
BiFluX: A Bidirectional Functional Update
Language for XML

Hugo Pacheco
Joint work with Tao Zan and Zhenjiang Hu

National Institute of Informatics, Tokyo, Japan

BIRS workshop
BX – Theory and Applications Across Disciplines

Banff, December 5th, 2013

BXs

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

[Czarnecki et al., ICMT 2009]

S T

S T

BX approaches

• relational: derive both
transformations from a relation
between the two schemas

• bidirectionalization: write one
transformation, derive the other

• combinatorial: write a single
program that denotes both
transformations

S T

S

S

T

T

S T

S T

Current Picture

• due to the latent ambiguity of BXs

• existing approaches focus mainly on enforcing consistency

• from the programmer’s perspective, they suffer either from:
• supporting only “trivial” BXs
• providing arbitrary bidirectional behavior
• giving little control of what the BX does
• being impractical to specify complex BXs

BXs = Updates

“Intuitively, a BX translates updates on a source model
into updates on a target model, and vice-versa, so that
the updated models are consistent.”

S

S T

T

XML Update Languages

• XML transformation languages (XQuery, XSLT, XDuce) are
bad for specifying small updates

• a few dedicated languages for in-place XML updates:
• XQuery Update Facility [W3C]:

• imperative language
• ill-understood semantics semantics (aliasing, side-effects,

depends on traversal order)

• Flux (Functional Lightweight Updates for XML) [Cheney, ICFP
2008]:

• functional language
• clear semantics
• straightforward type-checking

• XUpdate, XQuery!, etc...

Our proposal: BiFluX

• we propose BiFluX, a bidirectional variant of Flux

• particular class of BXs: lenses, view updating

• modest syntactic extension
• notion of view (feat. pattern matching, non-in-place updates)
• static restrictions to ensure well-behavedness

• Flux: fixed input schema
& new output schema

• unidirectional in-place
semantics

S

T

• BiFluX: fixed source and
view schemas

• bidirectional semantics as
lenses

S

S T

T

A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• adds the view as the last author to the source authors

• violates the GetPut law of lenses!

A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• adds the view as the last author to the source authors

• violates the GetPut law of lenses!

A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• replaces the last author in the source with the view author

• well-behaved update!

A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• replaces the last author in the source with the view author

• well-behaved update!

BiFluX Core Language

• BiFluX → core language → lenses
• we consider two different semantics

• default bidirectional semantics as lenses

Hugo Pacheco and Zhenjiang Hu and Sebastian Fischer

Monadic Combinators for “Putback” Style Bidirectional Programming
PEPM 2014.

• Flux “standard” in-place semantics (insert, delete, ...)

James Cheney

FLUX: FunctionaL Updates for XML
ICFP 2008.

• core BiFluX language:

e ::= “core XQuery expressions”

p ::= “simple XPath expressions”

pat ::= “linear, sequence-based XDuce patterns”

u ::= “Flux in-place updates”

s ::= “BiFluX bidirectional updates”

BiFluX Syntax

• BiFluX high-level language (changes to Flux in red):

Stmt ::= Upd [WHERE Expr] | IF Expr THEN Stmt ELSE Stmt
| | Stmt ; Stmt | { Stmt } | LET Pat = Expr IN Stmt
| CASE Expr OF { Cases }

Upd ::= INSERT (BEFORE | AFTER) PatPath VALUE Expr
| INSERT AS (FIRST | LAST) INTO PatPath VALUE Expr
| DELETE [FROM] PatPath | REPLACE [IN] PatPath WITH Expr
| UPDATE PatPath BY Stmt
| UPDATE PatPath BY VStmt FOR VIEW PatPath [Match]
| KEEP Path AS (FIRST | LAST) | CREATE VALUE Expr

Cases ::= Pat → Stmt | Cases ′|′ Cases
VStmt ::= VUpd ′|′ VUpd | VUpd
VUpd ::= MATCH → Stmt

| UNMATCHS → Stmt
| UNMATCHV → Stmt

Match ::= MATCHING BY Path
| MATCHING SOURCE BY Path VIEW BY Path

PatPath ::= [Pat IN] Path

A bookstore BiFluX Example

UPDATE $book IN $source/book BY

{

MATCH -> REPLACE price WITH $price

| UNMATCHV -> CREATE VALUE <book category=’undefined’>

<title/>

<author>??</author>

<year>??</year>

<price/>

</book>

}

FOR VIEW book[$title AS v:title, $price AS v:price] IN $view/*

MATCHING SOURCE BY $book/title VIEW BY $title

A bookstore BiFluX Example: Forward

• Source:

<bookstore>

<book>

<title >Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category=’Programming’>

<title >Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

• View:

<books>

<book>

<title>Harry Potter</title>

<price>29.99</price>

</book>

<book>

<title>Learning XML</title>

<price>39.95</price>

</book>

</books>

A bookstore BiFluX Example: Update

• Source:

<bookstore>

<book>

<title >Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category=’Programming’>

<title >Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

• Updated View:

<books>

<book>

<title>XPath for Dummies</title>

<price>19.99</price>

</book>

<book>

<title>Harry Potter</title>

<price>19.99</price>

</book>

<book>

<title>Learning XML</title>

<price>19.99</price>

</book>

</books>

A bookstore BiFluX Example: Backward

• Updated Source:

<bookstore>

<book category=’undefined’>

<title>XPath for Dummies</title>

<author>??</author> <year>??</year>

<price>19.99</price>

</book>

<book>

<title>Harry Potter</title>

<author>J K. Rowling</author> <year>2005</year>

<price>19.99</price>

</book>

<book category=’Programming’>

<title>Learning XML</title>

<author>Erik T. Ray</author> <year>2003</year>

<price>19.99</price>

</book>

</bookstore>

Summary

• proposed a novel programming by update bidirectional
paradigm

• presented BiFluX, a bidirectional XML update language

• BiFluX is work in progress (much more under the hood)

• for demos and more info, see...

http://www.prg.nii.ac.jp/projects/BiFluX

http://www.prg.nii.ac.jp/projects/BiFluX

