
MRamble:
Opportunistic Content
Dissemination for
Infrastructure-Deprived
Environments

Miguel Ângelo Felisberto Garcia
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos
Departamento de Ciência de Computadores
2018

Orientador
Eduardo Marques, Prof. Auxiliar Convidado, DCC/FCUP

Coorientador
Luís Lopes, Prof. Associado, DCC/FCUP

Abstract

Mobile devices have become ubiquitous. As time progresses, these devices have become
more powerful, having larger computational and memory capacities. Besides these
advances, the majority of smartphones in the market today include Device-to-Device (D2D)
communication technologies such as WiFi-Direct and Bluetooth. Despite being present
in a large portion of mobile devices, these technologies are not always used to their full
potential. Smartphones have also become a great tool for crowdsourcing, thanks to their
large number and input capabilities.

These factors have given rise to a field of study that focuses on connecting nearby
devices in order to pool their resources together to perform, for example, distributed
computation. This work focuses on the scenario where there is no infrastructure support,
such as a disaster one. In these situations, a system that provides content dissemination
through the use of mobile devices and cloudlets could prove useful, as users could generate
and share data that would help rescue teams.

In this context we propose Ramble, an opportunistic content dissemination system
for mobile devices and cloudlets. Ramble is designed around using as many contact
opportunities as possible to make a connection and synchronise with other peers. These
contacts can be made using WiFi, bridging mobile devices with cloudlets and with
each other, WiFi-Direct, bridging two or more mobile devices nearby by establishing a
temporary network between them, and by using a mesh network, connecting cloudlets
together allowing the spread of information over larger distances.

For our case study we chose to use the system to disseminate geotagged content
generated by mobile devices, such as audio and video recordings, pictures and written
reports. Around this idea, we developed an Android application that allows users to view
content stored in the device and generate new content. We also developed a cloudlet
application that functions as a drop-off point, gathering content as users pass by.

We performed a real world experiment in order to validate Ramble, derive preliminary
metrics and identify current problems.

i

Resumo

Os dispositivos moveis tornaram-se ubíquos. Com o passar do tempo, estes dispositivos
tornaram-se mais poderosos, tendo maiores capacidades computacionais e de armazena-
mento. Além destes avanços, a maioria dos smartphones no mercado atual incluem
tecnologias de comunicação dispositivo-para-dispositivo, como WiFi-Direct e Bluetooth.
Apesar de estas estarem presente em grande parte dos dispositivos móveis, nem sempre
são utilizadas em todo o seu potencial. Os smartphones também se tornaram uma ótima
ferramenta de crowdsourcing, graças ao seu grande número e vários inputs.

Estes fatores deram origem a um área de estudo que se baseia em usar dispositivos
moveis na vizinhança a fim de reunir os seus recursos para executar tarefas como, por
exemplo, computação distribuída. Este trabalho concentra-se no cenário em que há falha
de infraestruturas de comunicação, como um desastre. Nessas situações, um sistema que
forneca disseminação de conteúdo usando dispositivos móveis e cloudlets pode ser útil, pois
os utilizadores podem gerar e compartilhar dados que ajudariam as equipas de resgate.

Neste contexto, propomos o Ramble, um sistema oportunista de disseminação de
conteúdos para dispositivos móveis e cloudlets. Ramble é desenhado em torno de usar
todas as oportunidades de contato possiveis para estabelecer uma conexão e sincronizar
com outros nós. Esses contatos podem ser feitos usando WiFi, conectando dispositivos
móveis entre si ou com cloudlets, WiFi-Direct, conectando dois ou mais dispositivos
móveis próximos, estabelecendo uma rede temporária entre eles e usando uma rede mesh,
conectando as cloudlets entre si, permitindo a disseminação de informações em distâncias
maiores.

Para o nosso caso de estudo, optamos por usar o sistema para disseminar conteúdo
georreferenciado gerado por dispositivos móveis, como gravações de áudio e vídeo, imagens
e relatórios escritos. Em torno desta ideia, desenvolvemos uma aplicação Android que
permite aos utilizadores visualizar o conteúdo armazenado no seu ispositivo e gerar novos
conteúdos. Também desenvolvemos uma aplicação para cloudlets que funciona como um
ponto de entrega, reunindo conteúdo à medida que os utilizadores passam.

Realizamos uma experiência de campo para validar o Ramble, derivar métricas

iii

preliminares e identificar problemas atuais.

iv

Acknowledgements

Firstly, I would like to thank my advisers, Eduardo Marques and Luís Lopes, for their
leadership, patience and assistance throughout the dissertation. I also thank all the people
who helped me in this work, either by participating in the experiment or giving me advice.

I would also like to thank my friends for their support and camaraderie, for being there
along the way.

Last, but definitely not least, I thank my parents for their unwavering support and
belief. Without them none of this would be possible and I’m eternally grateful for it.

v

Contents

Abstract i

Resumo iii

Acknowledgements v

Contents ix

List of Tables xi

List of Figures xiii

Listings xv

Acronyms xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 2

1.3 Contributions . 2

1.4 Thesis Structure . 3

2 Background 5

2.1 Cloud Computing, Cloudlets and Mobile Edge-Clouds 5

2.2 WiFi-Direct . 6

vii

2.3 The Hyrax Project . 7

2.3.1 The Hyrax Middleware . 8

3 State of the Art 9

3.1 HyraxMsg . 9

3.2 Communication frameworks . 9

3.2.1 The Serval Project . 10

3.2.2 FireChat and MeshKit . 10

3.2.3 Commotion Wireless . 10

3.2.4 goTenna . 11

3.2.5 Uepaa p2pkit . 11

3.2.6 AllJoyn . 12

3.2.7 Comparison . 12

3.3 Cloud services used in disaster scenarios 12

3.3.1 FrontlineSMS . 13

3.3.2 OpenStreetMap . 13

3.3.3 Ushahidi . 13

3.3.4 Zello . 13

3.3.5 iGDACS and Natural Disaster Monitor 14

4 Design and Implementation 15

4.1 Architecture . 15

4.2 Data Model . 16

4.3 Software Components . 18

4.3.1 Database . 18

4.3.2 Discovery Service . 20

4.3.3 Message Service . 22

viii

4.3.4 Android, Cloudlet and Cloud Apps 24

5 Experiments and Results 27

5.1 Field Experiment Description . 27

5.2 Results . 29

5.2.1 Overview . 29

5.2.2 Movement . 30

5.2.3 Communication technologies used 31

5.2.4 Transfers . 33

5.2.5 Energy . 33

5.3 Summary . 34

6 Conclusions and Future Work 35

6.1 Overview . 35

6.2 Future Work . 35

Bibliography 37

ix

List of Tables

3.1 Table highlighting the differences between the previously described frame-
works and services. 12

xi

List of Figures

4.1 Diagram showing the different communication opportunities available in
the system. 17

4.2 Schema of the database. 19

4.3 Screenshots showing the map view and a content being displayed in the
Ramble app. 25

5.1 Diagram illustrating the setup used in the experiment. 28

5.2 Histogram of contents received per device. 29

5.3 Density of Global Positioning System (GPS) points collected in the experi-
ment and an example of a trace made by device RMBL-E6FKG. 30

5.4 Plots representing active connections to Access Points (APs) or to other
devices using WiFi-Direct over time per device. 31

5.5 Boxplot representing the active time of AP and WiFi-Direct connections. . 32

5.6 Connectivity between cloudlets using the mesh network. 32

5.7 Map representing transfers using AP, WiFi-Direct or both. 33

5.8 Battery usage of devices during the experiment. 34

xiii

Listings

4.1 Services defined in proto3. 24

xv

Acronyms

API Application Programming Interface

AP Access Point

BATMAN Better Approach To Mobile
Ad-hoc Networking

D2D Device-to-Device

DTN Delay-Tolerant Network

GO Group Owner

GPS Global Positioning System

gRPC gRPC Remote Procedure Calls

GSM Global System for Mobile
Communications

IDL Interface Definition Language

IP Internet Protocol

IoT Internet of Things

JDBC Java Database Connectivity

LAN Local Area Network

MANET Mobile Ad-hoc Network

MCC Mobile Cloud Computing

OLSR Optimised Link State Routing

OSM OpenStreetMap

OS Operating System

P2P Peer-to-Peer

RPC Remote Procedure Call

SMS Short Message Service

SPAN Smartphone Ad-hoc Network

SSID Service Set Identifier

SaaS Software as a Service

TDLS Tunnelled Direct Link Setup

UDP User Datagram Protocol

UUID Universally Unique Identifier

VANET Vehicular Ad-hoc Network

WMN Wireless Mesh Network

xvii

Chapter 1

Introduction

1.1 Motivation

Mobile phone usage has grown in recent years. It is estimated that the number of
smartphones will reach 2.53 billion in 2018, a number that is expected to continue growing
in the following years, going as high as five billion by 2019 [1]. This increase in users is
largely caused by the lowering cost of manufacturing devices. Smartphones aren’t merely
growing in users, but also in processing power, capacity and battery life, to name a few.
Today’s devices are able to perform computationally intensive tasks, such as rendering 3D
graphics in games or playing high-quality video. Besides these types of tasks, smartphones
have also become a source for data collection, for instance taking pictures, recording video
and sound, reading fingerprints and performing geolocation. There’s also been advances
in the inclusion of wireless Device-to-Device (D2D) communication technologies such as
WiFi-Direct, WiFi Tunnelled Direct Link Setup (TDLS) and Bluetooth along with the
traditional WiFi and 3G/4G.

These qualities greatly empower crowdsourcing applications, where the information is
generated in a bottom-up fashion. In these tools, the data is generated and collected by
the users and incorporated into the main system. Crowdsourcing tools have been used in
aiding disaster recovery in some scenarios [2, 3] due to the main advantage of crowdsourced
information, data volume. Users already on the site can collect information more quickly
and detailed than rescue personnel, though it may need to be verified either by a trusted
organisation or put through a crowd verification mechanism, such as voting. An example
of that would be the dissemination of geotagged announcements, similar to the service
provided by Scipionus Map [4], a simple web service that allows users to place and view
markers on a Google Map.

1

2 Chapter 1. Introduction

1.2 Problem statement

The problem with cloud-based services arises when connectivity to the cloud can’t be
guaranteed. In the event of infrastructure failure, many of the existing services cannot be
accessed. Natural disasters, for instance large hurricanes and earthquakes, are known to
disrupt communications by physically damaging the network structure due to the inherent
destruction caused by such events. An architecture that makes use of cloudlets, thin
servers close to the edge of the network (i.e., close to the location of users) that provide
services, and D2D connectivity to form networks composed by mobile devices could greatly
help to keep some of these services functioning.

Disasters also generate unusually high traffic that can severely limit the ability to
communicate, as the network becomes congested. In the Great East Japan Earthquake, a
survey was conducted to assess the communications following the earthquake [5], which
showed very low degree of satisfaction in the days immediately after the event.

By using cloudlets or devices in the neighbourhood, data generated by one device can
be transferred to others and vice-versa, providing updated information and allowing data
to spread. Examples of other applications that would benefit from such a system would
be sharing voice messages, either directly or through a publish-subscribe architecture and
the collection of forms to more easily generate reports of the structured data.

To make a service run in the event of infrastructure failure and to take advantage of
crowdsourced data, we propose a system that makes use of mobile devices and cloudlets to
disseminate data. The exchange of data between devices would be done opportunistically,
taking advantage of various contacts eventually established between devices. Mobile
devices can form temporary networks with other devices or connect to nearby cloudlets.
Both of them can connect directly to the cloud, if available. The shared data can be of
any kind, but in this kind of scenario the sharing of geotagged reports, text, audio and
video messages, news and map data would make sense to both the users and, for example,
rescue teams. Other kinds of information could be sensor data.

1.3 Contributions

The main contributions of this work are the following:

• We designed a data sharing library that is able to discover other peers with the goal
of disseminating contents. The system manages content storage, content metadata,
peers, subscriptions, peer discovery, message exchanges and filter management;

1.4. Thesis Structure 3

• Implemented the system targeted at mobile devices and cloudlets;

• Designed and implemented an Android app that allows end users to easily view and
generate content whilst using the system;

• Implemented, using the Link Layer of the Hyrax Middleware, a routine to form
WiFi-Direct networks between nearby devices aimed at short-term opportunistic
contacts;

• Performed a real world test in order to validate, detect problems and extract
preliminary metrics of the system that can potentially lead to future improvements.

1.4 Thesis Structure

The thesis is structured as follows. Chapter 2 contains key concepts and technologies in
which this thesis is based upon. In Chapter 3 we present the state-of-the-art relevant
to this work, including previous work developed in the project, existing communication
frameworks and cloud services. Chapter 4 details the design and implementation of the
Ramble system, describing the various components and how they were implemented.
Chapter 5 describes and displays the results of the experiment that we performed in
order to provide proof of concept. Finally, Chapter 6 provides a general overview of this
dissertation along with future improvements.

Chapter 2

Background

This chapter presents concepts and technologies in which this thesis is built upon. Section
2.1 summarises the three main service paradigms we use in this dissertation, section 2.2
describes the WiFi-Direct technology, outlining its main characteristics and procedures
and section 2.3 references the Hyrax project, defining its main goals and case studies.

2.1 Cloud Computing, Cloudlets and Mobile Edge-
Clouds

To place this work in context we first take a look at cloud computing, which is a computing
paradigm where resources such as storage and computation are provided over the internet.
The infrastructure that provides such resources can be called a cloud. Cloud resources
are typically pooled to serve multiple consumers. Resources are allocated and freed
dynamically according to user needs [6].

Smartphones make great use of this paradigm, as they are computationally limited
and must be energy aware. Therefore, many smartphone applications adopt the Software
as a Service (SaaS) service model, where the client makes use of an application running
on the cloud through a thin client interface, such as a web browser or a program, without
having control of the underlying cloud infrastructure.

Although clouds cover a wide range of use cases, they can fall short in applications
requiring low latency and high bandwidth, as they are usually housed in data centres that
can be physically distant. There is also the obvious fact that clouds become inaccessible
in the case of communication failures.

To aid in this scenario, a mid-level element called cloudlet can be deployed to reduce

5

6 Chapter 2. Background

the distance to the cloud. Cloudlets can be used as a closer and smaller cloud that acts on
the its behalf, performing computation or serving as caches. Because they are placed at
the edge of the network, near end-users, they can potentially reduce end-to-end latency
and low bandwidth problems. When provided with enough hardware, cloudlets can enable
a new set of applications that clouds could not, such as wearable cognitive assistance [7].

Besides the goal of reducing latency, cloudlets have uses in the event of communications
or cloud failure. Since cloudlets act as surrogates of the cloud, they can transparently
mask its absence, providing a limited version of its services [8].

Finally, we have ad-hoc networks. These networks are decentralised networks formed
by wireless links. Each node in the network can route traffic, a task that in traditional
networks is done by routers. A specific kind of ad-hoc network is the Mobile Ad-hoc
Network (MANET). MANETs are ad-hoc networks built by mobile devices. One particular
characteristic of MANETs is that the nodes forming the network are highly mobile,
constantly changing links with other devices, which hinders routing. This means that a
MANET must be self-configuring as to allow data to flow correctly through the network.

Examples of MANETs are Smartphone Ad-hoc Networks (SPANs), networks built with
smartphones that use the communication interfaces present in those devices to form the
network, and Vehicular Ad-hoc Networks (VANETs), for communication between vehicles
and fixed stations.

2.2 WiFi-Direct

WiFi-Direct/WiFi P2P [9] is a communication technology that enables devices to commu-
nicate directly without the need of an Access Point (AP). Unlike ad-hoc mode, WiFi-Direct
is built on top of the IEEE 802.11 infrastructure mode, in which devices either act as
APs, connected to a Local Area Network (LAN), or clients [10]. In WiFi-Direct, a device
that provides AP functionality in a group is called a P2P Group Owner (GO) and a client
is called P2P Client, from now on simply referred to as GO and Peer. These roles are
dynamic and can even be implemented simultaneously by the same device at the same
time (on multiple physical interfaces).

To form a connection, a device must first discover other WiFi-Direct devices. That’s
accomplished by an initial scan phase, to find existing networks or already formed WiFi-
Direct groups, followed by the search and listen phases, in which the discovering device
sends Probe Requests (active scanning) and then listens for them, respectively. These two
states are variable in duration and alternate until the discovering process stops. In this
process, extra data can be exchanged in order to provide information about the services

2.3. The Hyrax Project 7

available on the device being discovered, prior to establishing a connection. This is called
Service Discovery.

In the absence of a previously formed group between the scanning and the discovered
device, the GO negotiation process is then performed. This consists on a three way
handshake in which both devices agree on certain parameters. In this handshake, a Group
Owner Intent is exchanged. The GO is the device with the highest value.

Finally, WPS Provisioning is performed in order to create a secure connection, along
with DHCP address assignment.

What gives potential to this technology is using already implemented and widely used
mechanisms. Today WiFi-Direct technology is used in printers and TVs by services such
as Miracast.

WiFi-Direct is also used to empower Peer-to-Peer (P2P) applications such as the
dissemination of video content between Android devices in close proximity [11, 12], as the
high bandwidth and low latency is suitable for transferring large files without requiring
the use of the network infrastructure, such as APs.

One major drawback lies on the fact that WiFi-Direct only provides single-hop
communication between devices. Two devices connected to the same GO can communicate
by using the GO as gateway, even though they are in range of each other. This GO
mechanisms also hinders the usage of WiFi-Direct for forming ad-hoc networks, as devices
would need multiple interfaces performing different roles to maintain connection.

2.3 The Hyrax Project

Hyrax [13] is a project aimed at facilitating the development of edge-cloud applications.
To that end, a middleware was developed with the main goal of abstracting away all
the intricacies of using various communication protocols in a simple to use API to form
MANET without requiring root access. Hyrax is motivated by three main scenarios.

User-generated Replays [11, 12] is an application that allows users in a crowded venue,
such as a sports match or a race, to capture and share video with other users in the
vicinity. In such events, it is commonplace that infrastructural access, namely WiFi and
mobile communications, becomes congested, due to the high density of devices present in
a certain location. To mitigate this, devices could share video content locally by means of
an edge-cloud, relieving infrastructure of high traffic. A practical test was performed that
showed not only an increased number of users served by the edge-cloud, but also high
speeds when compared with video download through an AP.

8 Chapter 2. Background

Another considered scenario is distributed face recognition [14]. This application can
be useful when dealing with a missing person in a crowded place. By using edge-clouds,
face recognition can be performed locally on each device using the pictures stored there,
without having to disclose them to a cloud service.

This work focuses on this last scenario, which is providing connectivity in case of
prolongued infrastructure deprivation.

2.3.1 The Hyrax Middleware

The middleware, as previously stated, enables the formation of edge-clouds for application
development. The architecture of the middleware is composed by the link layer, the
network layer and the service layer.

The link layer is the bottom layer and it handles the creation of links between
devices using the different communication technologies Hyrax supports. Currently, Hyrax
supports WiFi, WiFi-Direct, Bluetooth, Bluetooth LE and 3G/4G. A simple and unified
Application Programming Interface (API) is provided to use all technologies for discovery
and connection to other devices. We make use of the Link Layer in this work to perform
P2P discovery and group formation. This topic is discussed in chapter 4.3.2.2.

The network layer is built on top of the link layer and it is responsible for establishing a
logical network abstraction using the links set up using the link layer, handling formation,
logical address translation and routing. The API provides methods for packet and stream
based communications, such as sending data to a specific peer or broadcast.

Lastly, the service layer encompasses core services to be used by applications, such as
distributed storage, parallel computing and publish-subscribe systems.

Chapter 3

State of the Art

In this chapter we present previous work and projects relevant to this dissertation. In
section 3.1 we present a simple messaging application that was developed in the scope of
the Hyrax project. In section 3.2, we take a look at various projects that revolve around
Peer-to-Peer (P2P) communications, providing a comparison between them. Finally, in
section 3.3 we present cloud services that have been used in previous disaster situations.

3.1 HyraxMsg

Relating off-grid communications, a messaging application was developed in the Hyrax
Project. HyraxMsg [15] is an Android application that provides users in the near vicinity
with a medium to exchange text messages similar to FireChat. Communication between
users can be made using WiFi, WiFi-Direct and Bluetooth, conveniently provided by
the Hyrax Middleware, and User Datagram Protocol (UDP) sockets. The application
was built as a use case for the middleware to assess the formation of the network with a
practical case.

The application provides a simple user interface with a list of contacts representing
users in the edge-cloud. That functionality is provided by the Network Layer of the
middleware. When a contact is selected, the user can then exchange text messages with it
and know its Global Positioning System (GPS) coordinates.

3.2 Communication frameworks

In this chapter we highlight some platforms with Mobile Ad-hoc Network (MANET)
capacities that are related with this project.

9

10 Chapter 3. State of the Art

3.2.1 The Serval Project

The Serval Mesh [16] is an application for Android that provides useful features in the
event of a disaster or communication failure, such as text messaging, file sharing, voice calls
and map tile sourcing. The system is capable of creating self-organising mesh networks
(MANETs) with mobile devices using ad-hoc connections. Communication can also be
made using Bluetooth and WiFi, by creating an Access Point (AP) or connecting to one.
Serval are also developing the Serval Mesh Extender, a device that acts as an access point
for nearby devices and that connects to more distant extenders using UHF packet radio.
A major drawback of Serval is the need for super-user permissions (or rooting) on the
devices. Although it allows for the AP, client and Bluetooth modes, ad-hoc is restricted to
rooted devices. This is due to Android not providing ad-hoc mode by default through the
Application Programming Interface (API), though it provides WiFi-Direct and Tunnelled
Direct Link Setup (TDLS), which Serval does not seem to employ to circumvent this
limitation. Serval software and hardware has been subject of some field tests, some of
which are range tests for the extenders. Testes in an urban scenario showed reasonable
connection in a distance of about 250m with extenders placed inside houses. The project
is being developed in Flinders University, Australia and its completely open-source.

3.2.2 FireChat and MeshKit

FireChat [17] is a messaging application developed by Open Garden that uses both
infrastructure and MANETs to allow users to communicate, making use of both Bluetooth
and WiFi. FireChat is built using the MeshKit SDK [18], a library that allows the
integration of mesh network in application. The SDK supports various wireless protocols
like Bluetooth, Bluetooth LE and WiFi Direct and allows for seamless use of both Device-to-
Device (D2D) and cloud access. This however couldn’t be tested as the SDK is closed-source
and only available to "select organisations" such as media companies, telecommunication
operators and NGOs. MeshKit has undergone a few practical tests, namely in a national
convention, a music festival and an earthquake preparedness simulation in the Philippines.
This latter one displayed that MeshKit allowed information to reach 80% more people
when compared to cellular connections, in a density of 700 users/m2.

3.2.3 Commotion Wireless

Commotion Wireless [19], unlike the previous examples, targets the infrastructure side
of Wireless Mesh Networks (WMNs). To that end, Commotion developed software to be
integrated in wireless routers that builds upon existing open-source projects, for example

3.2. Communication frameworks 11

OLSR, a link-state routing protocol for mesh networks, OpenWRT, a Linux distribution
for embedded devices commonly used to deploy routers and Serval. The goal is to provide
a decentralised infrastructure for communication. Commotion was implemented in a
Tunisian town named Sadaya where it serves as a host for services like OpenStreetMap,
Wikipedia, free digital book library, file sharing and Etherpad, a platform for collaborative
document editing.

3.2.4 goTenna

goTenna’s [20] approach to creating a MANET differs from the ones presented previously.
Instead of using the antennas of mobile devices, communication is made with a portable
device. This device is lightweight, battery powered and can be paired with smartphones
through Bluetooth to add mesh networking to apps. This allows for chatting applications
and GPS coordinates sharing. Communication between goTenna devices is made using
radio frequencies of 151-154 MHz, allowing for greater distances and obstacles, however
these are highly dependent on terrain conditions. One advantage of this approach is the
use of meshing, which allows for users to communicate through greater distances than
they would be able to using a direct link. A limiting factor is the fact that goTenna
devices can only interact among themselves. The device is sold in pairs and is targeted to
groups of people that venture into locations without connection, such as remote villages
or mountains, but it could have great use in a disaster scenario, though the device is a bit
expensive for a radio antenna.

3.2.5 Uepaa p2pkit

p2pkit [21] is a library with a simple API that allows smartphones to connect and estimate
the distance to other devices in near proximity. Like Hyrax, the library helps abstract
the complicated APIs that implement the various communication technologies, such as
Bluetooth and WiFi. Unlike Hyrax, p2pkit does not implement any form of routing for
allowing multi-hop communication by default. The API, whilst simple, seems to be more
limiting than general purpose mesh networking frameworks, containing APIs for Discovery,
to manage the discoverability of devices, Lifecycle, to manage Uepaa account validation,
Messaging, to send and receive messages and Proximity Ranging, to estimate the relative
distance between two devices.

12 Chapter 3. State of the Art

3.2.6 AllJoyn

AllJoyn [22] is an open-source framework that allows devices to communicate using D2D
connections. The platform is Operating System (OS) agnostic, supporting all major
smartphone and Internet of Things (IoT) OSs. The framework works by allowing devices
to publish APIs over the network representing the functionalities a certain device offers.
AllJoyn handles the discovery of these APIs over many communication technologies. This
is achieved by means of a general bus, which abstracts all discovery mechanisms of the
various communication technologies. These include WiFi, WiFi-Direct, Bluetooth and
Ethernet.

3.2.7 Comparison

Table 3.1 shows the different frameworks considered in chapter 3.2 resuming some of the
common characteristics, denoting whether:

• they are open-source,

• they support device mobility,

• they implement MANET or mesh capabilities,

• they support WiFi, WiFi-Direct and Bluetooth.

Table 3.1: Table highlighting the differences between the previously described frameworks
and services.

Framework Open-source Mobilily MANET or mesh WiFi WiFi-Direct Bluetooth Observations

The Serval Project Yes Yes Yes* Yes No Yes *Requires root

MeshKit No Yes Yes Assumed No Yes

CommotionWireless Yes No Yes Yes No No

goTenna No Yes Yes No No No Meshing requires a specific version of the portable antenna

p2pkit No Yes No No Yes Yes Requires API key

AllJoyn Yes No Yes Yes Yes Yes

Hyrax Middleware Yes Yes Yes Yes Yes Yes

3.3 Cloud services used in disaster scenarios

We highlight some services known to be used in disaster relief.

3.3. Cloud services used in disaster scenarios 13

3.3.1 FrontlineSMS

FrontlineSMS [23] is an open-source software that allows for the use of mobile devices or
GSM modems to distribute and collect information by using the SMS capabilities of those
devices. It has the advantage of connecting a large number of users without the need for
an internet connection, requiring only GSM.

3.3.2 OpenStreetMap

OpenStreetMap (OSM) [24] is a crowdsourced map service. Map data is generated by
users following a collaborative model similar to Wikipedia [25]. The web interface provided
is similar to Google or Bing maps, where the users can zoom, pan and search for a location.
Additionally, OSM also provides an export function, to allow users to download map data
in various formats, an editing function, for submitting changes or uploading GPX traces,
and a community wiki, with guidelines on how to collect and submit map data.

This functionality proved useful in the Haiti Earthquake [2] as the map of many haitian
locations, namely the capital Port-au-Prince, were updated to match the current state of
the city.

3.3.3 Ushahidi

Ushahidi [26] is a platform that makes use of crowdsourcing to provide a version of events
that is closer to reality. If we consider that in some places media can be censored, the
population can then contribute with information, that is verified by the crowd [27]. The
platform allows for anonymity and the use of SMS, MMS and a browser, which makes it
versatile and accessible. Besides being used in censored media environments, it proved
convenient during the Haiti Earthquake. By gathering geotagged reports from users, a
more accurate perspective of events in a certain location can be formed [2].

3.3.4 Zello

In scenarios of natural disasters many voice and text messaging applications were used to
provide information and communication to people. One example of a widely used one is
Zello [28], a walkie-talkie application that provides a simple service that was very useful
during the Irma Hurricane [29]. The application has a push-to-talk function, where users
can record voice clips and either send them directly or broadcast them to a group of other
users. This was used during said hurricane to help rescue teams find people in need, as

14 Chapter 3. State of the Art

many houses were completely submerged and there was risk of drowning. People used
Zello to broadcast their location to rescue teams as well as receive and send information.
We highlight this particular application due to its simple nature and high utility. Zello
uses does not provide any form of D2D connectivity, which we think it could highly benefit
from.

3.3.5 iGDACS and Natural Disaster Monitor

iGDACS and Natural Disaster Monitor are two smartphone apps targetting iOS and
Android, respectively, that provide real-time information about natural disasters and gives
the possibility to send back information in the form of a geo-located image and/or text.
iGDACS is the official app by the European Commission, while Natural Disaster Monitor
uses the Global Disaster Alert and Coordination System (GDACS) website for information.

Chapter 4

Design and Implementation

As was briefly introduced in chapter 1, Ramble aims at being a system that takes advantage
of edge components and user mobility to disseminate content opportunistically. Although
it was designed in such a way that allows many different types of devices to use it, we
focus on two main types: mobile devices and cloudlets. Both these components, although
different in goal, share the same underlying software. They store information and discover
other peers on a local network using the same methods. Mobile devices, however, need
an extra discovery mechanism in order to use WiFi-Direct. Despite that, cloudlets, for
example, interact with mobile devices the same way they interact with other cloudlets, and
vice-versa. Instead of designing a different software stack for each component, we use the
same ones with different configurations. The system uses a client-server methodology, in
which each device acts as both a client and a server. A remote server component could also
be added, with both mobile devices and the cloudlets periodically checking for a connection
to it, although the same message dynamic could not be used. These components and
interactions are explained in this chapter. Section 4.1 defines the architecture, outlining
the different components and what types of connections they use to reach each other.
Section 4.2 formally describes the structure of the data used by in the database and in the
exchange messages. Finally, section 4.3 defines the software components that are used in
the components.

4.1 Architecture

Ramble was mainly designed to be used by three types of physical devices, which we will
refer to as Mobile devices, Cloudlets and Cloud components.

In this work, we considered mobile devices to be WiFi and WiFi-Direct enabled Android
devices. This, for the most part, was because the current implementation of the Hyrax

15

16 Chapter 4. Design and Implementation

Link Layer is an Android Library as the other main mobile operating system, iOS, does not
support direct use of WiFi-Direct. Theoretically, the same system could be implemented
in another mobile operating system given the same conditions. Mobile devices are essential
to this work as they provide the mobility that Ramble takes advantage of. They also
provide a means for a user to interact with the system. As mentioned before, mobile
devices are found everywhere today, which also empowers the use Ramble.

Next, we define Cloudlets. Although these devices are typically powerful servers used
to offload computation, we use them to offload storage. With this, cloudlets need not
be powerful, but instead have large storage capacity to hold large quantities of data.
Raspberry Pis make good cloudlets in this scenario, as they are cheap and provide inputs
for storage capacity expansion. Cloudlets also provide WiFi access for mobile devices,
giving them access the cloudlet but also providing a means to communicate with each
other. As an extension to the functionality described before, cloudlets can also be equipped
with a second radio to be used in ad-hoc mode paired with a routing protocol (like Better
Approach To Mobile Ad-hoc Networking (BATMAN)) to communicate with other cloudlets
in the vicinity forming a mesh network between them. This has the effect of keeping the
cloudlets synchronised and making information available over large distances.

Finally, the Cloud component is an additional (but non essential) component of the
system. A remote server provides the final glue in all the system, collecting information
provided by the other components to be processed and analysed centrally.

4.2 Data Model

In this section we present the data model that supports all the components in the system.

The data model has three main components, the Peers, the Content and the Subscrip-
tions.

A Peer represents a node in the system and is identified by a Universally Unique
Identifier (UUID). We use randomly generated (type 4) UUIDs because there’s a very
low chance that the same UUID is generated in different devices, and also due to the fact
that these can be generated independently, without relying on a centralised party. Besides
the UUID, more information about a Peer could be added. We include the username
and a device type, to ease human visualisation, as well as the version of the peer when it
was last seen. Internally, only the UUID is used for identifying a peer. Although a UUID
is 128 bits in size, we used the larger (37 bytes) string representation to facilitate the
implementation.

4.2. Data Model 17

Figure 4.1: Diagram showing the different communication opportunities available in the
system.

Next, we define the contents that constitute the data exchanged by devices. We don’t
impose a restriction on specific types of contents, so a Content is some collection of bytes
described by a ContentMetadata. This holds all the information that describes a content,
such as name, creator, size, when and where it was generated and a MD5 hash. Part of
the ContentMetadata are also content types, which can be audio, video, image, report or
other. Lastly, each Content contains a list of tags, which can help to further differentiate
various kinds of data.

Finally, we define a Subscription. Subscriptions are a set of restrictions applied in the
moment of device synchronisation. A device/user can only be interested in a subset of all
the contents, like pictures taken 1 hour ago in a 5 km radius, to give an example. The
content can be filtered by type, by tags, by the peer that created it, by the timestamp of
creation, location and size.

These basic data definitions are used in various components, described in this chapter.

18 Chapter 4. Design and Implementation

4.3 Software Components

The Ramble system is divided into logical components, each one with a defined task. The
Database is the base component, serving the purpose of storing information about an
instance of the system (the state of a device at a point in time). The Discovery Service
handles the discovery of other peers in order to establish a connection between them.
The Message Service handles message exchanges between discovered peers using a defined
protocol. Finally the Android, Cloudlet and Cloud apps that use these services to run the
system.

All the components are implemented in the Java programming language, which makes
it easy to use the same code across all components. The database, discovery and message
service (described later in this section) are the same in both the cloudlet and mobile device
components, but have different configuration parameters when deployed on one or the
other. This section describes each software component used in the system, outlining what
they are, what their function is and how they were implemented.

4.3.1 Database

The database is one of the most important components, as all the other ones use it in one
way or another. The schema was designed directly from the data model. A diagram of the
schema is displayed in figure 4.2.

The peers table has the same fields as the ones described in the model. The subscriptions
and the content_metadata tables are also straightforward, each one containing two
additional tables to represent multiple fields. The tags_subscription and types_subscription
stores the tags and types of the subscriptions to be sent and filtered. The tags_content
stores the various tags of the files. The database is, however, not normalised due to the
file_content table existing, which was a result of a previous state in development. This
table should be removed and replaced by a filename field in the content_metadata table.

Implementation

The database is stored in disk using the SQLite1 database engine. One of the reasons
for picking SQLite is that, unlike traditional database management systems which run
on a server, it allows an application to perform direct reads and writes to a file using
a library. In order to use the the same code in all components, we decided to use Java

1https://www.sqlite.org/

4.3. Software Components 19

generated by SchemaCrawler 15.01.02
generated on 2018-09-25 17:39:37

content_metadata [table]
uuid TEXT
name TEXT
content_type INTEGER
created INTEGER
latitude REAL
longitude REAL
height REAL
size INTEGER
hash BLOB
source TEXT
added INTEGER
version INTEGER

peers [table]
uuid TEXT
username TEXT
device_type INTEGER
version INTEGER

file_content [table]
id INTEGER

auto-incremented
content_uuid TEXT
filename TEXT

tags_content [table]
id INTEGER

auto-incremented
tag TEXT
content_uuid TEXT

subscriptions [table]
uuid TEXT
source TEXT
timestamp_from INTEGER
timestamp_to INTEGER
max_size INTEGER
max_items INTEGER
latitude REAL
longitude REAL
radius REAL

tags_subscription [table]
id INTEGER

auto-incremented
tag TEXT
subscription_uuid TEXT

types_subscription [table]
id INTEGER

auto-incremented
type INTEGER
subscription_uuid TEXT

Figure 4.2: Schema of the database.

Database Connectivity (JDBC). JDBC is an Application Programming Interface (API)
of the Java Standard Library used to interact with relational databases. One advantage
of using JDBC is its Driver Manager. An application can use the same code to make
queries and updates, but the underlying driver performs the operations to the specific
database. We made use of this feature by supplying different drivers when running on
Android and when running in the cloudlets. The Android library already has APIs to deal
with SQLite databases, so we used driver2 that wraps around them. The driver used in
the other components (running Linux) wraps around the standard Java SQLite API3.

2https://github.com/SQLDroid/SQLDroid
3https://github.com/xerial/sqlite-jdbc

20 Chapter 4. Design and Implementation

4.3.2 Discovery Service

For components to interact with each other, a discovery system needs to exist. The
discovery job in Ramble is described in the following subsections and is twofold:

1. Discover peers running Ramble in the same network/subnet, which we will call
Service Discovery.

2. Discover other mobile devices nearby in order to establish a WiFi-Direct connection,
which we will call Peer-to-Peer (P2P) Discovery.

4.3.2.1 Service Discovery

In case 1 we opted to use a bare-bones broadcast-based discovery mechanism as it fits all
requirements and allows us to use the same implementation across the Mobile Device and
Cloudlet components. The broadcast has the UUID and version of the peer. Upon finding
a peer, the Discovery Service informs the Message Service of the new peer.

Implementation

This procedure was implemented by sending a User Datagram Protocol (UDP) packet to
the broadcast address, which in IPv4 consists of setting the host portion of the Internet
Protocol (IP) address (given by the subnet mask) to ones, of all network interfaces on a
specific port. At the same time, the device also listens for UDP packets on the same port.
When a packet is received, the sender address is used in order to communicate with it.
This, along with the contents of the packet, is passed to the Message service.

4.3.2.2 P2P Discovery and Group Formation

This section describes the process of finding nearby mobile devices and forming a network
between them so that they can communicate. The added challenge of doing it in an
opportunistic scenario is that we can’t guarantee that the network will stabilise. The
scenario for which Ramble was designed for is one that presupposes constant movement
of mobile devices and contacts between devices are short and must be taken advantage
of. It is also important to mention that, at this point, we didn’t take energy or security
concerns into consideration.

In Ramble we decided to use WiFi-Direct, as it is available in a large portion of devices
and provides high speed transfers, which can prove advantageous when transferring large

4.3. Software Components 21

files. Due to the nature of WiFi-Direct, the trivial solution is to adopt a star-shaped
network topology, in which the centre of the star is the Group Owner. As was stated
in section 2.2, WiFi-Direct by itself doesn’t allow the formation of a mesh network, so
in order to take advantage of every contact, we built upon the basic WiFi-Direct Group
Formation. Another feature that WiFi-Direct is lacking is the ability to transfer the role
of Group Owner to other devices. This can be achieved by destroying a formed network
and having the other device create a new one where he is the Group Owner. With this in
mind, we implemented a procedure that tries to avoid missed connections.

The procedure for finding and connecting to peers is described in pseudocode in
procedure 1. It starts by verifying if the device is connected or is awaiting a connection
result, in both cases stopping the process. Then proceeds to check if the device is a Group
Owner and has no connected peers, killing the group. It then proceeds with a scanning
process, searching for nearby broadcasting WiFi-Direct devices running the Ramble app.
All devices are comparable, meaning they can be ordered. Upon finishing the scanning
process, discovered peers are ordered in descending order, placing highest one in the first
position. If the discovering device is a Group Owner it ends the process. To pick a
connection, first we check if there are Group Owners in the discovered peers, connecting
to the first one. If no Group Owners are found, one of two situations can happen. If the
discovering device is the highest one, it does nothing (it waits for the other to connect),
otherwise it connects to the first one.

Implementation

The procedure described above was implemented using the Link Layer of the Hyrax
middleware. The Link Layer is a library that allows access to the various communication
technologies present in Android devices, such as WiFi-Direct and Bluetooth LE. The API
provided by the library is unified across all technologies and contains methods, among
others, for enabling an interface, making it visible, start discovery and connect to a device,
as well as the reverse of those (disable, invisible, stop discovery and disconnect). These
methods can be configured based on the communication technology being used and require
a listener that the library uses to inform the program about events. We make use of these
methods to build our procedure in an asynchronous manner. The Link Layer is also used
to search for Access Points (APs) broadcasting a specific Service Set Identifier (SSID)
which identifies the cloudlets. Upon finding one, the device connects to it.

22 Chapter 4. Design and Implementation

Procedure 1 Procedure for finding and connecting to peers using WiFi-Direct
Input: myDevice, linkLayer

if linkLayer.isPeer() or awaitingConnection() then
return

end if
if linkLayer.isGroupOwner() and linkLayer.connectedDevices().isEmpty() then

linkLayer.killGroup()
end if
devicesFound ← linkLayer.scan()
if linkLayer.isGroupOwner() then

return
end if
devicesFound ← sortById(devicesFound)
groupOwners ← filterGroupOwners(devicesFound)
devices ← filterDevices(devicesFound)
if linkLayer.isGroupOwner() then

return
end if
if groupOwners.isNotEmpty() then

linkLayer.connect(groupOwners[0])
return

end if
if devices.isNotEmpty() then

targetDevice ← devices[0]
if myDevice > targetDevice then

setAwaitingConnection()
return

else
linkLayer.connect(targetDevice)

end if
end if

4.3.3 Message Service

The message service handles incoming and outgoing messages between peers. It sits on
top of the discovery service which informs it of found peers. Messages are handled in a
client-server dynamic, in which one peer (client) makes a request to another peer (server)
and this one returns the response. The messages that we used were hello and pull. The
hello message functions as a greeting between the peers, where a peer sends his subscription

4.3. Software Components 23

and receives a list of contents that match that subscription. The pull message is used to
obtain a content from another device.

A typical sequence of messages between two peers starts with one sending an hello
message, followed by zero or more pull messages, according to the required content. The
other peer mirrors this interaction. At the end of this interaction, both devices are
synchronised.

Implementation

The message service was implemented using a combination of Google’s Protocol Buffers
and gRPC Remote Procedure Calls (gRPC) frameworks. Protocol Buffers (Protobuf)
is used for serialising structured data defined in a platform neutral Interface Definition
Language (IDL), proto3. It basically takes data structures defined using the IDL and
generates code in one of the supported programming languages that allows the programmer
to use them internally but, more importantly, to use as messages. Protobuf focuses on
performance, so the serialised messages are small as possible, which is ideal for our purposes.
The data structures are called Messages and are defined in a proto file. gRPC, in turn, is
a powerful HTTP/2 based Remote Procedure Call (RPC) framework. Instead of creating
a new IDL, gRPC makes use of the proto3 language used in protobuf, allowing for the
definition of Services. A service has a set of RPCs methods specified using proto3, each
one having a request and response protobuf Message associated. gRPC then generates
code for the server and stub using the definitions.

For our implementation, we were not concerned in using protobuf to generate code for
different programming languages, as we decided on only using Java, but to have a well
defined protocol for messages in all devices. We show the protobuf messages and services
using the proto3 IDL in listing 4.1. The Peer, Subscription and ContentMetadata protos
directly match the ones defined in figure 4.2. All messages have a header identifying the
peer, followed by the contents of the message.

24 Chapter 4. Design and Implementation

message Header {

Peer peer = 1;

uint64 timestamp = 2;

}

message Chunk {

ContentMetadata metadata = 1;

bytes data = 2;

}

message HelloRequest {

Header header = 1;

repeated Subscription subscription = 2;

}

message HelloResponse {

Header header = 1;

repeated ContentMetadata content_metadata = 2;

}

message PullRequest {

Header header = 1;

string content_uuid = 2;

}

message PullResponse {

Header header = 1;

Chunk chunk = 2;

}

service Ramble {

rpc hello(HelloRequest) returns (HelloResponse);

rpc pull(stream PullRequest) returns (stream PullResponse);

}

Listing 4.1: Services defined in proto3.

4.3.4 Android, Cloudlet and Cloud Apps

The Android app is the component that allows users to interact with the system. Our case
study focuses on the dissemination of geotagged content between peers. To accommodate
this constraint, the main view consists of a map showing markers on the map of the
contents currently stored in the device, as can be seen in figure 4.3a. The user can fully
interact with the map and can view the content represented by a marker by tapping

4.3. Software Components 25

(a) Map view. (b) Content view.

Figure 4.3: Screenshots showing the map view and a content being displayed in the Ramble
app.

on it, shown in figure 4.3b. The button on the bottom right (with a plus) allows the
user to generate content by taking a picture, writing a report or record audio and video.
The interface was designed to be as simple as possible, hiding all the complexity of the
system behind it and allowing a normal (not tech savvy) user to easily use it. The top bar
indicates the username, the current P2P status (Disconnected, Peer or Group Owner) and
the current version of the database. The top left icon (hamburger icon) opens a navigation
drawer with the remaining views listed, consisting of a log view and a peer and content
list. As the app was designed with the field experiment in mind (later described in chapter
5), the app is missing a configuration menu, where the user could adjust filters and other
preferences.

The cloudlet app has the same function as the Android component. The app is the
same as the Android app minus P2P discovery and the UI, with the output being displayed
on the console.

26 Chapter 4. Design and Implementation

Implementation

The map view was implemented using a map rendering library called Mapsforge4. Mapsforge
uses a specific compact map file format (compiled from other known formats using a tool)
to render the map as needed. This provides a much cleaner map at the cost of computation.
Mapsforge also allows the drawing of bitmaps on the map, which we used to display the
markers and the precision.

The other views are simple RecyclerView lists with custom list items for each type of
content being displayed.

Overall, the Android app was implemented using a single activity with multiple
fragments displaying each view. The fragments are swapped around when the user requests
a different view. The other software components (message and discovery services) were ran
in a Service, which is a component that runs outside the Activity life cycle. The user is
able to minimise the app or lock the screen while the service is running without killing it.

The other apps start the services they use and wait for them to be killed by human
interaction.

4https://github.com/mapsforge/mapsforge

Chapter 5

Experiments and Results

Android, WiFi-Direct and Bluetooth have been around for a while. Despite the fact that
they are used to couple smartphones and tablets with devices like headphones, fitness
trackers or printers, the applications in which these technologies are used for Device-to-
Device (D2D) interactions are few. There are methods to use an Android virtual machine
to interact with a physical device using Bluetooth but, to our knowledge, there aren’t any
emulation or simulation systems for running Android applications using Peer-to-Peer (P2P)
communication technologies coupled with device mobility. Static tests would not make
much sense as this is a platform that takes advantage of mobility. These factors, coupled
with the need to evaluate Ramble, motivated us to perform a real world test.

In section 5.1 we describe the performed experiment and the setup used in it. Section
5.2 shows the obtained results and section 5.3 contains a conclusion to this chapter.

5.1 Field Experiment Description

The test was performed in Porto’s Botanical Garden1. The location was chosen mainly
due to convenience, as it is located near the computer science department making logistics
easier, but also because it offered a large contiguous isolated area (nearly 30000 m2) for
people to roam and bump into each other.

Figure 5.1 shows the setup we used in the experiment. The setup was comprised of 3
Raspberry Pi cloudlets equipped with 2 radios, one providing a WiFi Access Point (AP)
(illustrated by the circumference around each cloudlet) and the other for communicating
with the other cloudlets in the mesh network (illustrated by the arrows going from and
to each cloudlet). The mesh network was implemented by using the ad-hoc mode and

1https://jardimbotanico.up.pt/

27

28 Chapter 5. Experiments and Results

Figure 5.1: Diagram illustrating the setup used in the experiment.

the BATMAN2 routing protocol. The remaining components of the experiment are the
Android mobile devices. The Android devices we used were HTC Nexus 9 tablets running
Android version 6.0, with 2GB of RAM and a dual-core 2.3GHz CPU. The cloudlets ran
on Raspberry Pis 3 Model B with 1GB of SDRAM and a quad-core 1.2 GHz ARM Cortex
A53 CPU.

A total of 10 people participated, each one equipped with an Android device. Prior to
the experiment, a set of points of interest were collected. Users were then instructed to go
to those points of interest and tag them (take a couple of pictures) if they weren’t already
tagged. Every user was sent from the same location (the small house in the bottom right
of figure 5.1) but at different times and with alternating directions (up or left). The former
was enforced to avoid users all going at the same time, which could limit the number of
random encounters as they would all be in the same place at the same time, and the latter
to create diversity in the mobility within the park. All devices were configured to accept
all contents.

2https://www.open-mesh.org/

5.2. Results 29

5.2 Results

We now proceed to examine the data collected in the experiment.

5.2.1 Overview

The elapsed time for the entire experiment was 3900 seconds (65 minutes). In total, 217
contents were created averaging 1.97 MB in size. These contents were exchanged 898 times
between devices. Figure 5.2 shows the distribution of the contents received per device over
time in a histogram type chart. In the figure it is clearly visible that the cloudlets have a
smoother distribution (as they were always connected to each other) while the devices
have a more irregular and random distribution. This is due to many factors concerning
connection opportunities, difference between content accumulated and movement.

RMBL−WDUIZ

RMBL−E6FKG RMBL−JEPD9 RMBL−JQF9H RMBL−ROQ85

RMBL−58WO7 RMBL−5L0CA RMBL−75UMB RMBL−9NN8A

CLDT−NZ6UL CLDT−S4URN CLDT−SRM4N RMBL−4YO0B

0 1000 2000 3000

0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

Time (s)

C

on
te

nt
s

Contents Received per Device

Figure 5.2: Histogram of contents received per device.

30 Chapter 5. Experiments and Results

(a) GPS density. (b) RMBL-E6FKG Trace.

Figure 5.3: Density of GPS points collected in the experiment and an example of a trace
made by device RMBL-E6FKG.

5.2.2 Movement

Regarding user movement, Global Positioning System (GPS) traces were overall very noisy
and irregular in certain areas. One of the reasons for this result can be largely due to the
dense vegetation in many zones of the park, interfering with the signal. To better assess
this irregularity, a plot of the precision given by the Android’s location manager over time
would be a good solution. Unfortunately, this detail was overlooked and that information
was not recorded. Even so, there are still some methods to handle noisy GPS data. We
went with a simple outlier removal method that aims at reducing impossibilities, such as
sudden impossible jumps and out of bounds positions. For this we considered an upper
bound speed of 3m/s (10.8km/h) and replaced outliers with a plausible position between
the current and the obtained position. The traces were acceptable in most devices. Figure
5.3a shows the density of GPS points collected in the experiment. The distribution is
visibly circular with a higher concentration of points in the bottom right and top left
corners of the park. These peaks are owed to the fact that the previously mentioned
locations are more prone to user encounters. By inspection of the traces is visible that
the users behaved as instructed, performing a circuit around the area, but due to the
characteristics of the park or encounters with other users there was a concentration in the
peak points.

5.2. Results 31

● ● ● ● ●● ● ● ● ●

● ● ●● ● ●

● ● ● ● ● ●● ● ● ● ● ●

● ● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●● ● ●● ● ● ●● ● ● ●

● ●● ● ● ● ● ● ●●● ● ● ● ● ● ● ●

● ● ● ● ● ● ●● ● ● ● ● ● ●

● ● ● ● ●● ● ● ● ●

● ● ● ● ● ●● ● ● ●● ● ● ● ●● ● ● ● ●

RMBL−4YO0B

RMBL−58WO7

RMBL−5L0CA

RMBL−75UMB

RMBL−9NN8A

RMBL−E6FKG

RMBL−JEPD9

RMBL−JQF9H

RMBL−ROQ85

RMBL−WDUIZ

0 1000 2000 3000

Time (s)

D
ev

ic
e

Connections to APs per Device

(a) AP connection by device over time.

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●● ● ● ● ● ●

● ●● ●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ●

● ●● ●

● ● ● ● ● ●● ● ● ● ● ●

● ●● ●●● ● ●

● ●● ●● ● ● ● ● ●● ● ● ● ● ● ● ● ● ●

RMBL−4YO0B

RMBL−58WO7

RMBL−5L0CA

RMBL−75UMB

RMBL−9NN8A

RMBL−E6FKG

RMBL−JEPD9

RMBL−JQF9H

RMBL−ROQ85

RMBL−WDUIZ

0 1000 2000 3000

Time(s)

D
ev

ic
e

WiFi−Direct Connections per Device

(b) WiFi-Direct connection by device over time.

Figure 5.4: Plots representing active connections to APs or to other devices using WiFi-
Direct over time per device.

5.2.3 Communication technologies used

Now we analyse contacts between devices. More specifically, we analyse contacts between
mobile devices and the cloudlets, via APs, and other mobile devices, using WiFi-Direct.
Important to note that in these plots, simply the use of the technology is displayed, not a
connection to a peer. In figure 5.4b its often the case that one activation period had many
clients.

Figure 5.4 displays two plots providing a general overview of the contacts experienced
by each device. The AP connections were on average 156.4s long and amounted to 30% of
the total time. On the other hand they were 115.3s and 19.5% on the WiFi-Direct. As
can be observed in the plots, there was overlap in the usage of one or another technology.
Devices under the same AP could communicate using both WiFi and WiFi-Direct. This
possibility was known beforehand and wasn’t explored, the system used the most recent
contact established when starting the syncing process. One alternative to this behaviour
could be to use both communication interfaces to split traffic and improve performance.
Figure 5.5 shows boxplot of the active times.

On the other hand, the mesh network displayed an erratic behaviour from the beginning
to the middle of the experiment as can be seen in Figure 5.6. We can’t be sure of what
caused this lack of connectivity, but we can assume that it was caused by interference,
as the mesh operates in the 5GHz range, which tends to have a worse performance when
facing obstacles.

32 Chapter 5. Experiments and Results

●

●

●

●

●

●

●

0

200

400

600

AP WiFi−Direct

Type of Connection

T
im

e
(s

)

Active Time of Connections

Figure 5.5: Boxplot representing the active time of AP and WiFi-Direct connections.

● ● ● ● ●● ● ●● ● ● ● ● ● ● ●

● ● ● ● ●● ● ●● ● ● ● ● ● ● ●

● ●● ● ● ● ●● ● ●● ● ● ●

● ●

● ● ● ● ●● ● ● ● ●● ● ● ● ● ●● ● ● ●

● ●

CLDT−NZ6UL −> CLDT−S4URN

CLDT−NZ6UL −> CLDT−SRM4N

CLDT−S4URN −> CLDT−NZ6UL

CLDT−S4URN −> CLDT−SRM4N

CLDT−SRM4N −> CLDT−NZ6UL

CLDT−SRM4N −> CLDT−S4URN

1000 2000 3000 4000

Time(s)

C
lo

ud
le

t t
o

C
lo

ud
le

t

Mesh Connectivity

Figure 5.6: Connectivity between cloudlets using the mesh network.

5.2. Results 33

5.2.4 Transfers

We now analyse what form of communication was used for transferring the files. Figure
5.7 displays a map in which each dot represents a transfer using APs, WiFi-Direct or both.
In this map we can observe that the transfers that occurred in the area covered by APs
were done while the devices were connected by all combinations of the WiFi-Direct and
AP technologies, in contrast to the top-left area, where there is no coverage of APs and
all transfers were done using WiFi-Direct. This presents a possible improvement point, as
we expected that all transfers done in range of the cloudlets would be done using AP.

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●●●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●
●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●●●●
●

●

●●

●

●

●●●

●

●

●
●●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●
●●●●

●

●●●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

AP

AP + WiFi−Direct

WiFi−Direct

Transfers using APs and WiFi−Direct

Figure 5.7: Map representing transfers using AP, WiFi-Direct or both.

5.2.5 Energy

When dealing with mobile devices, energy concerns are commonplace. As stated previously,
the system was designed without having this concern in mind, but nonetheless we take a
look at toll that our system cause on the battery of the devices. Figure 5.8 displays the
battery levels of the tablets during the experiment. On average, 16% of the initial battery
was used across all devices. This high usage is due to, among other factors, the screen of
the devices being turned on for long periods of time, the constant usage of GPS and the
WiFi-Direct scanning and connections.

34 Chapter 5. Experiments and Results

20

40

60

80

100

0 1000 2000 3000

Time (s)

B
at

te
ry

 L
ev

el

Battery Levels per Device

Figure 5.8: Battery usage of devices during the experiment.

5.3 Summary

This experiment accomplished its main goal, which was to validate the Ramble system
in a real world scenario. The system was able to accomplish its main goal, which was to
allow users to generate content while exchanging it with other users when they pass near
each other and cloudlets.

Chapter 6

Conclusions and Future Work

6.1 Overview

In this dissertation we presented Ramble, a system for opportunistic dissemination of
content for infrastructure deprived environments. We designed and developed the multiple
components that make up the system in a compartmentalised way, while leaving room from
improvement. We implemented a database that serves as the base of all other components,
acting as a local source of truth. We implemented a discovery service general enough
that it could be used in various network configurations and technologies, such as WiFi,
WiFi-Direct and WiFi Ad-hoc. We designed a procedure for establishing WiFi-Direct
networks between nearby mobile devices that focuses on short-term opportunistic contacts.
On top of those, we then developed a message service that interact with the discovered
devices with the goal of synchronising data between them. To use this, we developed
applications for different physical devices, them being Android devices and cloudlets, that
use the system for exchanging georeferenced contents. In particular, we developed an
Android app that allows users to view and generate contents using their location. Finally
we performed a real world test as proof of concept, proving that the system works and has
advantages when compared with the traditional cloud computing paradigm, which would
not be possible in a disconnected environment.

6.2 Future Work

This work was built from scratch and this was the first version, so there is obviously a lot
of room for improvement.

First of all, the User Datagram Protocol (UDP) broadcast-based discovery mechanism

35

36 Chapter 6. Conclusions and Future Work

could be improved to multicast or replaced by already established service discovery methods,
such as DNS-SD. Some networks don’t allow broadcasting, so the current method could
be rendered useless in such a network. The Peer-to-Peer (P2P) Discovery and Group
formation procedure also has some known flaws that can cause interrupted synchronisations.
This occurs because the discovery and message services are independent, and the discovery
service is not aware if contents are being transferred or not. Another problem with the
P2P Group Formation is the limitations of WiFi-Direct. One solution to this would be
to use different communication interfaces (WiFi and Bluetooth) and alternate between a
static and opportunistic mode based on sensors or number of discovered peers. That way,
depending on the mobility of the user, different connection methods could be applied.

Another improvement area would be the energy concern. Constant WiFi-Direct
scanning drains the battery unnecessarily, as no connections are being established. A
solution would be a hybrid procedure using Bluetooth LE for discovery and WiFi-Direct
for establishing connections. Although we did experiment with this, we decided not to
follow that path, as there was a loss in connection time.

Finally, the database layer could be improved to use smart caching methods. A mobile
device has limited memory. The filters help to limit the amount of contents a device
receives. However, a device with very strict filters is limiting the spread of information.
The system could be improved to prioritise the desired content, but also, based on some
metrics, store content it doesn’t want in order to transfer it to another peer who might.

Bibliography

[1] Statista, “Number of smartphone users worldwide from 2014 to 2020 (in bil-
lions),” https://www.statista.com/statistics/330695/number-of-smartphone-users-
worldwide/, [Accessed: November 2017].

[2] M. Zook, M. Graham, T. Shelton, and S. Gorman, “Volunteered geographic
information and crowdsourcing disaster relief: a case study of the haitian earthquake,”
World Medical & Health Policy, vol. 2, no. 2, pp. 7–33, 2010.

[3] M. Poblet, E. García-Cuesta, and P. Casanovas, “Crowdsourcing tools for disaster
management: A review of platforms and methods,” in AI Approaches to the Complexity
of Legal Systems. Springer, 2014, pp. 261–274.

[4] “Scipionus - Hurricane Information Maps,” https://gregstoll.dyndns.org/scipionus/,
[Accessed: January 2018].

[5] H. Yamamura, K. Kaneda, and Y. Mizobata, “Communication problems after the
great east japan earthquake of 2011,” Disaster medicine and public health preparedness,
vol. 8, no. 4, pp. 293–296, 2014.

[6] P. M. Mell and T. Grance, “SP 800-145. The NIST Definition of Cloud Computing,”
NIST, Gaithersburg, MD, United States, Tech. Rep., 2011.

[7] “Gabriel - Wearable Cognitive Assistance using Cloudlets,” http://gabriel.cs.cmu.
edu/index.html, [Accessed: January 2018].

[8] M. Satyanarayanan, G. Lewis, E. Morris, S. Simanta, J. Boleng, and K. Ha, “The
role of cloudlets in hostile environments,” IEEE Pervasive Computing, vol. 12, no. 4,
pp. 40–49, 2013.

[9] W.-F. Alliance, “Wi-fi peer-to-peer (p2p) technical specification v1. 7,”
https://www.wi-fi.org/file/wi-fi-peer-to-peer-p2p-technical-specification-v17, 2016.

37

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://gregstoll.dyndns.org/scipionus/
http://gabriel.cs.cmu.edu/index.html
http://gabriel.cs.cmu.edu/index.html

38 Bibliography

[10] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device communica-
tions with wi-fi direct: overview and experimentation,” IEEE wireless communications,
vol. 20, no. 3, pp. 96–104, 2013.

[11] P. M. P. Silva, J. Rodrigues, J. Silva, R. Martins, L. Lopes, and F. Silva, “Using
edge-clouds to reduce load on traditional wifi infrastructures and improve quality
of experience,” in Fog and Edge Computing (ICFEC), 2017 IEEE 1st International
Conference on. IEEE, 2017, pp. 61–67.

[12] J. Rodrigues, E. R. B. Marques, J. Silva, L. Lopes, and F. Silva, “Video dissemination
in untethered edge-clouds: a case study,” in Proc. 18th IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS), ser. DAIS’18. Springer,
2018, pp. 137–152.

[13] J. Rodrigues, E. R. B. Marques, L. M. B. Lopes, and F. Silva, “Towards a middleware
for mobile edge-cloud applications,” in Proceedings of the 2Nd Workshop on
Middleware for Edge Clouds & Cloudlets, ser. MECC ’17. New York, NY, USA: ACM,
2017, pp. 1:1–1:6. [Online]. Available: http://doi.acm.org/10.1145/3152360.3152361

[14] T. Freitas, “Crowdsourcing photos in edge-clouds with panoptic,” Master’s thesis,
Faculdade de Ciências da Universidade do Porto, 2017.

[15] M. Silva, “Hyraxmsg: uma aplicação de "messaging" para "mobile edge clouds",”
Faculdade de Ciências da Universidade do Porto, Tech. Rep., 2017.

[16] “The Serval Project,” http://www.servalproject.org/, [Accessed: December 2017].

[17] “FireChat,” https://www.opengarden.com/firechat.html, [Accessed: December 2017].

[18] “MeshKit,” https://www.opengarden.com/meshkit.html, [Accessed: January 2018].

[19] “Commotion Wireless,” https://commotionwireless.net/, [Accessed: December 2017].

[20] “goTenna - Text & GPS on your phone, even without service,” https://gotenna.com/,
[Accessed: January 2018].

[21] “p2pkit by Uepaa,” https://p2pkit.io/, [Accessed: January 2018].

[22] “AllJoyn,” https://openconnectivity.org/developer/reference-implementation/alljoyn,
[Accessed: January 2018].

[23] “FrontlineSMS,” https://www.frontlinesms.com/, [Accessed: January 2018].

[24] “OpenStreetMap,” https://www.openstreetmap.org/, [Accessed: January 2018].

http://doi.acm.org/10.1145/3152360.3152361
http://www.servalproject.org/
https://www.opengarden.com/firechat.html
https://www.opengarden.com/meshkit.html
https://commotionwireless.net/
https://gotenna.com/
https://p2pkit.io/
https://openconnectivity.org/developer/reference-implementation/alljoyn
https://www.frontlinesms.com/
https://www.openstreetmap.org/

Bibliography 39

[25] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,” IEEE
Pervasive Computing, vol. 7, no. 4, pp. 12–18, 2008.

[26] “Ushahidi,” https://www.ushahidi.com/, [Accessed: January 2018].

[27] O. Okolloh, “Ushahidi, or ‘testimony’: Web 2.0 tools for crowdsourcing crisis
information,” Participatory learning and action, vol. 59, no. 1, pp. 65–70, 2009.

[28] “Zello,” https://zello.com/, [Accessed: January 2018].

[29] W. Post, “Hurricane Irma just made a digital walkie-talkie the No. 1
app online,” https://www.washingtonpost.com/news/innovations/wp/2017/09/06/
hurricane-irma-just-made-a-digital-walkie-talkie-the-no-1-app-online/, [Accessed:
January 2018].

https://www.ushahidi.com/
https://zello.com/
https://www.washingtonpost.com/news/innovations/wp/2017/09/06/hurricane-irma-just-made-a-digital-walkie-talkie-the-no-1-app-online/
https://www.washingtonpost.com/news/innovations/wp/2017/09/06/hurricane-irma-just-made-a-digital-walkie-talkie-the-no-1-app-online/

	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Cloud Computing, Cloudlets and Mobile Edge-Clouds
	2.2 WiFi-Direct
	2.3 The Hyrax Project
	2.3.1 The Hyrax Middleware

	3 State of the Art
	3.1 HyraxMsg
	3.2 Communication frameworks
	3.2.1 The Serval Project
	3.2.2 FireChat and MeshKit
	3.2.3 Commotion Wireless
	3.2.4 goTenna
	3.2.5 Uepaa p2pkit
	3.2.6 AllJoyn
	3.2.7 Comparison

	3.3 Cloud services used in disaster scenarios
	3.3.1 FrontlineSMS
	3.3.2 OpenStreetMap
	3.3.3 Ushahidi
	3.3.4 Zello
	3.3.5 iGDACS and Natural Disaster Monitor

	4 Design and Implementation
	4.1 Architecture
	4.2 Data Model
	4.3 Software Components
	4.3.1 Database
	4.3.2 Discovery Service
	4.3.3 Message Service
	4.3.4 Android, Cloudlet and Cloud Apps

	5 Experiments and Results
	5.1 Field Experiment Description
	5.2 Results
	5.2.1 Overview
	5.2.2 Movement
	5.2.3 Communication technologies used
	5.2.4 Transfers
	5.2.5 Energy

	5.3 Summary

	6 Conclusions and Future Work
	6.1 Overview
	6.2 Future Work

	Bibliography

