain the processes. CCL messages are reduced to a few bytes due to acous-
tics communications typical in AUVs operations in which the language was
tested.

2.4.2 Buzz

Buzz is a programming language for robot swarms [23]. It has support for
single-robot with data exchange between neighbours and swarm-based prim-

22

itives with global information sharing within a swarm. Buzz Virtual Machine
(BVM) was written in C language and the language runtime platform can be
placed on top of Robot Operating Systems frameworks, being easily extended
with new primitives according to the underlying system capabilities/features.
In Figure 2.18 we presented a buzz program adapted from [23]. There are
three different swarms: ground one grouping by wheels symbol (line 8), an-
other grouped by grip symbol (line 11) and the last one resulting from the
intersection of the two (line 13). In the program there is also task definition
and execution (lines 5 and 14 respectively).

1 # Group i d e n t i f i e r s
2 GROUND = 2
3 GRIPPERS = 4
4

5 # Task f o r ground−based g r i p p e r r o bo t s
6 f u n c t i o n g r o u n d g r i p p e r t a s k () { . . . }
7

8 # Create swarm o f r obo t s w i th ’ s e t whe e l s ’ symbol
9 ground = swarm . c r e a t e (GROUND)

10 ground . s e l e c t (s e t w h e e l s)
11

12 # Create swarm o f r obo t s w i th ’ g r i p ’ symbol
13 g r i p p e r s = swarm . c r e a t e (GRIPPERS)
14 g r i p p e r s . s e l e c t (g r i p)
15

16 # Ass i gn task to ground−based g r i p p e r r o bo t s
17 g r o u n d g r i p p e r s = swarm . i n t e r s e c t i o n (GROUND + GRIPPERS , ground , g r i p p e r s)
18 g r o u n d g r i p p e r s . exec (g r o u n d g r i p p e r t a s k)

Figure 2.18: Buzz example program adapted from [23]

2.4.3 BigActors

BigActors is a hybrid model that combines the actors models and bi-graphs
to model structure-aware computations in time and space [20]. This model
is used to manage and control heterogeneous mobile robot systems, being
the actors the computing agents capable of sending asynchronous messages.
These actors are embedded in a spacial environment modelled as bi-graphs

23

that specifies machines locations and connectivity. BigActors model is im-
plemented in BigActors programming language which is a DSL embedded in
Scala. The DSL is an extension of the Scala Actor Library with BigActors
commands and implicit conversions to support the syntax [21]. The lan-
guage provides the means for actors to migrate, control and observe over the
world structure modelled in bi-graph. BigActors programs interacts with a
Logical-Space Execution Engine (LSEE) which executes upon Robot Operat-
ing Systems middleware allowing the interaction with the physical space [22].

2.4.4 Planning Domain Definition Language

Planning Domain Definition Language(PDDL [17]) is general language to
specify domains and planning problems. The language syntax includes func-
tions, predicates, actions and objectives that can be used to define effects,
objects, pre and post conditions. PDDL has been extended to support tem-
poral and numerical properties of the domains for planning [10]. The fact
that it combines problems descriptions with domains allows planning in-
dependence being able to specify different problems for the same domain
definition, each one corresponding to different planning problem.
In recent work developed in LSTS [4], PDDL was used to express planning
problems presented in the example in Figure 2.19. Tasks specifications de-
fined by operators through Neptus and they were automatically translated
to PDDL. A planning module generated plans that were sent to vehicles in
case the restrictions specified in PDDL were feasible.

2.4.5 Comparison

We can divide the presented DSLs in groups according to their level of ex-
pressiveness and propose. We have low level and concise languages which
the main concern are the communication means characteristics (error prone
and low bandwidth), generally acoustic. Theses languages are normally used
with underwater and surface vehicles functioning almost as communication
protocols such as the CCL DSL.
In the other hand we have more flexible languages with concerns at level of
coordination and planning of the vehicles operations using communication
protocols libraries associated to the vehicles systems. Buzz, BigActors Scala
DSL, NVL and PDDL can fit into this category, besides the differences in
the level of abstraction.

24

(:durative-action sample

:parameters (?v - vehicle ?l - location

?t -task ?o - phenomenon ?p - payload)

:duration (= ?duration 60)

:condition (and (over all (at-phen ?o ?l))

(over all (task ?t ?o ?p))

(over all (at ?v ?l))

(over all (having ?p ?v))

(at start (>= (battery-level ?v)

(* (battery-use ?p) 60))))

:effect (and (at end (sampled ?t ?v))

(at start (decrease (battery-level ?v)

(* (battery-use ?p) 60)))))

Figure 2.19: PDDL specification from [4].

2.5 Groovy

Groovy was the main tool used in the implementation of Dolphin. Therefore
we describe the language, highlighting some of its features [5] that were some-
how used in the implementation or relevant for understanding this program-
ming language. It is a dynamic language for the Java platform, being part of
the range of languages that use the Java Virtual Machine (JVM) which works
on different hardware architectures providing portability to these languages.

2.5.1 Features

• Closures - in Groovy a Closure is a fragment of code whose variables
can or cannot be bind, represented between braces and they can be
assigned to a variable. It origins from lambda calculus theory which is
the foundations for functional programming.

• Operators overloading - there are a range of operators that can be
implemented defining behaviour

• Optional typing - we have the choose to declare variable types or let
the work to be done when the code is evaluated, in the last case making

25

Figure 2.20: Groovy architecture in the Java platform from [13]

the code less verbose.

• Flexible syntax - this feature allows programmers to write code seen as
“syntactic sugar” to strict Java syntax making it easier to understand.
An example of this can be found in function calls where there is no
need to add parenthesis if there is at least one argument. Moreover,
Java code syntax is also well-formed Groovy code.

• MetaClass - this is one of Groovy metaprogramming features which al-
lows the addition of methods and properties to native types as Number
or Strings, or newly defined types and also allows adding behaviour to
classes defined elsewhere easily.

These are some of the language characteristics that can be customized, creat-
ing intuitive programs which makes the language suitable for implementing
DSLs.
An example of a Groovy DLS is the Gradle build system, which is written
in Groovy and Java due to the project dimensions [13]. It can be a shorter
and easier way to compile projects, allowing definition of tasks and param-
eters dependencies, repositories or versions compatibility . In Figure 2.21
we present a basic Gradle script where we can notice Groovy capabilities for
scripting. In the script, source and test directory are defined (lines 7-9 and
lines 10-13 respectively), specifying a different project structure (not strict as
Maven). It is also defined dependencies including all jar files from a specific
directory(lines 2-4).

26

1 app l y p l u g i n : ’ j a v a ’
2 dependenc i e s {
3 comp i l e f i l e T r e e (d i r : ’ l i b s ’ , i n c l u d e : ’ ∗ . j a r ’)
4 }
5 s o u r c eS e t s {
6 main {
7 j a v a {
8 s r cD i r ’ s r c ’ }
9 }

10 t e s t {
11 j a v a {
12 s r cD i r ’ t e s t ’ }
13 }
14 }

Figure 2.21: Example of a Gradle file

27

Chapter 3

The Dolphin Language

In this chapter we describe the Dolphin language, and associated develop-
ments in support of Dolphin, the IMC DSL and the Neptus Groovy plugin.
We present Dolphin by providing an overview (Section 3.1), followed by a
more detailed explanation of the language features in detail (Section 3.2). We
then discuss the functionality of the IMC DSL (Section 3.3) and the Neptus
Groovy plugin (Section 3.4).

Figure 3.1: Dolphin Architecture Overview.

28

3.1 Overview

Dolphin is a domain specific language to coordinate autonomous vehicles
networks using the LSTS toolchain to interact with these heterogeneous sys-
tems. The coordination includes commanding and monitoring the execution
of tasks in multiple vehicles, alongside with tasks definition and their alloca-
tion to selected vehicles.

3.1.1 Architecture

The integration with LSTS toolchain made possible to abstract the lower
level of the network systems, in particular the interaction with autonomous
vehicles, specifying their behaviour through a common communication pro-
tocol which is understood by all nodes. Dolphin architecture overview is

Figure 3.2: Dolphin plug-in in Neptus.

shown in Figure 3.1 where we can identify three main sections:

1. Dolphin programs can be edited and executed within Neptus, as illus-
trated in Figure 3.2 which shows Neptus console interface that includes
the Dolphin script editor. The figure depicts the use of the Dolphin
plugin for edition and execution of programs (shown right), integrated
with other Neptus functionality such as IMC plan definition (shown
left).

29

2. Dolphin programs trigger the execution of tasks by autonomous vehi-
cles using the IMC protocol, more specifically through IMC plans that
define a sequence of vehicle maneuvers.

3. IMC plans are executed onboard vehicles using DUNE as usual.

Dolphin works “out-of-the-box” in integration with the LSTS toolchain. For
integration with Neptus, Dolphin support takes form as a self-contained Nep-
tus plugin, and no changes are/were necessary in IMC or DUNE to run
Dolphin programs. Moreover, a “stand-alone runtime” version may be used
independently of Neptus, e.g. from the command line or in integration with
other software.

3.1.2 Example

To provide a glimpse of the Dolphin language, we present an example pro-
gram in Figure 3.3. The program at stake is a variation of the rendez-vous
NVL program (discussed earlier in Section 2.3). The meaning of the program
is as follows:

• The program begins with the selection of three sets of vehicles: uuv1,
uuv2 and uav (lines 2-6 in the script in Figure 3.3). The selection is
made by type defining different requirements for each one of the sets,
except for the second AUV which has to be in a 200 meters radius from
the previously selected AUV.

• The program follows with the definition of a task (lines 9-12) in the
form of an IMC plan, defined using the IMC DSL (Section 3.3). This
IMC plan, keep position specifies a maneuver to keep the vehicles in a
stationary position during 10 minutes (600 seconds).

• The remaining part of the script defines how the execution is made,
assigning explicitly each selected vehicle to composed tasks. Next, the
program expresses the assignment of different tasks to each of the three
vehicles selected earlier, using an execute instruction. The tasks are de-
fined by composing IMC plans, like keep position defined earlier or other
IMC plans just referred by an identifier (assuming they are already de-
fined in Neptus and/or a vehicle), using task composition operators.

30

• In terms of the expressed behavior, it is similar for both of the AUVs.
Each executes a survey (lines 15 and 19), signals the end of the survey
afterwards (lines 16 and 20) and finishes with the execution of the
keep position IMC plan (lines 17 and 21). In turn, The UAV stays idle
waiting for the AUVs to finish their survers. It engages in an individual
rendez-vous with each of the AUVs, as soon as completion signals are
received (in any order) by the AUVs (lines 24 and 25), executing the
plan associated to the finished survey. A possible execution timeline
for the example is illustrated in Figure 3.4.

1 // Veh i c l e ’ s S e l e c t i o n
2 uuv1 = pick { type ’UUV’ }
3 uuv2 = pick { type ’UUV’
4 r e g i o n (pos i t i on uuv1) , 200 . mete r s
5 }
6 uav = pick { type ’UAV’ }
7

8 //Task d e f i n i t i o n
9 k e e p p o s i t i o n = imcPlan {

10 planName ’ k e e p p o s i t i o n ’
11 s k e ep i ng du r a t i o n : 600 .0
12 }
13

14 execute uuv1 :
15 imcPlan (’ su rvey1 ’) >>
16 act ion { post r eady : 1 } >>
17 k e e p p o s i t i o n ,
18 uuv2 :
19 imcPlan (’ su rvey2 ’) >>
20 act ion { post r eady : 2 } >>
21 k e e p p o s i t i o n ,
22 uav :
23 a l lO f {
24 when { consume r eady : 1 } then imcPlan (’ rv1 ’)
25 when { consume r eady : 2 } then imcPlan (’ rv2 ’)
26 }

Figure 3.3: Example script - Rendez-vous scenario

31

Figure 3.4: Execution diagram example in time

3.2 Language features

After introducing the overall expressiveness of Dolphin through an example,
we now explain in more detail the main features the language.

3.2.1 Vehicle Selection

In a Dolphin program, a fundamental aspects is vehicle selection and task
execution. We need to select vehicles for subsequent task execution. For
instance, consider the following simple example:

v1 = pick { type ’UUV’ }
v2 = pick { type ’UAV’ }

The code above express the selection of two vehicles using the pick instruc-
tion. Besides the vehicle type (UUV or UAV), other criteria can additionally be
specified for vehicle selection using pick, as listed in Table 3.1. For instance,
in the previous example of Figure 3.3, we used the region in combination
with type.

32

Table 3.1: Vehicle selection criteria for pick

Method Description Default Example
region Geographical region any region <Location>, 1.km
id Vehicle’s Name any id ’lauv-arpao’

count Number of vehicles 1 count 2
payload Payload Requirement any payload ’Camera’
timeout timeout for vehicle’s selection ∞ timeout 2.minutes
type Type of the vehicle any type ’UUV’

3.2.2 Task allocation and execution

Assuming we have selected vehicles v1 and v2 using pick, we can order the
execution of tasks to each of them using the execute instruction, as follows:

execute v1 : imcPlan (’ waterSurvey ’) ,
v2 : imcPlan (’ a i r Su r v e y ’)

In this code, the tasks are IMC plans that are assumed to be stored in
Neptus (when using the Neptus plugin) or the vehicle (using the stand-alone
runtime). Alternatively, we can use the IMC DSL (Section 3.3) to define the
IMC plans programmatically. For instance, we can have:
execute v1 : imcPlan{

planName ’ waterSurvey ’
. . . // maneuvers
} ,

v2 : imcPlan (’ a i r Su r v e y ’)

Coming back to the original example, we should note also that the code is a
shorthand for:

execute imcPlan (’ waterSurvey ’) [v1] |
imcPlan (’ a i r Su r v e y ’) [v2]

where [] is the operator to allocate tasks to vehicles set and | is the operator
for concurrent execution. Other operators can be used beyond [] and | to
define tasks compositionally, like the >> operator which specifies sequential
execution. We discuss other operators later in the text. For instance:

execute (imcPlan (’ waterSurvey1 ’) >> imcPlan (’ waterSurvey2 ’)) [v1] |
imcPlan (’ a i r Su r v e y ’) [v2]

33

which is equivalent to:

execute v1 : imcPlan (’ waterSurvey1 ’) >> imcPlan (’ waterSurvey2 ’) ,
v2 : imcPlan (’ a i r Su r v e y ’)

Both fragments determine the execution of waterSurvey1 followed by waterSurvey2

at v1 while v2 concurrently executes airSurvey .

Anonymous vehicle allocation

As discussed previously, the [] operator assigns tasks to vehicles explicitly.
The allocation may alternatively be “anonymous”, if we do not use the op-
erator at all. For instance, consider:
execute imcPlan (’ waterSurvey ’) | imcPlan (’ a i r Su r v e y ’)

In this case programmers do not control the allocation, since it is made anony-
mously using any previously selected vehicles. The allocation is in this case
made by the language runtime, that uses the heuristic of allocating vehicles
according to the proximity of their position with the reference position of
the first maneuver in each IMC plan that can be executed. The anonymous
allocation does not take into account the vehicle type since IMC does not
have that kind of information. This limitation could invalidate the example
above since it requires different types of vehicles. If the selected vehicles were
from the same type they could be easily deployed in this type of scenarios.
Another way to made the IMC plans allocation anonymously is:
v e h i c l e s = v1 + v2
Task = imcPlan (’ waterSurvey ’) | imcPlan (’ a i r Su r v e y ’)
execute Task [v e h i c l e s]

Generally, the allocation assigns vehicles sets to tasks that can be simple
IMC plans or their composition. This example demonstrates the operators
used with the vehicle sets where a + b represents union, a & b intersection,
a − b set difference and a | { closure } represents a restriction to the set.

3.2.3 Event-based task operators

As we saw in the previous section, tasks can be used individually or combined
with operators, composing them concurrently:
t1 = imcPlan (’ waterSurvey ’)
t2 = imcPlan (’ a i r Su r v e y ’)

34

Table 3.2: Event-based operators

Type Syntax Restriction
Time
Limit

during { <time>}
run <Task>

Executes the task during
the specified amount of time

Event-Flow
until { <Condition>}

run <Task>
Executes the task until
the <Condition>is satisfied

Event-Flow
waitFor { <Condition>}

then <Task>

Starts the task execution
when the <Condition>
is satisfied

Choice

choose {
when { <Condition>}
then <Task>
when { <Condition>}
then <Task>. . .
}

Executes one of the tasks in a
then block if the corresponding
condition in
the when block is satisfied

Choice

allOf {
when { <Condition>}
then <Task>
when { <Condition>}
then <Task>. . .
}

Executes each task in a
then block in turn as soon as
the corresponding condition in the when block
is satisfied

execute t1 | t2

using | operator, or sequentially using the >> operator:
t1 = imcPlan (’ waterSurvey1 ’)
t2 = imcPlan (’ waterSurvey2 ’)
t3 = imcPlan (’ a i r Su r v e y ’)

execute (t1 >> t2) | t3

This is not the only possible way to define tasks compositionally. Event
flow operators, listed in Table 3.2, can also be defined for more expressive
programs. These operators coordinate task execution according to triggers
that can be time intervals, events or logical predicates.

For instance, event-based operators can be used to express dependence
to a condition, holding execution of another task while a condition is not
satisfied:

35

execute waitFor {
p1 = pos i t i on v1
p2 = pos i t i on v2
p1 . d i s t anceTo p2 > 200 . mete r s

}
then t1

or doing the opposite, that is, running a task up until a certain condition is
satisfied (possibly interrupting the task execution):
execute un t i l {

p1 = pos i t i on v1
p2 = pos i t i on v2
p1 . d i s t anceTo p2 <= 200 . mete r s

}
run t1

The choice operator is made up of when condition then task blocks, caus-
ing only one of the tasks to execute in the then block as soon as the condition
in the corresponding then block is satisfied. Assuming that p1 and p2 are ve-
hicles positions, it can used as follows:

choose {
when { p1 . d i s t anceTo p2 > 200 . mete r s } then t1
when { p1 . d i s t anceTo p2 > 500 . mete r s } then t2
}

The allOf operator in turn, specifies a full set of tasks to be executed when
the correspondent condition is satisfied:
a l lO f {

when { p1 . d i s t anceTo p2 > 200 . mete r s } then t1
when { p1 . d i s t anceTo p2 > 500 . mete r s } then t2

}
In support of event-based behavior, some simple (non-composed) tasks

can be defined:

• an action A to be performed, in particular A may be a post tag:value

action that adds tag: value to a global event queue;

• a condition C to wait for, in particular C may be a condition of the form
consume tag:value that consumes an event from the global event queue,
if one is defined with the specified tag and value;

• idle t where t is an amount of time delays execution for the specified

36

amount of time t;

For instance, these may be used as follows:
execute cond it ion {

p1 = pos i t i on v1
p2 = pos i t i on v2
p1 . d i s t anceTo p2 > 200 . mete r s
} >> act ion { post t r i g g e r : 1 }

3.3 The IMC DSL

The IMC DSL can be used to generate IMC plans programatically. The
IMC DSL can be embedded in Dolphin scripts (as discussed earlier) but
also in scripts programmed using the Neptus Groovy plugin (Section 3.4), or
possibly other contexts (it merely depends on the base IMC library).

3.3.1 Example

We demonstrate the usage of the IMC DSL to define a task in a Dolphin script
in Figure 3.5. In the presented script the built plan specification consists in a
sequence of maneuvers Goto and Loiter (see maneuvers description in 3.3.2).
Global parameters such as the plan name, speed, depth (z) and location
are defined at the beginning, followed by the maneuvers themselves. Each
maneuver uses the current location, speed and z in the plan if they are
not re-defined in the arguments. Payload usage can also be defined in the
arguments as a list as shown in the line 16 of the script. The move method
is an alternative way of define the current location of the plan, and is used
to define the location of the next invoked maneuver (lines 15 and 17 of the
script).

3.3.2 Features

Maneuvers

The following IMC maneuvers [24] are supported by the IMC DSL:

• Goto: Go to a specified location (waypoint), finishing the maneuver
upon arrival.

37

1 // Pick an UUV
2

3 APDL = l o ca t ion 41 .18456 , −8.70590
4 v = pick {
5 type ’UUV’
6 r e g i o n APDL, 2 .km
7 i d ’ l auv−n op t i l u s −3’
8 }
9 // IMC p lan d e f i n e d p r o g r ama t i c a l l y

10 t2 = imcPlan {
11 planName ’ waterSurvey ’
12 speed 1 . 5 , Speed . Un i t s .METERS PS
13 z 0 . 0 , Z . Un i t s .DEPTH
14 l o c a t e Loca t i on .APDL
15 move 30 ,−125
16 goTo pay load : [[name : Camera]]
17 move (−30 ,−50)
18 l o i t e r ()
19 }
20 execute v : t2

Figure 3.5: Building an IMC plan specification in a Dolphin script.

• Loiter: Go to a location and stay there moving around the waypoint
in a specified vertical reference and with a defined radius during the
specified amount of time.

• Station Keeping - Go to a location and stay at surface for a defined
amount of time.

• Launch: Go to a certain location after detecting that the vehicle is in
the water.

• YoYo: Similar to Goto but in this case traversing the water column
between two defined depths (yo-yo or saw-tooth pattern).

• Popup: Go to the surface at a certain location until the vehicles position
is corrected through GPS in the defined time interval.

• Compass Calibration: The calibration of the compass is normally made
to compensate the variation in the magnetic field at the region which

38

the vehicles operate.

• Rows: Survey longitudinally a rectangular area with a defined horizon-
tal step.

Payload Activation

We are able to define payload requirements for each maneuver of the plan,
activating their usage in the associated actions of the maneuvers (during
calibration phase). Some parameters associated to these payloads could also
be defined in the DSL.
All these features mentioned above result in a single IMC plan specification
according to the current version of the protocol used between the systems.

3.4 The Neptus Groovy Plug-in

Figure 3.6: Groovy Plug-in Overview.

The incorporation of Groovy in Neptus began with a plug-in which was
created to script plans, having access to some defined console information.
The loaded information origins from the current mission being used in Nep-
tus console and is mapped in already defined variables in the scripts and

39

represents all the plans, available vehicles and the points of interest of the
map.
In the plug-in scripts we can manipulate already defined plans or generate
ones using the IMC DSL introduced before in Section 3.3. Normally, this
manipulation is made through the waypoints which can be deployed to cal-
culate distances and to define intermediate waypoints.
In Figure 3.6 we depict the plugin’s overview, illustrating a text editor for
the scripts in which we can use variables that bind to Neptus data (for plans,
vehicles and map markers). The scripts can modify this data, in particular
it may be used to generate new plans.

3.4.1 Example

In Figure 3.7 we present a script written in Groovy that be used in the
plug-in to list the bindings variables data. We print the data related to each
variable by using Groovy’s control flow method: eachWithIndex (lines 3, 9 and
15). This method iterates over collections (maps in this case) in a functional
programming fashion.
All the output generated by the scripts (lines 1, 5, 11 and 17) are redirected
to the plug-in’s console, an output panel located in the bottom of the window
(see Figure 3.6).

3.4.2 Features

Binding Variables

We can access, in the Groovy scripts, binding variables representing some
information in the Neptus console such as:

• Plans associated with the current mission being used in the console.

• Points of Interest that are marks in the current console map.

• Vehicles in service represented in a list and updated during the execu-
tion of the script.

Neptus usage

Besides the explicit information loaded in the script from the current Neptus
console with the bindings variables, existing classes in Neptus source are also

40

1 p r i n t l n ” B ind ing V a r i a b l e s ”
2 i f (v e h i c l e s != n u l l){
3 v e h i c l e s . eachWith Index {
4 v e h i c l e , i nd e x −>
5 p r i n t l n i ndex+” . VEHICLE : ”+v e h i c l e . key
6 }
7 }
8 i f (p l a n s != n u l l){
9 p l a n s . eachWith Index {

10 plan , i nd ex −>
11 p r i n t l n i ndex+” .PLAN: ”+p lan . key
12 }
13 }
14 i f (l o c a t i o n s != n u l l) {
15 l o c a t i o n s . eachWith Index {
16 l o c , i nd ex −>
17 p r i n t l n i ndex+” .LOCATION: ”+l o c . key
18 }
19 }

Figure 3.7: Groovy script to list Neptus console bindings.

used in the Groovy engine. This usage allows taking advantage of the avail-
able tools and features and more classes can be easily added by customizing
the groovy engine used to run the scripts.

Groovy Standard Library

All the expressiveness from the Groovy programming language can be de-
ployed in these scripts which gives more flexibility and possibilities codifying
scripts. In the script in Figure 3.7 we depict such usage in the deployed
methods as println or eachWithIndex mentioned before.

41

Chapter 4

Design and Implementation

In this chapter we describe the Dolphin language implementation. We begin
with the architecture details in Section 4.1, followed by the listing of tools
used in the development of the language in Section 4.2. We present a descrip-
tion of each of the identified components of the core library in Section 4.3.We
proceed with the description of the IMC DSL in Section 4.4, the details of
the language implementation in Neptus (Section 4.5) and in the stand-alone
version (Section 4.6). We finish this chapter presenting the details of the
Groovy plug-in implementation in Section 4.7.

4.1 Architecture

Figure 4.1: Dolphin implementation architecture

In Figure 4.1 we depict the architecture of the language implementation

42

where we can identify the following components:

• The language common runtime that served as the bases for the imple-
mentations made in Neptus and on a stand-alone version.

• The integration with Neptus was made extending the software func-
tionalities by means of a plug-in.

• The stand-alone version was implementing on an IMC protocol runtime,
serving as the language platform.

• The language has native support for IMC plans, represented as tasks,
being capable to generate plans specifications within a script using the
IMC DSL developed.

The main difference between the two versions of the implementation is the
creation and management of the IMC protocol instance. Being in the first
case, handled by a pre-existing Neptus package having to interact with that
API. On the stand-alone version, the creation and usage is all managed in
the Dolphin implementation, increasing the workload.
In the figure is also depicted the complementary work that resulted in the
Groovy plug-in in Neptus. The plug-in is used for scripting existing plans
or generated ones by the IMC DSL embedded, using other users input and
binding information from the Neptus console.

4.2 Development tools

The following tools were used to support the language design and implemen-
tation:

• Groovy and Java programming languages - these two Java plat-
form languages were used in the implementation of Dolphin since one
of the objectives of this thesis was a better integration with LSTS
toolchain, namely Neptus and IMC which are written in Java. This
choice enabled direct integration with the toolchain code. In particu-
lar, Groovy features (described in Section 2.5) were also used in the
DSL design and are described later on this chapter (see Section 4.3.2).

43

• Maven - the code for the core of the language is structured as a Maven1

project, allowing for an automated compilation and deployment pro-
cess.

• IMC Java library - the Java implementation2 of the IMC protocol
is used in the IMC common support of the language and in the stand-
alone version to manage communication.

• RSyntaxTextArea library - is a library3 for a text editor with syntax
highlighting and code folding for Java Swing applications. It is used in
the editor for the Dolphin plug-in in Neptus.

4.3 Core Library

In this section we describe the components of the language core library. This
is the library used in the different language implementations, so it consists
in the foundations for the language usage.

4.3.1 Common Runtime

Engine

The language engine is responsible for running the scripts having only one
instance trough the program execution (corresponding to the singleton pat-
tern). The engine creation requires the definition of an associated platform
in which the language is implemented. The scripts are evaluated through
a shell provided by the Groovy library. The language syntax is loaded into
this shell customizing some compiler parameters as imports or bindings, and
evaluating possible extensions files.
The engine is also responsible for pausing and suspending the script execu-
tion, handling the exceptions and activating the cleaning mechanisms after
the script execution or in case of error. The scripts are executed in a sep-
arated thread having a new environment associated to that execution. The
environment is in charge of the task allocation, bounding the selected vehicles
before the start of the execution.

1Maven build system tool website: http://maven.apache.org
2The IMC Java library is available in https://github.com/LSTS/imcjava.
3RSyntaxTextArea library website: http://bobbylight.github.io/

RSyntaxTextArea/

44

http://maven.apache.org
https://github.com/LSTS/imcjava
http://bobbylight.github.io/RSyntaxTextArea/
http://bobbylight.github.io/RSyntaxTextArea/

Platform

The language platform is required for the engine creation since it is respon-
sible to bind the language runtime to the environment where it is going to
be implemented.
In the platform code fragment presented in Figure 4.2, we can identify the
following binds, which the platform is responsible for:

• Connecting Nodes - does the conversion of the network nodes into
language native nodes, abstracting the way this information is obtained.

• Task - in charge of defining the representation of their particular task
into the language.

• I/O operations - handles the engine output messages and users input
data.

• Language extension - customizes the engine compilers according to
the new functionalities added through the extensions files. It is also
responsible for defining the location where these files are placed into
the host system, loading them for evaluation.

1 p u b l i c i n t e r f a c e P la t fo rm ex t end s Debuggable {
2

3 NodeSet getConnectedNodes () ;
4

5 Plat fo rmTask ge tP la t fo rmTask (S t r i n g i d) ;
6

7 vo i d d i s p l a yMes s age (S t r i n g format , Object . . . a r g s) ;
8

9 vo i d cu s tom i zeGroovyComp i l a t i on (Comp i l e rCon f i g u r a t i o n cc) ;
10

11 L i s t<F i l e> g e t E x t e n s i o n F i l e s () ;
12

13 S t r i n g a s kFo r I npu t (S t r i n g prompt) ;
14 }

Figure 4.2: Code fragment of platform interface in Java

As mentioned before, the platform was implemented via two different
runtimes: in a Neptus plug-in version and in the stand-alone version using

45

IMC as the platform. The details of both versions are described later in
this chapter. The platform interface implementation of these versions is pre-
sented in the UML class diagram on Figure 4.3 generated with ObjectAid [2]
extension in the Eclipse IDE.

Figure 4.3: Platform class diagram

Nodes

The vehicles are currently the only available nodes in the language. Each
vehicle is mapped in a language node having a specific type, payload capabil-
ities, position and an assigned task defined during the allocation. Each node
has an associated connection timeout which is by default 20 seconds and can
be changed by user defining values between 5 seconds to one hour. After
this time is passed, if no information has been reported by the vehicle, the
task associated to it is considered to be failed, entering an error state. The
vehicles are grouped in sets according to the filters defined in their selection
and by using the operators described in Section 3.2.2. These sets can be
explicitly or anonymously used in the task execution.

46

Tasks

The language basic type of tasks are presented in Figure 4.4 (IdleTask, ConditionTask,
PlatformTask and ActionTask). These types mirror the elementary tasks pre-
sented previously in Section 3.2.3 and they can be combined using operators
creating more complex tasks. In terms of composition, these tasks can be ar-
ranged sequentially or concurrently originating respectively SequentialTaskComposition

and ConcurrentTaskComposition type of tasks. The execution of these composed
tasks is made by decomposing the task into elementary types of tasks, defin-
ing the allocation and execution order for each one of the originating tasks.
The IMC plans are one specific implementation of the platform type of task,
since it depends on the communication protocol understood by the systems
being used.

Figure 4.4: Task class hierarchy diagram

Choice operators origins a set of guarded tasks each one bounded by the
associated condition. On the other hand, restriction operators usage origins
tasks that are limited by a predicate or by time (ConstrainedTask).
Each task defined in the language has an associated executor to monitor their
execution. Besides the executor, the task implementation has to specify how
its allocation is done to the available set of nodes. In the particular case of

47

the resource specific type of tasks, the allocation is done according to the
specified node set.

TaskExecutors

Each elementary task have an associated TaskExecutor to control their ex-
ecution, having different restrictions according to the type of task. The
TaskExecutor is responsible for starting and finishing the task execution. In
each step of the task execution, it verifies the restrictions and defines the
state accordingly.
In the diagram presented in Figure 4.5 the different extensions of TaskExecutors,
where we can identify:

• SimpleTaskExecutor - controls the execution of the most elementary task
types.

• ConstrainedTaskExecutor - monitors the condition associated to the task
in each cycle of the engine. If the condition is satisfied, it considers the
task completed.

• PlatformTaskExecutor - takes into account the platform particularities
and information represented in the correspondent type of task.

Figure 4.5: TaskExecutor class diagram

48

4.3.2 DSL Support in Groovy

Dolphin DSL benefits from Groovy languages features as the flexible syntax,
operators overloading and MetaClasses. In this section we describe how these
features were used in the design of the language syntax. All the languages
instructions implementations uses the @DSLClass annotation created to stat-
ically load them during the compilation. The instructions which receive
closures as arguments have an associated builder to construct the language
types.

Operators

The operators presented in Section 3.2.2 were implemented through Groovy
operators overloading feature [12], defining the behaviour according to the
supported types. Groovy enables the usage of a group of symbols in the DSL
syntax by implementing their correspondent method.

Signals

Signals are used as trigger to events and they are implemented by a native
variable type created in the language runtime utilities. The list of signals
manipulation methods is presented in Table 4.1.
The difference between poll and test is that the first also supports closures
as argument which allows the definition of more complex predicates. All the
signals are implemented through the test which is used by the TaskExecutor

in each cycle of the engine to verify if the variable associated with the signal
has changed their value.

Table 4.1: Signals manipulation

Syntax Description
consume <Event> Consume an signal

post <Event> Post a signal with an associated value
poll { <Event>} Verifies the value associated to the signal

test <Event> Verifies the value associated to the signal

49

Other instructions

Besides these basic instructions presented in the previous chapter in Sec-
tion 3.2, there are more definitions that can be made by the user such as the
timeout for communications with Nodes after which the connection is con-
sidered broken or locations definition using coordinates (corresponding to
setConnectionTimeout and location instructions). Other users input/output
can also be defined using the ask and message instructions, being the last
one replicated in a panel in the Dolphin plug-in. There are also instructions
to control the language engine such as the halt instruction to interrupt the
script execution and the pause instruction to suspend it during some period
of time.

Units

Another Groovy feature used was the MetaClass [5] which allows the addi-
tion of properties to basic Java classes and types such as String or Number.
This feature was used to add different units to the Number class and their
respective conversion metrics as we can see in table 4.2, exemplifying their
usage in the line 11 of the script in the Figure 3.3. Percentage units are also
supported without the symbol, being converted to the correspondent decimal
number.

Table 4.2: Dolphin Supported Units

Units Supported Conversions Standard
Angle Degrees, Radians Radians

Distance Meters, Kilometers Meters
Time Seconds, Minutes, Hours, Days Seconds

4.3.3 IMC plan Support

IMC plans are one particular basic type of task of the language since it rep-
resents the platform being used in the implementation. Therefore they are
treated as a platform type of task, mapping only part of the information con-
tained in the IMC message into the Task type. The remaining information
is kept through the plan specification and corresponds to the IMC protocol
implementation details and properties. One example of such property is the

50

payload information present in the maneuvers specifications. This informa-
tion is preserved and used during the task allocation, filtering vehicles that
satisfy the plan requirements.

4.4 IMC DSL

The IMC DSL was embedded in both implementations of the language through
extensions, using the instruction imcPlan. It was used to concisely define IMC
plan specifications within a program, represented as tasks. The DSL was also
implemented in Groovy for the same reasons it was used for Dolphin imple-
mentation.
The supported maneuvers (see Section 3.3) are implemented through their
correspondent type in the IMC Java library. The maneuvers parameters are
defined in a map in arguments benefiting from Groovy flexible syntax. If no
arguments are defined in the maneuvers, the currently defined plan parame-
ters, namely the location, speed and z are used. Other particular parameters
associated to maneuvers have to be explicitly defined in the argument map
in the form:
maneuver <parameter >: ’ va lue ’ .

There is also support for specifying the vehicles which the plan was built for,
although no verification is provided by IMC to check maneuvers compatibility
to the vehicles. The IMC plan specification is then built from the maneuvers
defined in the DSL along with their transitions, if it passes the IMC validation
method.

4.5 Dolphin Neptus Plug-in

The language was implemented by means of a plug-in, extending Neptus and
adding the core library to it. In this case the IMC protocol usage was done by
an internal manager instance in Neptus, not having to configure the library
implementation as in the stand-alone version.

4.5.1 Plug-in Architecture

Dolphin plug-in works as an extension to the Neptus console, having the
following stages in the implementation:

51

• Dolphin core library implementation - the language semantics are
implemented adapting to the Neptus environment. The syntax can be
extended through additional files that are loaded by the engine through
the platform.

• Plug-in description and layout - here the console is extended defin-
ing some parameters in the @PluginDescription annotation in Neptus.
The parameters are used in the Neptus console configurations, used to
enable the language plug-in usage.

• Initial routines - in this stage the plug-in functionality is called. The
language engine is initialized once, first time the plug-in is enabled in
the console.

• Event Handling - different handlers are listening in the editor through
their components listeners resulting from the user interactions. Other
events related to the Neptus console were also subscribed that were
triggered by modifications in the plans database in console.

4.5.2 Neptus Platform

The platform can be associated to the currently open console in Neptus being
detached in case the console is closed. It serves as an intermediate between
Neptus and Dolphin. This is where the additional compiler configurations
are made, defining the extensions files that are evaluated by the engine. It
keeps the information related to current console, interacting with the plug-
in editor to execute requests from the language runtime. Along with the
platform there is the implementation of the languages Node sets, IMC tasks
and the associated executor adapted to Neptus. The implementation maps
existing types in Neptus into Dolphin types.

4.5.3 Editor

The plug-in editor functions as a overlay console to the Neptus mission con-
sole, implementing the RSyntaxTextArea text editor mentioned before. Its
design is presented in Figure 4.6, where we can identify an embedded text
editor which is associated to the currently open console in Neptus, being un-
coupled from the engine in case the console is closed. The text editor is used
to load and edit the language scripts that are by default in a directory defined

52

through the @NeptusProperty annotation in Neptus which is configurable by
users. There is also a panel to show the engine generated output information
(bottom of the editor in Figure 4.6). Users inputs are introduced in a pop-up
window when the ask instruction is used on the script.
The execution can be controlled through the start and stop buttons in the
console. There are also buttons related to the script edition allowing to save
the current changes, define font size and manipulate the modifications stack
(undo and redo).

Figure 4.6: Dolphin plug-in editor in Neptus

4.5.4 Extensions

In the Neptus DSL implementation, additional script instructions can be
configured from extension files, loaded during the platform creation, which
affects the engine customization. The imcPlan instruction is added to the
language syntax in this stage and it can be either an IMC plan specification
generated by the IMC DSL or fetched from the current Neptus console plans
database. More functionalities as functions or instructions can be statically
added to the language in these extension files.

53

4.6 Standalone IMC Runtime

The main difference between the stand-alone implementation and the one
made in Neptus was the different IMC protocol implementations that got
used. In this version there is an extra effort regarding the management of
the network communication with the systems, which implied the creation,
access and removal of the protocol instance.
In terms of GUI, this version runs on the terminal having some helper scripts
to start the execution of already defined programs. During the execution the
users do not have a visual perception of the network state, as happens in
Neptus, but there is still some feedback information about the execution state
generated by the engine and printed in the terminal. Users input are also
available through the console, using the instruction ask. Language extensions
can also be defined in this version, being implemented in the same way as
described before in Section 4.5.4.

4.7 Groovy Plug-in

Since Neptus is an easily extended software developed in Java, we began
the integration of the Groovy language by creating a plug-in that could run
scripts in the Java environment. The fact that Groovy also runs in the Java
Virtual Machine (JVM) greatly simplified embedding of this scripting en-
vironment into Neptus (only requires the addition of the Groovy language
library). In order to run complex Groovy scripts we had to use an engine in
the Java code that can be configured with parameters as imports, bindings
or compilation strategies [12]. All these parameters are customizable in the
engine configurations that is used to run the scripts.
The adopted strategy in the plug-in implementation was to incrementally
add and test Groovy language features into Neptus console. The Neptus
console information, namely plans, available vehicles and the points of inter-
est used in the scripts were implemented through script variable bindings.
It is a mechanism that allows the usage in Groovy of defined variables in
Java without declaring them. These variables can be accessed in Groovy
scripts as long they are not declared in the script, otherwise they overwrite
the previous information.

54

Chapter 5

Experimental Results

This chapter presents experimental results from field tests conducted in order
to evaluate the Dolphin language, primarily, but also the IMC DSL and the
Neptus Groovy plugin script. The tests were conducted using real UUVs,
in some scenarios complemented by a simulated UAV, due to constraints on
the availability of this type of vehicle at the time of tests. They took place
in three distinct locations and in the context of other LSTS operations:

1. Preliminary field tests conducted at the entrance of Leixões harbour,
APDL, for a first validation of Dolphin (Section 5.1);

2. Field tests in open sea near Tróia, during the REP’17 exercise organised
by LSTS and the Portuguese Navy (Section 5.2);

3. Field tests in Douro’s river mouth, specifically to validate the Groovy
Neptus plugin features and the context of the DRiP project to study
Douro’s river plume (Section 5.3);

For each of these field tests, we present the overall planning that took
place, the subject of testing, the most relevant/complex scenarios that were
exercised for the tested functionality, and the corresponding results. The
results at stake result from post-processing vehicle logs after execution of
tests using the Mission Review and Analysis (MRA) feature of Neptus and
other complementary scripts.

55

5.1 APDL field test

The first field tests with Dolphin took place at APDL (Administração dos
Portos do Douro, Leixões e Viana do Castelo) on June 30, 2017. The location
at stake is the port entrance located between Leça da Palmeira (top/north)
and Matosinhos (bottom/south) beaches in Porto, shown in Figure 5.1a,
where LSTS regularly conduct tests.
The vehicles used on this mission were:

• LAUV-Noptilus-1, equipped with a Sidescan Sonar and a Multibeam
Sonar;

• LAUV-Noptilus-2, equipped with a Sidescan Sonar;

• LAUV-Noptilus-3, equipped with a Sidescan Sonar, a Multibeam Sonar
and a Camera;

• X8-02, a simulated UAV.

All the UUVs used in these tests are also equipped with a Forward-Looking
Echo Sounder to detect obstacles. The UUVs are shown in Figure 5.1b. Also
shown another UUV, LAUV-Arpao which was used in some concurrent tests
by LSTS unrelated to Dolphin.

This was the first time the language was tested in a real operation scenario
although it was under a controlled environment. All tests had to have the
vehicles moving on sea surface because the runtime was assuming a timeout
of 20 seconds. Even though the vehicles are able to send their state using the
acoustic modem, this did not include the plan identifier information which
was required to know which plan was being executed. As such, the acoustic
reports were ignored and only information sent via Wi-Fi was used for these
tests.

5.1.1 Mission timeline

The tests had an incremental level of complexity in order to validate the lan-
guage features and primitives separately and then combined. The objective
was to facilitate the debugging in case of error or an unexpected behaviour.
We began with some dry tests where the execution was intentionally expected
to fail. After the vehicles were deployed on the water we started with sim-
pler tests commanding the execution of both plans fetched from the Neptus

56

(a) APDL test location

(b) UUVs used for testing at APDL

(c) Overview of surveys plans for rendez-vous scenario

Figure 5.1: APDL field test description

console and plans generated by the IMC DSL (Section 3.3) built in the Dol-
phin scripts. After these preliminary tests of the language, a small change

57

was made, adjusting the language timeout for connection with the vehicles
to real operation conditions since they are required to stay submerged for
a reasonable amount of time. This parameter became user-defined, having
a minimum of 5 seconds and at most one hour wherein the default value
was set to 20 seconds. Once the adjustments were made, we conducted the
vehicle rendez-vous scenario discussed below.

5.1.2 Rendez-vous scenario reviewed

Once again we used the UUV-AUV rendez-vous scenario, based on the NVL
example (Section 2.3) and introduced in the Dolphin overview (Section 3.1)
presented earlier. In this, each of the three UUV conducts a survey in a
different area (see Figure 5.1c), after which they engage in a rendez-vous with
an UAV. The Dolphin version allows this scenario to be more expressive, in
sense that the rendez-vous order is not that strict, and a rendez-vous may
start without need for all surveys to complete.
The corresponding Dolphin program is shown in Figure 5.2a. It begins with
the vehicles selection restricted only by the required type (lines 1-4 in the
script), followed by the execution composition. The execution is divided in
three concurrent phases, each one of them associated to a selected vehicle.
The composition of each survey includes the plan execution (lines 7,10 and
13 in the script in Figure 5.2a) and the signal posting to indicate the end of
the execution (lines 8,11 and 14 in the script). The allOf instruction verifies
if any of the surveys have been executed, consuming the respective signal
and triggering the rendez-vous plan execution.

58

1 uuv1 = pick { type ’UUV’ }
2 uuv2 = pick { type ’UUV’ }
3 uuv3 = pick { type ’UUV’ }
4 uav = pick { type ’UAV’ }
5

6 execute uuv1 :
7 imcPlan (’ su rvey1 ’) >>
8 act ion { post r eady : 1 } ,
9 uuv2 :

10 imcPlan (’ su rvey2 ’) >>
11 act ion { post r eady : 2 } ,
12 uuv3 :
13 imcPlan (’ su rvey3 ’) >>
14 act ion { post r eady : 3 } ,
15 uav :
16 a l lO f {
17 when { consume r eady : 1 } then imcPlan (’ rv1 ’)
18 when { consume r eady : 2 } then imcPlan (’ rv2 ’)
19 when { consume r eady : 3 } then imcPlan (’ rv3 ’)
20 }

(a) Script

survey1
rv1

rv3

rv2
survey2

survey3

(b) Execution timeline

Figure 5.2: Rendez-vous scenario program

59

5.1.3 Results of the script execution

In the Figures 5.2b to 5.4 we present the processed data from the script
execution obtained from the vehicle’s and the language runtime logs:

• In the timeline presented in Figure 5.2b we can notice which vehicle
executed which plan, since the vehicles selection was made only by
type.

• In Figure 5.3a is visible the UUVs positions during the surveys execu-
tion overlapped by the UAV positions (dashed) during the rendez-vous.

• We present the Z axis variation of the UUVs, in the form of the alti-
tude values in meters, during the surveys execution in Figure 5.3b. In
this plot, the blue color corresponds to the lauv-noptilus-1, the green
corresponds to the lauv-noptilus-3 and the red one corresponds to the
lauv-noptilus-2.

• In Figure 5.4 we presented the processed data from the multibeam
sonar used during the survey in lauv-noptilus-1. The data collected
corresponds to the bathymetry of the survey area (4 to 6 meters deep),
which mirrors the values from the vehicle in the altitude plot presented
above since the UUVs only operated at surface.

60

(a) Rendezvous scenario - Vehicle’s XY Plot

(b) Rendezvous scenario - Vehicle Altitude Plot

Figure 5.3: Rendezvous scenario - Vehicle’s execution plots

61

Figure 5.4: Rendezvous scenario - lauv-noptilus-1 multibeam sonar
bathymetry data from Neptus

5.2 REP’17 tests

5.2.1 Context

The Rapid Environment Picture is an annual exercise organized by LSTS
and the Portuguese Navy, and includes the participation of other invited
partners. The main objective of this yearly exercise is to demonstrate and test
new operational concepts in real scenarios. This year’s edition took place at
the Tróia peninsula with some technological, scientific and security/defence
goals1 as:

• Mixed-initative planning and execution, whose objective was to demon-
strate deliberative planning on shoreside and onboard defining the be-
haviour of multiple vehicles.

• SaVeL - Sado Estuarine Outflow centred in the collection of hydro-
graphic data to calibrate and validate numeric models of the Sado Es-
tuarine and coast.

• SNoW - Sado Non-linear Internal Waves that was an attempt to observe
internal waves by deploying multiple systems (UAV and UUV).

62

The Dolphin tests were involved in the multi-vehicles coordination test
fields and took place at July 10/11, 2017 at the sea in front of Comporta
beach (operation area marked in Figure 5.5a), on board the NRP Cassiopeia
vessel (visible in the Figure 5.5b).
The vehicles used in both days of operation were:

• LAUV-Noptilus-1, equipped with a Sidescan Sonar and a Multibeam
Sonar;

• LAUV-Noptilus-2, equipped with a Sidescan Sonar;

• LAUV-Xplore-1, equipped with an environmental probe measuring tem-
perature, salinity, pH and redox.

• X8-03, a simulated UAV, as a physical UAV could not be allocated to
our tests due to operational limitations at the time

In these operations the Dolphin language was tested in a richer and more
challenging scenario than in APDL (Section 5.1). Additionally, we intended
to validate the new features added to the language since the last tests. The
added features were the possibility of using the vehicles’ positions as event
triggers, and allowing anonymous allocation to proceed by distance according
to the first waypoint of an IMC plan, i.e., selecting the vehicle that is closer
to that waypoint if there is more than one available vehicle to execute the
task represented by the IMC plan.

5.2.2 Mission timeline

The test were conducted during two days having the same incremental strat-
egy, in terms of complexity, as mentioned before:

• Day 1
The strategy adopted for these tests was very similar to the ones made
previously, starting with simple scripts that intentionally failed and
moving towards more complex primitive combinations that required
events and synchronization. Although this time we are able to test
plans with the vehicles moving underwater due to the new feature added
at the time. This time we had scripts with timeout for communication
set from 20 seconds (default value) up to 10 minutes.

1More details and results from this year’s REP can be found at http://rep17.lsts.pt

63

http://rep17.lsts.pt

• Day 2
As result of the first tests, the Dolphin language anonymous allocation
of the node set of vehicles was now made by distance, selecting the
node that was closer to the first waypoint of the plan to be executed.
The objectives for the second day of operations was to test the new
features, anonymous allocation and usage of the vehicle’s position, and
try a more expressive version of the rendezvous scenario script adding
flow control with the until instruction.

In Figure 5.5c are shown the surveys overview related to the most relevant
tests made during these two days of operation and described in the next
sections, being the west side of the Tróia peninsula located on the right of
the surveys. The surveys were composed by two Rows maneuvers separated
by one Popup2 which allowed to fix the vehicles position in case they were
dragged by the tide. The Popup also allowed the Dolphin language runtime
to update the state of execution since we discarded the acoustic reports.
The results of both days of operations were positive since we had the expected
outcome. We present bellow the most relevant results corresponding the more
complex script tested in each day of operation. The other tested scripts are
shown in the Appendix A.

5.2.3 Execution synchronization using events

This particular script involved three UUVs in which one of them acted as
a master while the other two vehicles executed surveys in response to its
inputs (slaves). The idea was having the master execute sequentially two
tasks, and, as each of the tasks finished, trigger the execution of tasks in
the slave vehicles. Thus, the slave vehicles only started task execution in
response to an event generated in association to the execution of the master
vehicles.

The corresponding program, shown in Figure 5.6a, exposes the language
support for event and synchronization. From the vehicles selection in the
script (lines 1-9 in Figure 5.6a) above we can notice that the vehicle lauv−xplore−1
executed plan1 and plan2, behaving as master and lauv−noptilus−1 and
lauv−noptilus−2 executed respectively survey6 and survey7 behaving as slaves.

2The maneuvers sequence are shown in the individual vehicles timelines in Appendix C.

64

(a) Exercises location

(b) NRP Cassiopeia and some autonomous vehicles
used during REP’17

(c) Overview of surveys plan

Figure 5.5: REP’17 exercises description

65

1 master = pick { type ’UUV’
2 i d ’ l auv−xp l o r e −1’
3 }
4 s l a v e 1 = pick { type ’UUV’
5 i d ’ l auv−n op t i l u s −1’
6 }
7 s l a v e 2 = pick { type ’UUV’
8 i d ’ l auv−n op t i l u s −2’
9 }

10

11 setConnectionTimeout 7 . minutes
12

13 execute master :
14 imcPlan (’ p lan1 ’) >>
15 act ion { post x : 1 } >>
16 imcPlan (’ p lan2 ’) >>
17 act ion { post x : 2 } ,
18 s l a v e 1 :
19 cond it ion { consume x : 1} >>
20 imcPlan (’ su rvey6 ’) ,
21 s l a v e 2 :
22 cond it ion { consume x : 2} >>
23 imcPlan (’ su rvey7 ’)

(a) Script

plan1

plan2

survey6

survey7

(b) Execution timeline

Figure 5.6: Events and synchronization

66

X
start

X

X
start

XY

(a) Vehicle’s positions plots

Z

(b) Vehicle’s Z plots

Figure 5.7: Events and Synchronization - plots

67

5.2.4 Rendez-vous scenario with more combined fea-
tures

After the first approach made before (see Section 5.1.2), we revisited the
rendezvous operation scenario[14] adding more expressiveness than the pre-
vious tests made at APDL(Section 5.1), which included maintaining the UAV
loitering in a certain position until one of the UUV finished a survey.

In REP’17, we executed a variation of the rendez-vous scenario recreated
in the APDL field tests (Section 5.1.2), experimenting language features that
were introduced in the meanwhile. The differences between the script pre-
sented before at the Figure 5.2a and the script in Figure 5.8a are:

• The UUVs selection was made at once, specifying the required type
and the number of vehicles (lines 1-3 in the script in Figure 5.8a).

• There was a defined connection timeout of 10 minutes (line 7 in the
script in Figure 5.8a), since the vehicles executed surveys that required
them to submerge (see depth/altitude plot in Figure 5.9b).

• The anonymous allocation was made by distance to the first waypoint
of the plan (see Appendix B in Figure B.1), assigning the set of three
vehicles to the three concurrent tasks in the execution composition
(lines 11-14 in the script).

• The UAV was maintaining loitering until one of the surveys was com-
pleted, polling the if one of the correspondent signals were posted. This
behaviour has added to avoid the UAV (in simulation mode) to drift,
moving away from the operational area.

By the timeline presented in Figure 5.8b we can notice that the survey3 was
the first being finished by the UUVs since the rv3 was the first rendez-vous
performed. Additionally, the assigned vehicle to execute that survey (lauv-
xplore-1 by the timeline) operated only at surface as we can verify in the
depth values presented in the plot in Figure 5.9b (red line at the bottom).
There was no need to correct the UUV position during the Popup unlike in
the other two cases visible in the positions plot in Figure 5.9a, corresponding
respectively to the lauv-noptilus-1 and lauv-noptilus-2.

68

1 uuvs = pick { type ’UUV’
2 count 3
3 }
4

5 uav = pick { type ’UAV’ }
6

7 setConnectionTimeout 10 . minutes
8

9 l o i t e r = un t i l { po l l ’ ready ’ } run s t a y s t i l l
10

11 execute uuvs :
12 (imcPlan (’ su rvey1 ’) >> act ion { post r eady : 1 }) |
13 (imcPlan (’ su rvey2 ’) >> act ion { post r eady : 2 }) |
14 (imcPlan (’ su rvey3 ’) >> act ion { post r eady : 3 }) ,
15 uav :
16 l o i t e r >>
17 a l lO f {
18 when { consume r eady : 1 } then imcPlan (’ rv1 ’)
19 when { consume r eady : 2 } then imcPlan (’ rv2 ’)
20 when { consume r eady : 3 } then imcPlan (’ rv3 ’)
21 }

(a) Script

survey1

survey3

survey2

rv1

rv3

rv2

(b) Execution timeline

Figure 5.8: Rendezvous reviewed scenario

69

(a) UUVs positions plot

(b) UUVs Z plot

Figure 5.9: Rendezvous reviewed scenario - plots

70

5.3 The Neptus Groovy plug-in

Another result accomplished in the work elaborated for this thesis was the
development of a Neptus plug-in that allows using Groovy to interact with
the console with bindings for plans, locations and vehicles. More details
of the plug-in features and details can be found in the Section 3.4. The
re-validation of this plug-in was made on August 13th after some fixes to
the previous version and tests. The objective was to validate the automatic
generation of plans seizing the opportunity to include them in one of the
LSTS’s real operation scenarios, the DRiP missions.

5.3.1 DRiP - Douro River Plume tracking

LSTS has been doing missions between the Douro river mouth and the sea
trying to identify and collect data associated to the Douro plume. In these
missions the vehicles have an onboard executive that tracks the plume while
running on an auxiliary CPU interacting with DUNE (Section 2.1.2) on the
main CPU via IMC messages (Section 2.1.2). The DRiP executive, starts
by moving out of the river’s mouth towards the sea until it detects that is
outside the fresh water plume (according to a user-defined salinity threshold).
After it detects the front of the river plume, it stops, comes at the surface,
communicates its position and starts moving again towards the river mouth.
In Figure 5.10a, we can notice on the right side the sea and on the left side
the entrance to the river channel.
The objective of these missions is to cross the front of the plume several
times and, every time it goes out it increases its bearing so that it tracks the
position of the front all around the river. Moreover, after a certain timeout
is reached, the executive starts executing a predefined plan in order to meet
the operators and get recovered. The vehicles used in this mission had a
configurable payload defined to collect samples in the water:

• LAUV-Xplore-1, equipped with an environmental probe measuring tem-
perature, salinity, pH and Redox (the vehicle in front in Figure 5.10b);

• LAUV-Xplore-2, equipped with an environmental probe that measures
temperature, salinity, chlorophyll and turbidity (the vehicle behind in
Figure 5.10b);

71

(a) Mission Location

(b) Systems used in the August 13 mission

Figure 5.10: DRiP Mission on August 13, 2017

5.3.2 Mission timeline

The mission started with the DRiP parameters definition, followed by the
vehicles deployment on the water. The vehicles collected data for 5 hours
during which the operators were moving between the river end and the sea
according to the water conditions. Since the operators did not have a fixed
location by the end of the vehicles operations there was a need to bring them
closer to the boat to collect them. Various attempts were made with the
Groovy plug-in to generate a plan that made the vehicle approach the boat

72

using both marks and existing plans on the console. It is important to refer
that, since the generated plans were being added to the console, they could
be revised by the operators prior to commanding them to the vehicles. This
was a great help as it allowed us to iterate through a series of scripts until
the expected behaviour was achieved.
At the end some of the generated plans were sent to one of the vehicles
through Iridium communication plug-in in Neptus because of their distance
to the operators station onboard of a boat.
During one of the vehicles collection, we also tested different maneuvers and
their parameters with the other available vehicle, in order to validate other
parts of the IMC DSL usage in the plug-in. The generated plan was also sent
and commanded the execution via Iridium. When this vehicle was close to
the boat we aborted the execution starting the teleoperation to proceed to
the recovery.

5.3.3 Plan scripts

To validate the plug-in we tested the generation of a plan that resulted from
the manipulation of the waypoints of an existing plan in the Neptus console
and other that tested using variable bindings for the generation. The other
features of this plug-in were already tested in an early stage of the develop-
ments. Namely the vehicles binding variable and other maneuvers from the
IMC DSL.

Yoyo-Popup script

Looking at the script presented in the Figure 5.11, we can notice that the ma-
nipulated plan fetched from Neptus console was “plan1” which had waypoints
in a square path around the area of the boat. The script manipulated these
waypoints by translating them to locations to the yoyo maneuver, adding
popup maneuvers every 350 meters. In the Figure 5.13 we can verify the
vehicles positions during the execution of the plan before aborting it, which
is consistent with the generated plan preview available in the Figure 5.12.
The vehicle’s depth can be found in the Figure 5.14 along with the salinity
data collected during the execution of the generated script.

73

1 //−−−−Parameter s D e f i n i t i o n−−−−−
2

3 de f popDi s tance = 350 // i n mete r s
4 de f p l an = ” p lan1 ” // a l r e a d y d e f i n e d i n the c on s o l e
5 doub l e s p e e d v a l u e = 1500 .0
6 de f s p e e d u n i t = ”RPM”
7 doub l e z v a l u e = 5 .0
8 de f z u n i t = ”DEPTH”
9 i f (p l a n s . ge t (p l an)==n u l l)

10 p r i n t l n ”Could not f i n d i n i t i a l p l an ”+p lan
11 de f i n i t i a l P l a n = new Plan (conso l e , p l a n s . ge t (p l an))
12 de f s t a r t = i n i t i a l P l a n . i n i t i a l L o c a t i o n ()
13 de f waypo in t s = i n i t i a l P l a n . waypo in t s ()
14

15 new Plan (c on s o l e) . w i th {
16

17 planName ”YoYo dr ip ”
18 de f s t a r t P o i n t = s t a r t
19 speed sp e ed va l u e , s p e e d u n i t
20 z z v a l u e , z u n i t
21

22 // each waypo int o f the o r i g i n a l p l an
23 waypo in t s [0 . . waypo in t s . s i z e −1] . each (){
24 waypointYoYo −>
25 midpo in t s (s t a r tP o i n t , waypointYoYo , popDi s tance) . each {
26 yoyo l o ca t ion : i t , max depth : 8 . 0 , min depth : 0 . 0
27 popup (wa i tA tSu r f a c e : t rue , d u r a t i o n : 6 0)
28 }
29 s t a r t P o i n t = waypointYoYo
30 }
31

32 v e h i c l e s ” lauv−xp l o r e −2”
33 addToConsole ()
34 }

Figure 5.11: Script to generate popups between yoyos maneuvers for each
350 meters

Vehicle recovery - first attempt

The first attempt was made when the boat was drifting in the river. We
manipulated an already defined plan on the console, using its waypoints as
reference to the locations to the yoyo maneuvers, adding intermediate popups
every 500 meters and at the originally final waypoint. In the Figure 5.15 we

74

Figure 5.12: Generated plan with yoyos and popup preview in Neptus

X
start X

popup X
popup

X
popup

X
popup

lauv-xplore-2

Figure 5.13: Vehicle’s position plot

75

lauv-xplore-2

Figure 5.14: Vehicle’s logged salinity and depth plot. Notice that salinity
as some erroneous data when the vehicle is at the surface due to the sensor
being momentarily out of the water.

can notice part of the generated plan preview and the associated script used.
The script used to generate this plan can be found in the Appendix D in
Figure D.2.

Vehicle recovery - second attempt

In the other script used in these tests the idea was to use the 2 defined marks
on the console map to make the vehicle approach the boat area moving in
yoyo until the final defined point and doing a popup every 400 meters. One of
the marks was in the last known position of the vehicle, reported via Iridium
communication and the other one was closer to the area where the boat was
drifting at the time the script was made. In the Figure 5.16 we can notice in
the inferior left corner the mark from the last known position of the vehicle
which was used on the script visible in the plug-in text editor on the right.
We can also see the first waypoint at 400 meters from the defined mark and
other two waypoints corresponding to the 800 meters and final waypoint
respectively. The script for the second attempt is shown in the Appendix D

76

Figure 5.15: Groovy Plug-in: Console Screenshot with the first attempt
script and plan preview.

in Figure D.3.

77

400 m

Figure 5.16: Groovy Plug-in: Console Screenshot with the second attempt
script and plan preview.

78

Chapter 6

Conclusions

In this chapter we first summarize the work developed for this thesis (Sec-
tion 6.1), analysing the limitations and the results obtained from the chosen
approach. We then conclude with suggestions of future developments that
can be to enhance and continue the implementation (Section 6.2).

6.1 Discussion

We have created the Dolphin language, a DSL that allows programmable co-
ordination of autonomous vehicles networks, integrated with LSTS toolchain.
Prior to this thesis, the behaviour of each vehicle had to be manually defined
by operators, a dull and error-prone task. With Dolphin, however, the users
can create a system-level definition of behaviour where multiple vehicles are
tasked automatically according to their availability and capabilities, which
greatly simplifies the operation of such networks.
NVL, a predecessor of Dolphin, was a first effort towards this problem. NVL
had limited integration with LSTS toolchain and was much less expressive
and easy to use than Dolphin.
The language functionalities includes vehicles selection, task specification and
their allocation to the selected vehicles for execution. The execution can be
composed combining different operators supported by the languages types
(Nodes and Tasks). The tasks supported by the vehicles are in the form of
IMC plan specification that can be generated using the developed IMC DSL
or fetched from Neptus or from the vehicles plans database.
Taking into account that one of our main objectives: integration of the lan-

79

guage with LSTS command and control software Neptus, we think the im-
plementation benefited from the chosen tools, since both parts belong to the
Java platform having the Java Virtual Machine (JVM) in common. Thus,
the implementation is extensible and flexible, as demonstrated also by the ex-
istence of two different platform implementations, the Neptus-based version
and the stand-alone one.

6.1.1 Limitations

During the development and tests of the language we have identified the
following limitations, that can be subject to improvements:

• The allocation of a task to a vehicle cannot be changed, once the
task starts executing. This leads to no fault tolerance, that could be
achieved by migrating the task to another vehicle.

• Error handling in case of task execution failure could be refined, e.g.,
defining a different behaviour according to the source of the failure.

• Vehicle state inference by the DSL runtime still has limitations when
the vehicles use alternative means of communication like Iridium or un-
derwater acoustic communications. This happens because the IMC pro-
tocol does not provide normalized information for the different means
of communication.

• Verification of vehicles compatibility to IMC plans specification is also
a handicap that can lead to failures on the vehicles.

• The language runtime runs in a centralized fashion, a possible source of
conflicting (e.g., when multiple CCUs are in use) or erroneous behaviour
(e.g. due to network failures).

6.1.2 Evaluation analysis

The following field tests were conducted during the development of this thesis:

• Initially some tests were made in a controlled environment at APDL
where it was possible to identify some bugs and test their correction.

80

• In REP’17 exercises we validated the language in a not controlled en-
vironment. Here the communication was very limited, even so Dol-
phin maintained robust during the communication failures allowing the
control of different types of vehicles (bottom-mapping AUVs, oceano-
graphic AUVs and simulated UAVs).

• Validation of the Groovy plug-in in Neptus during a DRiP mission.

We obtain the expected results in most of the field tests since the behaviour
was similar to the ones obtained in simulation despite the communication
differences between the two environments. These tests served to adjust the
implementation according to problems and improvements identified during
the mission course or afterwards, analysing the data.
These results shows that is possible to create expressive programs in Dol-
phin to manipulate multiple autonomous vehicles applied to real operational
scenarios.

6.2 Future Work

The Dolphin DSL forms the basics of many possible developments in the
future:

• Regarding the level of abstraction of the DSL, human operators could
be represented as CCU or ACCU node types since these systems an-
nounces their presence in the network and interacts with other systems
using IMC. In terms of the vehicles nodes, more filters can be added to
the selection as fuel level.

• Multi-vehicle tasks that enable vehicle teams with varying composi-
tion also interest us, augmenting the current expressiveness of Dolphin
operators for task composition.

• Efforts are being made in the IMC protocol to abstract the commu-
nication mean used in the state reported by the vehicles. If this new
feature is introduced we believe a better error treatment can be done
since only the fully populated reports are taken into account.

• A GUI similar to the one implemented in the Neptus plug-in could be
used in the stand-alone version to make it more user-friendly.

81

• In terms of allocation, it could be done dynamically during program
execution instead of the current static allocation made before the execu-
tion. This dynamic approach can take into account new nodes inserted
in the network or even the replacement of allocated ones in case of
failure.

• Letting Dolphin run in distributed manner may be interesting, raising
numerous and interesting challenges. For instance, the language could
need extensions or shared state and/or node communication.

• Finally, more platforms can be considered as targets for integration
with Dolphin beyond the LSTS toolchain, e.g. MAVLink [1] which is
a widely used protocol by several UAVs in the market and supported
by many robotic platforms like Ardupilot.

82

Bibliography

[1] MVLink micro air vehicle communication protocol. http://mavlink.

org. Accessed: 2017-09-23.

[2] ObjectAid uml explorer for eclipse. http://www.objectaid.com/. Ac-
cessed: 2017-09-25.

[3] J. Borges de Sousa, K. H. Johansson, J. Silva, and A. Speranzon. A
verified hierarchical control architecture for co-ordinated multi-vehicle
operations. International Journal of Adaptive Control and Signal Pro-
cessing, 21(2-3):159–188, 2007.

[4] L. Chrpa, J. Pinto, M. A. Ribeiro, F. Py, J. Sousa, and K. Rajan.
On mixed-initiative planning and control for autonomous underwater
vehicles. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ
International Conference on, pages 1685–1690. IEEE, 2015.

[5] F. Dearle. Groovy for Domain-Specific Languages. Packt Publishing
Ltd, 2015.

[6] C. N. Duarte, G. R. Martel, C. Buzzell, D. Crimmins, R. Komerska,
S. Mupparapu, S. Chappell, D. R. Blidberg, and R. Nitzel. A com-
mon control language to support multiple cooperating AUVs. In Pro-
ceedings of the 14th International Symposium on Unmanned Untethered
Submersible Technology, pages 1–9, 2005.

[7] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus. Data muling over
underwater wireless sensor networks using an autonomous underwater
vehicle. In Proceedings 2006 IEEE International Conference on Robotics
and Automation, 2006. ICRA 2006., pages 2091–2098. IEEE, 2006.

83

http://mavlink.org
http://mavlink.org
http://www.objectaid.com/

[8] E. Eberbach, C. Duarte, C. Buzzell, and G. Martel. A portable language
for control of multiple autonomous vehicles and distributed problem
solving. In Proc. of the 2nd Intern. Conf. on Computational Intelligence,
Robotics and Autonomous Systems CIRAS, volume 3, pages 15–18, 2003.

[9] A. S. Ferreira, J. Pinto, P. Dias, and J. B. de Sousa. The lsts software
toolchain for persistent maritime operations applied through vehicular
ad-hoc networks. In 2017 International Conference on Unmanned Air-
craft Systems (ICUAS), pages 609–616, June 2017.

[10] M. Fox and D. Long. PDDL2. 1: An Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Intell. Res.(JAIR), 20:61–124,
2003.

[11] D. Ghosh. DSLs in action. Manning Publications Co., 2010.

[12] D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy in
action, volume 1. Manning, 2007.

[13] K. A. Kousen and G. Laforge. Making Java Groovy. Manning, 2014.

[14] E. R. Marques, M. Ribeiro, J. Pinto, J. B. Sousa, and F. Martins. NVL:
a coordination language for unmanned vehicle networks. In Proceedings
of the 30th Annual ACM Symposium on Applied Computing, pages 331–
334. ACM, 2015.

[15] E. R. B. Marques, M. Ribeiro, J. Pinto, J. Sousa, and F. Martins. To-
wards programmable coordination of unmanned vehicle networks. In
Proc. IFAC Workshop on Navigation, Guidance and Control of Under-
water Vehicles, NGCUV’15. IFAC, 2015.

[16] R. Martins, P. S. Dias, E. R. Marques, J. Pinto, J. B. Sousa, and F. L.
Pereira. IMC: A communication protocol for networked vehicles and
sensors. In Oceans 2009-Europe, pages 1–6. IEEE, 2009.

[17] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld, and D. Wilkins. PDDL-the planning domain definition lan-
guage. 1998.

[18] F. Nex and F. Remondino. Uav for 3d mapping applications: a review.
Applied Geomatics, 6(1):1–15, Mar 2014.

84

[19] G. E. Packard, A. Kukulya, T. Austin, M. Dennett, R. Littlefield,
G. Packard, M. Purcell, R. Stokey, and G. Skomal. Continuous au-
tonomous tracking and imaging of white sharks and basking sharks us-
ing a REMUS-100 AUV. In 2013 OCEANS-San Diego, pages 1–5. IEEE,
2013.

[20] E. Pereira, C. M. Kirsch, R. Sengupta, and J. B. de Sousa. BigActors - A
Model for Structure-aware Computation. In ACM/IEEE International
Conference on Cyber-Physical Systems, 2013.

[21] E. Pereira, C. Krainer, P. M. da Silva, C. M. Kirsch, and R. Sengupta.
A runtime system for logical-space programming. In Proceedings of the
Second International Workshop on the Swarm at the Edge of the Cloud,
pages 28–33. ACM, 2015.

[22] E. T. Pereira. Mobile Reactive Systems over Bigraphical Machines-A
Programming Model and its Implementation. University of California,
Berkeley, 2015.

[23] C. Pinciroli and G. Beltrame. Buzz: An extensible programming lan-
guage for heterogeneous swarm robotics. In Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference on, pages 3794–
3800. IEEE, 2016.

[24] C. d. Q. Pinto. Mixed-initiative planning for networked vehicle systems.
Master’s thesis, 2017.

[25] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and J. Sousa.
The LSTS toolchain for networked vehicle systems. In OCEANS-Bergen,
2013 MTS/IEEE, pages 1–9. IEEE, 2013.

[26] J. Pinto, M. Faria, J. Fortuna, R. Martins, J. Sousa, N. Queiroz, F. Py,
and K. Rajan. Chasing Fish: Tracking and control in a autonomous
multi-vehicle real-world experiment. In 2013 OCEANS-San Diego, pages
1–6. IEEE, 2013.

[27] F. Py, J. Pinto, M. A. Silva, T. A. Johansen, J. Sousa, and K. Ra-
jan. Europtus: A mixed-initiative controller for multi-vehicle oceano-
graphic field experiments. In International Symposium on Experimental
Robotics, pages 323–340. Springer, 2016.

85

[28] M. A. Ribeiro. Nvl: uma linguagem de coordenação para redes de
véiculos autónomos. Master’s thesis, 2014.

86

Appendix A

Dolphin scripts

A.1 Task Operators

1 v1 = pick { i d ’ l auv−n op t i l u s −1’ }
2 v2 = pick { i d ’ l auv−n op t i l u s −2’ }
3

4 setConnectionTimeout 120 .0 // seconds
5

6 execute imcPlan (’ su rvey4 ’) [v1] | imcPlan (’ su rvey5 ’) [v2]

Figure A.1: Dolphin script for parallel execution of tasks

1 v1 = pick { i d ’ l auv−n op t i l u s −1’ }
2 v2 = pick { i d ’ l auv−n op t i l u s −2’ }
3

4 setConnectionTimeout 30 .0
5

6 execute imcPlan (’ su rvey4 ’) [v1] >> imcPlan (’ su rvey5 ’) [v2]

Figure A.2: Dolphin script for sequential execution of tasks

87

1 ComportaOParea = l o ca t ion 38 .43461 , −8.86117
2 v = pick {
3 type ’UUV’
4 // r e g i o n ComportaOParea , 5 .km
5 i d ’ l auv−n op t i l u s −1’
6 }
7

8 // Execute IMC Plan de s i gn ed i n Neptus
9 t1 = imcPlan ’ p lan1 ’

10 execute v : t1

Figure A.3: Dolphin script usage of IMC Plan from Neptus console as task

88

A.2 Vehicles Operators

1 n = ask ’How many UUVS? ’
2

3 v1 = pick {
4 type ’UUV’
5 count n
6 }
7 v2 = pick {
8 type ’UAV’
9 }

10

11 uv = v1 + v2
12 dv = v1+v2−v1
13 i v = uv & v1
14 i dF = ask ’ V e h i c l e to f i l t e r ? ’
15 f v = ((v1+v2) | { v −> ! v . g e t I d () . e q u a l s (idF) })
16

17 message ”uv = uv”message ”iv = i v ”
18

19 message ”dv = dv”message ”fv = f v ”

Figure A.4: Dolphin script with vehicles set manipulation

89

1 n = ask ’How many v e h i c l e s ? ’
2 uuvs = pick {
3 type ’UUV’
4 t imeout 20 . s econds
5 count n
6 pay load ’ S idescan ’
7 }
8

9 setConnectionTimeout 180 .0
10

11 t a s k 1 = imcPlan ’ p lan1 ’
12 t a s k 2 = imcPlan ’ p lan2 ’
13

14 message ’ V e h i c l e s s u c e s s f u l l y s e l e c t e d : ’+uuvs
15

16 execute uuvs : (t a s k 1 | t a s k 2)

Figure A.5: Dolphin script with task allocation to set of vehicles

1 v = pick { i d ’ l auv−xp l o r e −1’ }
2 i n i t i a l P o s = pos i t i on (v)
3

4 t a sk1 = un t i l {
5 pos i t i on (v) . d i s t anceTo (i n i t i a l P o s) > 20
6 } run imcPlan (’ p lan1 ’)
7

8 t a sk2 = during { 30 . s econds } run imcPlan (’ p lan2 ’)
9 execute i d l e (1 0 . s econds) >> t a sk1 >> t a sk2

Figure A.6: Script with vehicles position usage as event trigger

90

A.3 Failure Tests

• Wrong Selection by Payload Requirement Specification

1 uuv = pick {
2

3 type ’UUV’
4 i d ’ l auv−n op t i l u s −2’
5 pay load ’ Multibeam ’
6 }
7

8 message ” S e l e c t e d UUV uuv”

Figure A.7: Dolphin script with wrong selection by payload and vehicle’s id

• Wrong Selection by Type of Vehicle

1 uav = pick {
2

3 type ’UAV’
4 i d ’ l auv−n op t i l u s −1’
5 }
6

7 message ’ S e l e c t e d UAV uav’

Figure A.8: Dolphin script with wrong selection by vehicle’s type and vehi-
cle’s id

• Wrong Selection by Area of the Vehicles

1 ComportaOpArea = l o ca t ion 38.425711111111106 , −8.852072222222223
2 v = pick {
3 type ’UUV’
4 r e g i o n ComportaOpArea , 2 . mete r s
5 }

Figure A.9: Dolphin script with selection by vehicle’s region

91

Appendix B

Dolphin runtime logs

B.1 Runtime anonymous allocation by dis-

tance

Figure B.1: Extract of Dolphin runtime log

92

Appendix C

Generated data from vehicles
logs

Vehicles individual timelines obtained in Neptus Mission Review and Anal-
ysis feature based on the log files downloaded from the vehicles.

C.1 Rendezvous scenario at APDL

Figure C.1: LAUV-Noptilus-1 execution timeline

93

(a) LAUV-Noptilus-2 execution timeline

(b) LAUV-Noptilus-3 execution timeline

Figure C.2: APDL field tests UUVs timelines.

94

C.1.1 Execution Synchronization using Events

Figure C.3: REP’17 day 1 - Events and synchronization LAUV-Xplore-
1/master timeline

95

(a) LAUV-Noptilus-1 execution timeline

(b) LAUV-Noptilus-2 execution timeline

Figure C.4: REP’17 day 1 - Events and synchronization slaves timelines

96

C.2 Rendezvous scenario reviewed at REP17

Figure C.5: REP’17 day 2 - Rendez-vous scenario LAUV-Xplore-1 execution
timeline

97

(a) LAUV-Noptilus-1 execution timeline

(b) LAUV-Noptilus-2 execution timeline

Figure C.6: REP’17 day 2 - Rendez-vous scenario timelines

98

Appendix D

Groovy Plug-in

Scripts used at vehicles recovery and individual vehicles timelines from Nep-
tus1.

Figure D.1: LAUV-Xplore-2 Yoyo-Popup script execution timeline at DRiP
mission

1The timelines were generated from vehicles downloaded logs.

99

1 //−−−−Parameter s D e f i n i t i o n−−−−−
2

3 de f popDi s tance = 500 // i n mete r s
4 de f p l an = ” p lan1 ” // a l r e a d y d e f i n e d i n the c on s o l e
5 doub l e s p e e d v a l u e = 1350 .0
6 de f s p e e d u n i t = ”RPM”
7 doub l e z v a l u e = 0 .0
8 de f z u n i t = ”DEPTH”
9 i f (p l a n s . ge t (p l an)==n u l l)

10 p r i n t l n ”Could not f i n d i n i t i a l p l an ”+p lan
11 de f i n i t i a l P l a n = new Plan (conso l e , p l a n s . ge t (p l an))
12 de f s t a r t = i n i t i a l P l a n . i n i t i a l L o c a t i o n ()
13 de f waypo in t s = i n i t i a l P l a n . waypo in t s ()
14

15 new Plan (c on s o l e) . w i th {
16

17 planName ” YoYo e n t e r r i v e r ”
18 de f s t a r t P o i n t = s t a r t
19 speed sp e ed va l u e , s p e e d u n i t
20 z z v a l u e , z u n i t
21 // each waypo int o f the o r i g i n a l p l an
22 waypo in t s [0 . . waypo in t s . s i z e −1] . each (){
23 waypointYoYo −>
24 midpo in t s (s t a r tP o i n t , waypointYoYo , popDi s tance) . each {
25 yoyo l o ca t ion : i t , max depth : 6 . 0 , min depth : 0 . 0
26 popup (wa i tA tSu r f a c e : t rue , d u r a t i o n : 6 0)
27 }
28 s t a r t P o i n t = waypointYoYo
29 }
30

31 v e h i c l e s ” lauv−xp l o r e −1”
32 addToConsole ()
33 }

Figure D.2: Vehicle recovery - First attempt script

100

1 de f l o c 1 = l o c a t i o n s . ge t ’ f i n a l ’
2 de f s t a r t = l o c a t i o n s . ge t ’ xp1 ’
3 de f p1 =new Plan (c on s o l e)
4

5 p1 . w i th {
6 planName ” f i n a l p o i n t ”
7 speed 1500 , ”RPM”
8 yoyo l o ca t ion : s t a r t , max depth : 8 , min depth : 0
9 yoyo l o ca t ion : l oc1 , max depth : 8 , min depth : 0

10 midpo in t s (s t a r t , l oc1 , 4 0 0) . each {
11 popup (l o ca t ion : i t , d u r a t i o n : 6 0)
12 }
13 addToConsole ()
14 }

Figure D.3: Vehicle recovery - Second attempt script

Figure D.4: LAUV-Xplore-1 execution timeline at DRiP mission.

101

	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Structure

	Background
	Laboratório de Sistemas e Tecnologia Subaquática
	Autonomous Vehicles
	Software

	Operational Scenarios
	Tracking
	Data Muling
	Mapping
	Patrolling

	NVL Language
	Expressiveness
	Architecture

	Related Work
	Common Control Language
	Buzz
	BigActors
	Planning Domain Definition Language
	Comparison

	Groovy
	Features

	The Dolphin Language
	Overview
	Architecture
	Example

	Language features
	Vehicle Selection
	Task allocation and execution
	Event-based task operators

	The IMC DSL
	Example
	Features

	The Neptus Groovy Plug-in
	Example
	Features

	Design and Implementation
	Architecture
	Development tools
	Core Library
	Common Runtime
	DSL Support in Groovy
	IMC plan Support

	IMC DSL
	Dolphin Neptus Plug-in
	Plug-in Architecture
	Neptus Platform
	Editor
	Extensions

	Standalone IMC Runtime
	Groovy Plug-in

	Experimental Results
	APDL field test
	Mission timeline
	Rendez-vous scenario reviewed
	Results of the script execution

	REP'17 tests
	Context
	Mission timeline
	Execution synchronization using events
	Rendez-vous scenario with more combined features

	The Neptus Groovy plug-in
	DRiP - Douro River Plume tracking
	Mission timeline
	Plan scripts

	Conclusions
	Discussion
	Limitations
	Evaluation analysis

	Future Work

	Dolphin scripts
	Task Operators
	Vehicles Operators
	Failure Tests

	Dolphin runtime logs
	Runtime anonymous allocation by distance

	Generated data from vehicles logs
	Rendezvous scenario at APDL
	Execution Synchronization using Events

	Rendezvous scenario reviewed at REP17

	Groovy Plug-in

