
Project Report
Department of Computer Science

Faculty of Sciences
University of Porto

On using Deep Learning for Automatic
Taxonomic Identification of Butterflies

Tomás M. S. Mamede

Supervisors:
Luís M. B. Lopes, Associate Professor

Eduardo R. B. Marques, Assistant Professor

2019/2020

Contents

1 Introduction 2

2 Background 2

2.1 Lepidoptera . 3

2.2 Neural Networks and Deep Learning . 4

2.3 Convolutional Neural Networks . 6

2.4 AutoML Vision . 8

2.5 TensorFlow . 11

3 The Data Set 12

3.1 GBIF and iNaturalist . 12

3.2 Filtering the results and obtaining the images . 13

4 The Model 15

5 Evaluation 16

5.1 Methodology . 16

5.1.1 Evaluation Metrics . 16

5.1.2 Model Generation . 18

5.1.3 Test Data Sets . 18

5.2 Results . 19

5.2.1 Species . 19

5.2.2 Genus . 21

5.2.3 Genus Specific Models . 21

6 Web application 24

7 Conclusion 25

1

Abstract

In this project we derived and deployed a Machine Learning model in a Web application to
perform taxonomic identification of butterflies. This involved creating a data set with thousands
of images, the use of Deep Learning and Computer Vision tools to derive different models and
the evaluation of the results using different metrics, such as precision and recall. We found that
some models performed better for some genus, while others did not present relevant changes or
even performed worse. Here we demonstrate how to perform this experiment and show the results
we obtained. We proved that today Artificial Intelligence and more specifically, Computer Vision
through Deep Learning, is accessible and can create impact in a great number of areas and scientific
fields.

1 Introduction

In the last two decades, Artificial Intelligence (AI) has established itself as one of the technologies
with the largest social impact. Examples of major breakthroughs are self-driving cars, natural language
translation and expert systems for medical diagnostics. The major challenge in AI is trying to make
computers perform tasks that are very straightforward for people to do, but very hard to describe
formally. In others words, computers have difficulty learning how to do simple things that are intuitive
for human beings, e.g., recognising spoken words or faces in images. To solve this problem, one of
the solutions suggests that AI systems need the ability to acquire their own knowledge, by extracting
patterns from data. This capability is known as Machine Learning.

Here we report the use of Machine Learning techniques, namely Deep Learning, via Google’s
AutoML Vision framework, to perform automatic taxonomic identification of Portuguese species of
butterflies from images. The model was later integrated in a Web application so that users could
identify different species of butterflies using just a photograph. The project was divided in three
different phases. First, we built a data set with thousands of images of butterflies identified by
specialists to train the Machine Learning model. After that, we trained the model, we evaluated it
using a data set of test images and further optimised it. Finally, we deployed the resulting model in
an interactive Web application so that anyone can upload an image of a butterfly and receive back its
taxonomic classification.

A demonstration video of the Web application is available on Youtube and can be accessed using
this link. In the Zip file containing this report, the url for the Web application and the access
credentials are also available in the readme.txt file. We also included images of butterflies for testing
of the Web application.

2 Background

Here we introduce the reader to some of the subjects under consideration in this work to improve
readability of the document.

2

https://www.youtube.com/watch?v=NJnQq2Vr-wo

2.1 Lepidoptera

Butterflies (Rhopalocera) and moths (Heterocera) are the adult stage of insects belonging to
a group called Lepidoptera. The word itself has its origins in Ancient Greek from lepidos (scale)
and ptera (wing), meaning “wings with scales”, a reference to the fact that the wings of butterflies
and moths are actually covered with thousands of tiny scales overlapping in rows. As all insects,
butterflies have six legs and three main body parts: head, thorax and abdomen. This group also
possesses sophisticated sensing organs: the antennae, the palps (modified mouth parts), and the feet.
With these, butterflies are able to sense gradients in the concentrations of certain molecular compounds
allowing them to find food, sexual mates and laying eggs with high accuracy [8].

Butterflies are holometabulous insects, meaning that they undergo full metamorphosis during
their life cycle which involves four different stages: egg, larva, chrysalis and adult butterfly or imago
(Figure 1). This complex life cycle was first described by the early entomologist Maria Sybilla
Merian [15].

Figure 1: Scheme of the life cycle of a butterfly.

Butterflies are complex insects and a keen
observer of their behaviour may see them in-
volved in many activities, like basking, puddling,
feeding, mating, chasing rivals and egg laying.

Butterflies play an essential role in the natu-
ral ecosystem as pollinators and as food for other
animals in all stages of their life cycle. Their
intricate relationships with plants and animals
means that they are often the first to be endan-
gered if an ecosystem’s delicate balance is dis-
turbed. Thus, the occurrence of certain species
and their numbers are often used as indicators of
ecosystem health [6].

Butterflies are also important research sub-
jects and case studies in areas such as evolution,
genetics, population dynamics and conservation,
a fact that has been known since the works of
naturalists such as Alfred Russel Wallace, Henry
Walter Bates and Fritz Müller [17, 2, 11].

Given their characteristic and often stunning wing patterns and colours butterflies attract at-
tention and therefore there are countless photos available online documenting sightings, mostly from
non-experts. This makes butterflies a perfect subject for a project that aims at using Deep Learning
techniques to perform automated taxonomic classification. However, while there are thousands of de-
scribed species of butterflies from around the world, in this work we focus solely on the approximately
150 species that can be observed in Portugal [9, 4].

3

2.2 Neural Networks and Deep Learning

Neural Networks were first proposed in 1944 by Warren McCullough and Walter Pits, two re-
searchers at the University of Chicago, that later became the founding members of the first cognitive
science department at MIT in 1952 [10].

Later, in 1958, the perceptron developed by Frank Rosenblatt [13] emerged as a new model of
the neuron and became the simplest Artificial Neural Network capable of linearly separate data in
two classes [1]. The simplest type of perceptron has a single layer of weights connecting the inputs
and output. Later appeared the multi-layer perceptron, consisting of a sequence of layers each fully
connected to the next one. This was the beginning of the development of Neural Networks.

Even as it became a major area of research in both Computer Science and Neuroscience, as
years and decades went by, Neural Networks saw good and bad days. They were first dismissed as a
promising area of research in 1969. Then, in the 1980’s they enjoyed a resurgence just to be forgotten
once again in the first decade of the twenty-first century.

input
layer

hidden
layer

output
layer

x1

x2

x3

x4

x5

w11

w21

w31

w41

w51

a1

w1k

a2 w2k

a3

w3k

ok

Figure 2: A portion of a 2-layer feed-forward neural network.

Today, Neural Networks are a means of doing Machine Learning, in which a computer learns to
perform some tasks by analysing training examples [5]. An object recognition model, like the one
used in this project, might be fed thousands of images of the object of study, so it would find visual
patterns that characterise the images in the data set.

Neural Networks are composed by thousands or even millions of simple nodes or processing units

4

that are densely interconnected, mimicking neurons in the brain, hence the name Neural Network. In
Figure 2 can be seen an example of a Neural Network. Each edge from a node i to a node j serves
to propagate the activation from i to j. Each edge also has a numeric weight w associated with it,
which determines the strength and sign of the connection [18]. A node j computes a weighted sum
of its inputs (thus a linear transformation) and then applies a non-linear activation function f, g in
Figure 2, corresponding to the following outputs for the nodes in the hidden layer and output layer,
respectively:

aj = f

(
N∑
i=1

wijxi

)
ok = g

 M∑
j=1

wjkaj

In this example, N = 5 and M = 4 and the depth of the network is 2 (the input layer does not

count). In general, the number of nodes per layer and the number of layers is arbitrary and, in the
case of Deep Learning networks, it can be quite large.

When a Neural Network is being trained, all of its weights and thresholds are initially set to
random values. Training data is fed to the input layer and it passes through the succeeding layers
until it arrives at the output layer. During training, the weights and thresholds are continually adjusted
until we get similar outputs from training data with the same labels.

To form a network, nodes need to be connected together, as described in the image above. Most
of modern Neural Networks are organised into layers of nodes. An individual node might be connected
to several nodes in the previous layer, from which it receives data, and several nodes in the next layer,
to which it sends data. In fact, Neural Networks can be single-layer, in which every node connects
directly from the network’s inputs to its outputs, or multi-layer, which have one or more layers of
“hidden” nodes between the input and the output layers of the Neural Network.

The Feed-forward Neural network was the first and simplest type of Artificial Neural Network
to be invented. In this kind of Neural Networks, the information moves through the hidden nodes
(if they exist), towards the output nodes. The perceptron can be considered the simplest kind of
Feed-Forward Neural Network.

The development of the back-propagation algorithm by David Rumelhart, Geoffrey Hinton and
Ronald J. Williams began a new generation of Neural Networks[14]. This algorithm is used for tuning
the weights of the edges of a Neural Network based on the error rate obtained in the previous iteration.
The proper tuning of the weights allows to reduce error rates and make the model more accurate. It
allowed to solve the XOR problem, which for many years had made lots of scientist lose faith in this
type of approach to Artificial Intelligence.

In the last decade, Neural Networks became one of the most promising and exciting areas of re-
search in science thanks to the conceptual foundations and engineering advancements laid by Geoffrey
Hinton, Yoshua Bengio and Yann LeCun, receivers of the ACM A. M. Turing Award in 2018, and the
breakthroughs in graphic processing units (GPUs)[3].

Neural Networks allow computers to learn from experience and understand the world in terms
of a hierarchy of concepts, with each concept defined in terms of its relation to simpler concepts.

5

By gathering knowledge from experience, this approach avoids the need for computer scientists to
formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the
computer to learn complicated concepts by building them out of simple ones. If we draw a graph
showing how these concepts are built on top of each other, the graph is deep, with many layers. For
this reason, we call this approach Deep Learning [5].

Deep Learning is now one of the most promising and exciting areas of research in science, and
led to great advancements in technologies such as Computer Vision, Speech Recognition and Machine
Translation, which can be used nowadays by anyone with a modern smartphone.

2.3 Convolutional Neural Networks

Convolutional Neural Networks have played an important role in the history of Deep Learning [7].
They are a key example of a successful application of new insights to Machine Learning applications,
obtained through the study of the brain. They were also some of the first working Deep Neural
Networks trained with back-propagation.

Convolutional Neural Networks (CNNs) are a specialised kind of Neural Network for processing
data that has a known grid-like topology. One of the most common examples of this would be image
data, which can be thought of as a grid of pixels.

These networks ingest and process images as tensors, which are matrices of numbers with ad-
ditional dimensions. In a computer, images are stored as a 2-dimensional array of pixels arranged
spatially, where each pixel corresponds to a very small part of the image. Each pixel in the 2-
dimensional space contains three numbers from 0-255 (inclusive) corresponding to the red, green and
blue channels, hence RGB.

The name “Convolutional Neural Network” indicates that the network employs a mathematical
operation called convolution [18]. In this context, a convolution is a specialised kind of linear operation
that takes as arguments an array of input data and an array of weights that we multiply together.
In a Convolutional Neural Network terminology the second argument is known as the kernel or filter.
The result of the operation is sometimes referred to as the feature map. Lets consider the following
matrices representing an image I and kernel K :

I =

17 14 13 9 . . .
21 64 62 41 . . .
42 54 61 52 . . .
41 30 31 34 . . .
...

...
...

...

 K =
1

9

1 1 1
1 1 1
1 1 1

In practice, in order to perform a convolution on an image we center the kernel at each pixel
location, multiply the weights of the kernel by the corresponding pixels and sum all the obtained
results. Finally, we override the pixel in the center of the kernel with the output of the kernel
convolution. The convolution function with a kernel K over a matrix I, denoted C = Conv(I,K),
where K has dimensions (2M + 1)× (2N + 1), is defined as follows for every pixel (i, j) in I as:

6

C(i, j) =
M∑

m=−M

N∑
n=−N

I(i−m, j −m)K(n,m)

As an example, lets consider the image above image I and kernel K. Depending on the values of
each element, the kernel can cause a wide range of effects. The evaluation of this convolution for pixel
(1, 1) is given by:

17 14 13
21 64 62
42 54 61

× 1

9

1 1 1
1 1 1
1 1 1

 =
1

9
(17 + 14 + 13 + 21 + 64 + 62 + 42 + 54 + 61) = 39

As we just saw, convolutions are used to apply different effects to images. One of the most
important effects used in Computer Vision, to extract useful features from images, is edge detection
(Figure 3). Edges in images come from a variety of factors, as, for example, surface normal discon-
tinuity, depth discontinuity and illumination discontinuity, just to name a few; and they allow us to
understand the essential features that characterise an object in an image. For the computer to be
able to learn and make sense of them all, we use Convolutional Neural Networks that hopefully, after
having been trained, will learn how to classify different objects [12].

Figure 3: Edge detection convolution applied to an image of a butterfly.

In a rough sense we can think of a Convolutional Neural Network as consisting of two parts: a
block of various convolutional layers and block of fully connected layers that make up a multi-layer
Neural Network, as depicted in Figure 4. A typical layer of a Convolutional Neural Network, used to
recognise patterns in the input images, consists of three different stages. In the first stage, the layer
performs several convolutions in parallel to produce a set of linear activations, which in the second
stage are run through an activation function. In the last stage, a pooling function is used to modify
the output of the layer further, by grouping up the pixels in the image and filtering them down to a
subset. The image is reduced, but the features are still maintained.

7

Figure 4: Representation of Convolutional Neural Network.

Like the convolution operation, pooling consists of a fixed-shaped window that is slid all over the
input, computing a single output for each location. At each location that the pooling window hits, it
computes the maximum or average value of the input subarray in the window. The result of applying
2× 2 maximum pooling to matrix I is given by:

maxPooling 2× 2

17 14 13 9 . . .
21 64 62 41 . . .
42 54 61 52 . . .
41 30 31 34 . . .
...

...
...

...

 =

64 64 62 . . .
64 64 62 . . .
54 61 61 . . .
...

...
...

Pooling can also change the output shape by padding the input and adjusting the stride. Each

layer uses a kernel and processes each output with an activation function. Pooling is used to alleviate
the excessive sensitivity of the convolutional layer and summarise the presence of features after the
convolutional operations. As the images are fed into the Convolutional Layers, a number of randomly
initialised kernels, will pass over the image. The results are then fed to the next layers and matching is
then performed by the Neural Network. And over time, as more images go through the Convolutional
Neural Network, the kernels that return the outputs that give the best match will be learned. This
process is called Feature Extraction.

2.4 AutoML Vision

AutoML Vision is a Machine Learning model builder for image classification that is part of the
Google Cloud Platform. Building a new model for Computer Vision and image recognition can be a
herculean task and programming it by hand is both hard and time consuming.

Auto ML Vision enabled us to perform supervised learning. This involved training a Convolutional
Neural Network to recognise different species of Portuguese butterflies from labelled data. In order

8

to train the model we had to provide images of butterflies labelled by species and the categories or
labels we wanted the model to predict.

The data set (see Figure 5) provided to AutoML Vision contained training, validation and testing
sets. We didn’t really have to worry about making this distinction because the tool can handle it
automatically. The only thing we had to make sure was that for each butterfly species we provided at
least ten images. For each of the species, AutoML Vision automatically used 80% of the images for
training, 10% for validation and 10% for testing.

Figure 5: Screenshot of the Google’s AutoML Vision.

Thus, the vast majority of the data goes into the training set. This corresponds to the data that
the Convolutional Neural Network actually sees during training and uses to learn the weights of the
connections between the nodes in the network. On the other hand, the validation set, also used in
the training process, is used to tune the variables that specify the structure of the model, so that it
can generalise better. Finally, the testing set is not involved in the training process at all. Once the
model has completed its training entirely the test set is used to measure its accuracy.

The AutoML Vision tool provides a section named Evaluate, as show in Figure 6 so that we can
assess the performance of the model using its output on test examples and common Machine Learning
metrics. For each example, the models output a series of numbers that communicate how strongly it
associates each label with a given image. These numbers represent how certain the model is that a
specific label is the correct one.

AutoML Vision also allows the user to change the score threshold using a visual tool, which refers

9

to the level of confidence the model must have to assign a category to an image. If the score threshold
is low the model will classify more images, but with the risk of misclassifying a few of them in the
process. On the other hand, if the score threshold is high, the model will classify fewer images, but it
will have a lower risk of misclassification.

Figure 6: Screenshot of the Google AutoML Vision - Evaluation.

After applying the score threshold, the predictions made by the model will fall in one of four
categories: true positives, true negatives, false positives and false negatives. The categories are then
used to calculate the precision (positive predictive value) and recall (sensitivity) of the model. These
metrics help to evaluate the effectiveness of the model.

From all the test examples that were assigned to a label, precision tells us how many were correctly
assigned to it. In other words, precision is the number of correct results divided by the total number of
results. Higher precision means less false positives. On the other hand, recall tells us, from all the test
examples that should have been assigned to that label, how many were actually assigned the label,
i.e, the number of correct results divided by the number of results that should have been returned.
A higher recall means that the model produces less false negatives. So, basically, precision and recall
helped us understand how well the model is capturing the information.

Another important evaluation metric provided by the AutoML Vision tool is the Confusion Ma-
trix. Part of it can be seen in Figure 7. With it we can compare the models performance on each label.
In an ideal model, all the values on the main diagonal will be high and the other values will be low.
When values outside of the diagonal are higher, that means the model is misclassifying categories.

Auto ML allowed us to focus on results and speed of progress, without worrying to much about
programming and the specifications of the Neural Network. We were able to take advantage of the
evaluation metrics provided by Google to know what to expect from the model we trained and then
make improvements to get better results when trying to classify different species of butterflies.

10

Figure 7: Fraction of the confusion matrix provided by AutoML Vision.

2.5 TensorFlow

TensorFlow is an Open-Source software library for numerical computation of mathematical ex-
pressions that works with data flow graphs. It was developed by Google Brain for internal Google use
and then released for the public under the Apache License 2.0 in 2015. Currently, TensorFlow is one
of the most used software libraries for Machine Learning and it has a large variety of applications.

TensorFlow allows programmers to create a graph of computations to perform. Each node in
the graph represents a mathematical operation and each connection represents data. This creates a
comfortable level of abstraction that allows the user to focus on the overall logic of the application.
All computations associated with TensorFlow involve the use of tensors. A tensor is a n-dimensional
vector or matrix that is able to represent various types of data. Values stored in a tensor have
identical data types. Vectors are one-dimensional tensors, matrices are two-dimensional tensor; a
three-dimensional tensor is a matrix of matrices and so on and so forth. In the graph, computations
are made possible through interconnections of tensors. TensorFlow takes an input in the form of an
n-dimensional matrix that flows through a series of operations producing an output at the end. Hence
the name TensorFlow.

In the context of this project we used TensorFlow Lite to run inference with the model we
obtained from Google AutoML Vision. Inference is the process of running data through the model to

11

obtain predictions. This tool was used later in the project to evaluate the produced model. We used
TensorFlow Lite Interpreter library. This library takes a model file, executes the operations it defines
on input data and produces an output. In this case the input is an image of a butterfly and the output
is the string representing the species of the butterfly in the image. The TensorFlow Lite Interpreter
works across multiple platforms and provides a simple API for running TensorFlow models from Java,
C++, Python, Swift and Objective-C.

3 The Data Set

In this section we describe how we built the data sets used for training and testing the model.

3.1 GBIF and iNaturalist

The first and one of the most important steps of building a Machine Learning model for Computer
Vision is the construction of a good data set. One that, not only contains lots of examples to train
the Neural Network, but that is also diverse and well balanced so that each output label gets enough
images. The decisions made early when creating the data set would later influence the final results of
the model.

In Portugal there are around 150 different species of butterflies that can be seen during the day.
There isn’t a clear consensus and not even specialists know for sure how many there are, as records
differ from source to source. This can be seen as something quite normal in this area, in great part
due to the possibility of DNA analysis.

Having this in mind, we ended up working with a data set of 135 species of butterflies. To get
the images for all the species we used iNaturalist and GBIF. The first one is one of the most famous
nature applications (for Web and Mobile) in the world that helps anyone identify different animals
and plants while, at the same time, also creates quality data for research. On the other hand, GBIF
is a network and research infrastructure that provides open access to data about all types of life on
Earth.

In this project, GBIF was an important tool that allowed us to download the images. Using the
website (see Figure 8) we were able to specify exactly the species and the countries from where we
wanted results. We were also able to select the main data set from where GBIF would select images.
For this last query field we selected iNaturalist.

We started out by downloading the data set files for all the images of butterflies from Portugal
and Spain available through GBIF, separately. These files included .txt files with metadata about the
data set for each of the countries, e.g., the ID of the observation on GBIF, the url of the image on
iNaturalist, the date of the observation and location of the observation and the scientific name of each
species In GBIF, the GBIF ID corresponds to one observation. Each observation can have more than
one image associated to it.

From Portugal we obtained references for 5028 different images. On the other hand, from Spain
this number was much larger and we ended up with 14059 additional images, for a total of 19087

12

https://www.inaturalist.org
https://www.gbif.org

Figure 8: Screenshot of the GBIF web interface.

images. We decided to include images from Spain in the data set in order to complement the ones
we obtained from Portugal. We figured out that using images from Portugal would not be enough
to train the model and get good results. Because Spain is a neighbour country of Portugal there are
many species that can be found in both countries.

3.2 Filtering the results and obtaining the images

We started this next stage of the construction of the data set with data from the aforementioned
countries. For each of this countries, we got two different .txt files from GBIF: occurence.txt and
multimedia.txt. These two files combined provided all the information we needed to be able to filter
the observations recorded in GBIF and later obtaining the images of the butterflies.

The file occurence.txt provided information about each of the images of butterflies from Portugal
and Spain that we would get from iNaturalist. In this file an occurrence corresponds to an observation
of a butterfly, which has extra information related to it, e.g., date, references in iNaturalist, rights
holder for the images related to the observation, country, district, latitude, longitude and scientific
name of the species recorded in the observation.

On the other hand, the file multimedia.txt is more specific and provides information for each
photograph associated with an observation. This includes GBIF ID, type and format of the image,
url to the image and rights holder. Differently from what we had in the occurrences.txt file, where
each line had a different GBIF ID, in this one, most often that not, we find that different lines have
the same GBIF ID. This happens because each observation can have more than one image associated
to it.

13

To make sense of all the information in the two files we started by converting each of the files to
the CSV format, both for readability and ease of use. Next, we used Python and the Pandas library
for data analysis and manipulation [16]. The goal was to merge the occurrences.txt and multimedia.txt
into a single CSV file. We did this using the GBIF ID key so that we could combine all the information
from the two files and add the columns that mattered the most for each image of a butterfly: family
and genus of the butterfly, species, decimal latitude and longitude and the url of the photo. Each line
in these two files represented a different image of a butterfly we would later add to the data set.

However, not all the images were relevant to the project. We only worked with species of butterflies
that can be observed in Portugal. To filter the results by species we created a new file where we listed
all the species we where interested in and, once again, we used Python and the Pandas library to obtain
a new CSV file, ordered by GBIF, with the references to all the images we would later download.

After filtering the results from GBIF regarding Portugal, we ended up with with references to
3063 different images. We repeated the process described in the last few paragraphs with the data
from Spain that was provided by GBIF. As a result, we added more 7722 references, which sums up
to a total of 10785 different references to images.

Table 1: Final CSV layout with urls for images.

gbifID species photoURL

2269308307 Aglais io https://static.inaturalist.org/photos/42395386/...
2311381868 Argynnis paphia https://static.inaturalist.org/photos/46542761/...
2573849394 Colias croceus https://static.inaturalist.org/photos/61093825/...
...
...

To download and save the images we used Python combined with two different libraries: PySpark
and the Google Drive API. The first one allowed us to read CSV files and infer its structure to be able
to read the necessary information stored in each column. To download each image we needed access
to the url and to name each of the downloaded images, we used the species name combined with the
GBIF ID. We also used a counter to keep track of the number of images for each observation and we
concatenated that to the end of the image name. So, for example, the name of a image in the data
set might be Zizeeria_knysna_2445096096_1.jpg.

As we dealt with a considerable amount of data we had to pay attention to storage management.
We wrote our script to be able to upload each downloaded image directly to Google Drive so that we
didn’t have to save the images in our personal machines. We used the Google Drive API to handle
this task. After an image was uploaded to Google Drive it was deleted from our computers.

With this first part done and all the images available though Google Drive we had to go through
one more stage of filtering. As we mention in 2.1, butterflies undergo full metamorphosis in their life
cycle, which has four different stages. GBIF doesn’t make a distinction between them so there were
cases where images of eggs and chrysalis could be found in the downloaded images. For this task there
was not an automated way that could be used, so we went through all the images and checked one by
one.

14

In the end of the process described in this Section we had 2863 images of butterflies from Portugal
and 7473 more images from Spain, which makes a total of 10336 images of butterflies. With the data
set now complete we were ready to train the Machine Learning model to identify different species of
butterflies using AutoML Vision.

4 The Model

The core of this project was the creation of a Machine Learning model and its deployment in a
Web application that would allow us to classify different species of butterflies. In order to achieve
this goal we used Google’s AutoML Vision tool. The first step when using this tool is to specify
the objective of the model. AutoML Vision allows to train Machine Learning models that perform
Single-Label Classification, Multi-Label Classification and Object Detection. For the purpose of this
project we chose Single-Label Classification because each one of the species of butterflies we worked
with were mutually exclusive and each image was assigned to one category only.

Next we had to import the data set of the butterflies into AutoML Vision. Google’s Machine
Learning tools uses buckets. These are very flexible storage objects identified by a unique, user-
assigned key that can be created in Google Cloud Platform. To create a bucket we had to specify the
name for the bucket and the country where the servers would be. Here we had to be careful to choose
a country that had servers capable of training the Machine Learning model. In the first attempt
we created the bucket in a region that was not prepared to train Machine Learning models and, as
a result, we had to delete the bucket we had and create a new one. Once the bucket was created
we moved the images of the butterflies from Google Drive to the bucket in Google Cloud Platform
using Google Colaboratory Notebooks that allows to create quick Python scripts and run the code on
Google’s servers. Using this tool we performed the mount operation on Google Drive to be able to
transfer the entire data set to Google Cloud Platform.

With the images in the bucket we had to make them accessible to the AutoML Vision tool that
would make use of them to train the model. For each image in the bucket, AutoML Vision required
the location of each image in Google Cloud Platform and its correct label. Once again we wrote a
Python script to create a CSV file that had only two columns and no headers. In the first column we
had the URI (Uniform Resource Identifier) for each image, which identified the resource in the Google
Cloud Platform. In the second column, for each URI we put the correct label for that image. When
everything was ready we imported the CSV file to the bucket and placed it at the root.

Finally, with everything set on the part of the bucket, we imported the images to AutoML Vision
by selecting the CSV file in the bucket. Once the import process finished we defined the specifications
of the model and started training. It would be an Edge model so that we could download it and use
it offline and we selected “Higher Accuracy” for the optimisation option. We could also have selected
“Faster Predictions” or “Best Trade-Off”. We followed the recommended training hours for the data
set that were provided by Google and after 10 hours of training the model was ready to be evaluated
and tested.

15

(a) Model definition.
(b) Model optimisation.

Figure 9: Final steps before start training the Convolutional Neural Network.

5 Evaluation

In this section we introduce the results obtained from the models derived throughout the project
and the methodology we followed in order to do so. All the results reported here were obtained with
a MacBook Air laptop running macOS 10.15.5, with 8GB of RAM and an Intel Core i5 CPU.

5.1 Methodology

To obtain classifications for each of the models derived throughout the project using AutoML
Vision, we wrote a Python script that took a .tflite file and ran inference on the model. This script
generated a CSV file presenting the first five predictions returned by the model, as well as, the score
of each prediction. The output of the model is a floating point value between 0 and 1 and represents
the accuracy of a prediction, with, naturally, higher values associated with more confident predictions.

Table 2: Layout of the CSV file where we saved the prediction for each testing image.

expected prediction 1 score 1 prediction 2 score 2 ...

Aglais io Aglais io 0.72 Pieris Rapae 0.016 ...
Gonepteryx rhamni Gonepteryx cleopatra 0.36 Gonepteryx rhamni 0.24 ...
...
Zerynthia rumina Zerynthia rumina 0.66 Aricia cramera 0.0079 ...

5.1.1 Evaluation Metrics

From the CSV file with the classifications we obtained top-1 and top-5 classification results and
built the corresponding confusion matrix. A confusion matrix is a specific table layout the allows for
the visualisation of the performance of an algorithm, typically in the context of supervised learning.

16

The confusion matrix enabled us to assess the number of true positives, true negatives and false
positives for each of the species and genus generated by each model.

We briefly describe the meaning of these classifications:

• true positive: the model correctly predicts the positive class. In a well built confusion matrix
the number of true positives for each class can be found in the main diagonal.

• false positive: the model incorrectly predicts the positive class. To obtain the False Positives
for a class in the confusion matrix we sum all the values in the column representing that class
(except for the element in the diagonal).

• false negative: the model incorrectly predicts the negative class. To obtain the False Negatives
for a class in the confusion matrix we sum all the values in the row representing that class (except
for the element in the diagonal).

• true negatives: the model correctly predicts the negative class. In the confusion matrix, the
True Negative values for a class are the results presented in every cell that is not the value in
the main diagonal, the row or the column representing that class.

From the true positives, false positives and false negatives we where able to obtain precision and
recall values for different species and genus. Thus, the analysis of the CSV file allowed us to extract
the four metrics used to evaluate the models:

• top-1 classifications: fraction of test images for which the correct label was the first one
predicted by the model;

• top-5 classifications: fraction of test images for which the correct label appeared in the first
five predictions made by the model;

• precision: the frequency with which a model was correct when predicting the actual class. In
other words, the percentage of positive identifications that were actually correct. A models that
produces no false positives has a precision of 1.0.

precision =
true positives

true positives+ false positives

• recall: the percentage of total relevant results correctly classified by the model. In other words,
the percentage of correctly identified positive labels. A model that produces no false negatives
has a recall of 1.0.

recall =
true positives

true positives+ false negatives

For the remainder of this document values reported for precision, recall, top-1 and top-5 classifi-
cations are always in percentage.

17

When evaluating the model for each of these metrics we varied the confidence threshold. We
chose four different values: 10%, 25%, 50% and 75%. The confidence threshold affects precision and
recall because we only consider predictions with a score above that threshold. When the threshold
is higher we produce more false negatives and less false positives. Thus, as the confidence threshold
increases, precision improves but recall worsens.

5.1.2 Model Generation

As the project evolved we found it useful to derive different models from the original training
data set in order to understand how the results varied in terms of classification capabilities as opposed
to having different models specialised in parts of the domain. Despite having the same training data
set these models are different in the labels they are able to classify.

We derived the first model to be able to perform automatic taxonomic identification of butterflies.
This model was able to identify 100 different species of butterflies. However, there are species of the
same genus with very subtle differences between them. Thus, we wanted to understand how the results
would change if we aimed only at identifying the genus rather than going at the species level.

Table 3: Information about each of the models derived in the project.

model training images number of labels

species model 10194 100
genus model 10194 58
Argynnis model 331 4
Euchloe model 83 2
Hipparchia model 238 4
Melitaea model 232 7
Pieris model 661 3

Also, we used the AutoML Vision to derive different models from the initial one. We derived
one model specialised only in genus and it could classify 58 different genus. We also derived five
different models that could classify species of certain genera of interest: Argynnis, Euchloe, Hipparchia,
Melitaea and Pieris. This allowed us to compare the capabilites of each model and understand how the
success of classification varied with the number of labels each model could classify. Table 3 provides
a digest of the aforementioned models.

For each model the corresponding Convolutional Neural Network had 173 layers and each image
took between 0.13 seconds and 0.16 seconds to be classified.

5.1.3 Test Data Sets

To evaluate the models during the project we created two different test data sets. These data
sets have different images and each is different from the ones used to train the model. The first test

18

data focused only on 50 species (half of the species the model can classify) and is composed of 391
images. The second one is more robust, being able to perform tests on 100 species (all the species the
model can identify) and includes 1007 images. Table 4 provides a digest of the test data sets we used.

Table 4: Information about each of the test data sets used to evaluate the models.

image source species number of images

specialist websites 50 391
iNaturalist 100 1007

For the first test data set we used websites specialised in Lepidoptera so we could get images
classified by specialists. These images are all different from the ones obtained from iNaturalist. On
the other hand, the images from the second test data set, taken from iNaturalist, were used by AutoML
to provide the first evaluation results.

5.2 Results

We now proceed to report the performance metrics obtained for all models. In 5.2.1 we present
the obtained results for the species model, in 5.2.2 we present the results for the genus model and
finally, in 5.2.3 we present the results for the five specific genus models.

5.2.1 Species

The two bar plots presented in Figure 10 show the values obtained for precision and recall for the
model capable of classifying species. This was the first one derived in the project. We ran inference
on this model using the test data sets mentioned in Section 5.1.3.

For both data sets, as the confidence threshold increases, precision increases and recall decreases.
This behaviour is expected. A higher confidence threshold means that the model only considers
predictions with a score greater or equal than the threshold. As a result, the score for each prediction
is higher, which translates in better accuracy. Overall, the model produces less False Positives and
thus precision increases.

The dual situation happens for recall. As the confidence threshold increases and the score for
considered predictions increases, more images are left out. This results in the model producing more
false negatives and the value for recall decreases. The results are similar for both test data sets.
However, it is worth pointing out the higher values for precision and recall for the AutoML test data
set. This data set includes not only more images but also features more species. As more images are
classified and more species are contemplated in the test the results approximate to its true value.

19

Figure 10: Results for species model using two data sets.

Figure 11: Relation between the number of training images and metrics.

When it comes to top-1 classifications, we can see that, in general, the model presented better
top-1 results for species with more training images (Figure 11). For species with less training images
we noticed the number of top-5 classifications increasing, as is depicted by the greater concentration

20

of black dots on the top left side of scatter plot on the right. Also, we noticed that genus that include
more than one species tend to present more top-5 classifications. This means that when there are
more subtle differences the model struggles to distinguish the differences in these species.

It is also worth pointing out, as it can be observed in Figure 10, that as the confidence threshold
increases the number of top-1 classifications and top-5 classifications also decreases. Also, for confi-
dence thresholds of 50% there is no difference between the total number of top-1 classifications and
top-5 classifications.

5.2.2 Genus

In another phase of the evaluation we tried to understand how the species model would perform
if it only classified for genus. Naturally, we no longer had to consider species of the same genus that
the model would naturally struggle to distinguish. These were grouped together in the new model
in post-processing before computing the metrics. We also used AutoML Vision to train a specific
Convolutional Neural Network with images labeled only for with the genus. By doing this we were
able to compare the performance of the species model to predict genus and the performance of one
model focused only on genus. As we did previously in the case of species classification, for genus we
also considered the two test data sets presented in Section 5.1.3.

By analysing the bar plots in Figure 12 we can see that the species model presents slightly
better numbers in terms of precision and recall when compared to when it classifies for species (c.f.,
Figure 10). Overall, precision and recall values are better as was intuitively expected.

Both models present similar results for precision. However, when we focus on recall we can see
a difference in behaviour: the specific genus model shows a very clear improvement over the species
model. This is visible across all confidence levels.

Finally, when we consider the scatter plots in Figure 13 we can observe that the species model
has a higher top-1 classification with fewer images, when compared to the genus model. This can be
seen by the higher density of black dots in the left hand side of the scatter plot in the genus model.
An explanation for this could be the fact that by having to distinguish species of the same genus the
species model was able to capture and learn more subtle features, where the genus model took a more
broad approach and was not able to capture the necessary level of detail.

5.2.3 Genus Specific Models

In the last phase of the project we derived five different models specialised in classifying species
within certain genera. Here we obtained mixed results as in some cases the specific model presented
better results and in other cases it performed worse. Of the five specific models, the Hipparchia model
presented better results, as showed in Table 5. We can see a significant rise in both precision and
recall for this genus when compared to the results obtained with the general model for this genus.

Overall, the Argynnis (actually a complex of 3 very close genera - Argynnis, Fabriciana and
Speyeria), Euchloe and Melitaea models performed worse when compared to the general model. We
could not find a relation between these results and the number of training images or the number

21

of different labels. For example, the Argynnis model included four different labels, was the second
model with more training images and still performed worst. On the other hand, the Hipparchia model

Figure 12: Precision and recall for both genus models using both test data sets.

Figure 13: Relation between number of training images and top-1 classifications - 10% confidence.

22

had less training images and the same number of output labels. It not only performed better when
compared to the Argynnis model, but also presented better results than the general model. The
Melitaea model performed better than the general model in terms of precision but worse in terms of
recall. This was the model with more output labels so, somewhat not surprisingly, it produced more
false negatives.

Table 5: Metrics for the genus specific models.

genus precision recall
general/specific (%) general/specific (%)

Argynnis 83/74 78/74
Euchloe 85/62 75/62

Hipparchia 75/89 65/89
Melitaea 55/61 71/61
Pieris 77/76 73/76

Finally, the Pieris model was the one with more training images and only three labels. We found
the values between the Pieris model and the general model to be identical. However, with respect to
recall the Pieris model performed slightly better.

Table 6: Metrics for species included in the specific models - 10% confidence.

genus species images top-1 (%) top-5 (%) precision (%) recall (%)

Argynnis

Argynnis pandora 183 100 100 64 100
Argynnis paphia 100 80 90 89 80
Fabriciana adippe 22 25 83 100 25
Speyeria aglaja 28 100 100 100 100

Euchloe Euchloe belemia 26 40 60 67 40
Euchloe crameri 57 82 100 60 82

Hipparchia

Hipparchia fidia 103 93 7 88 93
Hipparchia hermione 13 0 100 0 0
Hipparchia semele 55 80 80 100 80
Hipparchia statilinus 70 100 100 88 100

Melitaea

Melitaea cinxia 16 0 0 0 0
Melitaea deione 41 50 100 100 50
Melitaea didyma 32 100 100 62 100
Melitaea nevadensis 36 33 100 100 33
Melitaea parthenoides 10 0 0 0 0
Melitaea phoebe 82 75 100 50 75
Melitaea trivia 15 0 0 0 0

Pieris
Pieris brassicae 195 50 94 69 50
Pieris napi 371 44 78 80 44
Pieris rapae 96 92 100 78 92

23

6 Web application

The deployment of the AutoML model can be regarded as the culmination of all the work done
throughout the project. We designed a web page where the user can submit an image of a butterfly
and receive back the corresponding species name. We used several frameworks and programming
languages. The basis of the Web application is written in Python. The Flask web framework was
used to build the server side of the application. It does not have a big learning curve and it easily
handles GET and POST requests without making the programmer write a lot of code. On the server
side we have another Python file that uses TensorFlow to run inference on the AutoML model. The
model returns all the results that have a higher probability compared to the confidence level chosen
by the user.

The Flask application interacts with the HTML page that displays the results. We used a form to
allow the user to submit the images of the butterflies. Initially the user could only submit one image
at a time, but in the final version, with a simple update, the user started to be able to submit several
images at a time and get the classification for all of them. We also used a slider to allow the user to
choose the confidence level used by TensorFlow when running inference on the model. We also used
buttons and images.

Figure 14: Screenshot of the final Web application.

24

When the user clicks the “Classify” button the Flask application runs inference on the model for
the images submitted by the user. The results are displayed on the HTML page. On the right-hand
side of the page we display every image submitted with the possible classifications for that image right
below it. The first prediction for each classification is colour coded, as shown in the image below. For
a probability above 70% the text background is green and for probabilities between 40% and 70% the
background is yellow. Finally, for probabilities below 40% the text background turns red.

To style the Web application we used CSS. We also used JavaScript to create the dynamic slider
and make the value change as the user drags across the element in the web page. The web page was
divided in two vertical sections. On the left the user is presented with the form to submit the images
and choose the confidence level. On the right hand side there is the Results section where the user
sees the submitted images with the corresponding result right below it.

7 Conclusion

This report showed the process of deriving a Machine Learning model that uses Deep Learning
to classify different species of butterflies that can be found in Portugal, and its deployment in the
form a Web application, where users can submit their own images of butterflies to obtain predictions
regarding its species.

At the end of this project the model was capable of identifying 100 species of butterflies with
good results in terms of precision and recall. However, there is space to improve on the current model.
One first step to improve it would be to train the model with more images. This would help the model
dealing with species that have lots of similarities between them. On the other hand, we could also
improve on the number of species the model can currently identify. Some species are not spotted very
often because they exist only at very specific locations in the Portuguese territory.

In the future our intentions are to continue working on this project. From here it can go in
different directions such as:

• Make the Web application available publicly for use by the general public. Currently, this is
being considered in articulation with the Lusoborboletas website and the Lepidoptera Portugal
Facebook page;

• Generalisation of the model to also cover moths and nocturnal species;

• Combining model outputs, e.g., for the genus and species model or even genus specific models,
to improve predictive performance.

• The development of a mobile application for iOS and Android;

25

References

[1] Ethem Alpaydin. Machine Learning: The New AI. MIT Press Essential Knowledge series. The
MIT Press, 2016.

[2] Henry Walter Bates. The Naturalist on the River Amazons. The Narrative Press, 2001.

[3] Fathers of the Deep Learning revolution receive the 2018 ACM A.M. Turing Award. url: https:
//www.acm.org/media-center/2019/march/turing-award-2018.

[4] Carlos Franquinho and Eduardo Marabuto. Listagem das Borboletas Diurnas de Portugal Con-
tinental e Ilhas. url: https://preview.tinyurl.com/y9oyh3es.

[5] Ian Goodfellow, Yoshua Bengin, and Aaron Courville. Deep Learning. Adaptive Computation
and Machine Learning series. The MIT Press, 2017.

[6] Adrian Hoskins. Butterflies Of The World. New Holland Publishing, 2015.

[7] John D. Kelleher. Deep Learning. MIT Press Essential Knowledge series. The MIT Press, 2019.

[8] Patrice Leraut. Butterflies of Europe and Neighbouring Regions. NAP Editions, 2016.

[9] Ernestino Maravalhas. Borboletas de Portugal. Edição do Autor, 2003.

[10] Warren S. McCulloch and Walter Pitts. «A logical calculus of the Ideas Immanent in Nervous
Activity». In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–133. issn: 1522-
9602. doi: 10.1007/BF02478259.

[11] Fritz Müller. «Über die Vortheile der Mimicry bei Schmetterlingen». In: Zoologischer Anzeiger
Volume 1 (1878), pp. 54–55.

[12] Simon J. D. Prince. Computer Vision: Models, Learning, and Inference. Cambridge University
Press, 2012.

[13] Frank Rosenblatt. «The Perceptron: A Probabilistic Model for Information Storage and Orga-
nization in the Brain». In: Psychological Review (1958), pp. 386–408. doi: 10.1038/323533a0.

[14] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning Representations
by Back-Propagating Errors». In: Nature 323.6088 (Oct. 1986), pp. 533–536.

[15] Kim Todd. Chrysalis: Maria Sibylla Merian and the Secrets of Metamorphosis. I.B. Tauris, 2007.

[16] Jake VanderPlas. Python Data Science Handbook: Essential Tools for Working with Data. O’Reilly
Media, 2016.

[17] Alfred Russel Wallace. The Malay Archipelago. Penguin Classics, 2014.

[18] Aston Zhang et al. Dive into Deep Learning. Available at https://d2l.ai. 2020.

26

https://www.acm.org/media-center/2019/march/turing-award-2018
https://www.acm.org/media-center/2019/march/turing-award-2018
https://preview.tinyurl.com/y9oyh3es
https://doi.org/10.1007/BF02478259
https://doi.org/10.1038/323533a0
https://d2l.ai

	Introduction
	Background
	Lepidoptera
	Neural Networks and Deep Learning
	Convolutional Neural Networks
	AutoML Vision
	TensorFlow

	The Data Set
	GBIF and iNaturalist
	Filtering the results and obtaining the images

	The Model
	Evaluation
	Methodology
	Evaluation Metrics
	Model Generation
	Test Data Sets

	Results
	Species
	Genus
	Genus Specific Models

	Web application
	Conclusion

