
BiFluX: A Bidirectional Functional Update
Language for XML

Hugo Pacheco
Joint work with Tao Zan and Zhenjiang Hu

National Institute of Informatics, Tokyo, Japan

BiG Camp

Karuizawa — September 3rd, 2013

BXs and Lenses

• lenses are one of the most popular BX frameworks

S

S V

V

get

put

Framework

data s⇒ v = Lens {get :: s → v
, put :: s → v → s }

(Partial) Lens laws

• PutGet law

put must translate
view updates exactly.
get defined for
updated sources.

s'

s

v'
put

get

s ′ ∈ put s v ′ ⇒ v ′ = get s ′

• GetPut law

put must preserve
empty view updates.
put defined for
empty view updates.

s v

get

put

v ∈ get s ⇒ s = put s v

Get-based lens programming

• BX applications vary on the bidirectionalization approach

• write a single program that denotes both transformations

• bidirectionalization: write get in
a familiar (unidirectional)
programming language and
derive a suitable put through
particular techniques

• bidirectional programming
languages: programs can be
interpreted both as a get
function and a put function

S V
get

VS
put

derive

S V

S V

get

put

Get-based lens programming

• common trait: write get and derive put automatically

• easier to maintain
• inherent ambiguity problem: many puts for a get; which one

to choose?
• get the height of a box with width and height

get
4

4

4

• shall putheight preserve the width? (rectangle)

put1 22

4

• shall putheight update the width? (square)

put2

2

2 2

• current solutions: only one put assumption

Put-based lens programming

• new alternative approach: write put and derive get

• only one get per put: get s = v ⇔ s = put s v

• put fully describes a BX

• Constraint solving
S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional
Programming
GRACE-TR 2012-08, GRACE Center, National
Institute of Informatics, December 2012.

• Put programming language
H. Pacheco, Z. Hu and S. Fischer

Combinators for “Putback” Style Bidirectional
Programming
Technical report, July 2013, Submitted.

S V
get

VS
put

derive

S V

S V

get

put

Putlenses (put programming language)

• normally, users write a get : S → V transformation

• but writing a put : S → V → S update strategy is evidently
harder

• putlenses: language of injective put s : V → S
transformations, for any source s

S V
get

put
VS

Framework

data s⇐ v = Putlens {put :: s → v → s
, get :: s → v }

Putlenses language (Overview)

Language of point-free putlens combinators over ADTs

Put ::= id | Put ◦<Put -- basic combinators
| Φ p | bot p -- partial combinators
| effect f Put -- monadic effects
| Prod | Sum | Cond | Iso | Rec

Prod ::= addfst f | addsnd f | keepfstOr | keepsndOr | copy -- create pairs
| remfst f | remsnd f -- destroy pairs
| Put ⊗Put -- product

Sum ::= inj p | injsOr | injl | injr -- create sums
| Put∇Put | Put ∇p Put | Put •∇Put | Put •∇Put -- destroy sums
| uninjl | uninjr -- destroy sums
| Put + Put -- sum

Cond ::= ifthenelse | ifVthenelse | ifSthenelse -- conditional put app.
Iso ::= swap | assocl | assocr -- rearrange pairs

| coswap | coassocl | coassocr -- rearrange sums
| distl | distr -- distr. sums over pairs

Rec ::= in | out -- algebraic data types

Motivation: Bidirectional programming languages

• combinatorial: build complex transformations by composing
smaller ones

S U V

• require describing the concrete steps that connect source/view

• for instance, putlenses are very flexible but they are:
• low-level (canonical set of combinators)
• bad at updating a small part of a source while leaving the rest

unchanged

• impractical for larger databases: painful to traverse the source
document and explicitly ignore unrelated parts

Idea: Bidirectional update language

• Bidirectional transformation language: programmers write
type-changing transformations

• that abstract a source into a view (get : S → V)
• that refine a view into a source using the original database as

oracle (put s : V → S)

• Bidirectional update language: programmers write
type-preserving updates

• that modify a source database by embedding some view
information (put v : S → S)

V
get

put

VS

S

XML update languages

• XML query and transformation languages (XPath, XQuery,
XSLT, XDuce) are bad for specifying small updates

• dedicated languages for in-place XML updates:
• XQuery Update Facility [W3C]:

• imperative language
• ill-understood semantics semantics (aliasing, side-effects,

depends on traversal order)

• Flux (Functional Lightweight Updates for XML) [Cheney, ICFP
2008]:

• functional language
• clear semantics
• straightforward type-checking

• XUpdate, XQuery!, etc...

Proposal: BiFluX

• we propose BiFluX, a bidirectional variant of Flux

• modest syntactic extension
• notion of view (feat. pattern matching, view-source alignment)
• static restrictions to ensure well-behavedness

• Flux: fixed input schema
& new output schema

• unidirectional in-place
semantics

s

... ...

s'

... ...

• BiFluX: fixed source and
view schemas

• bidirectional semantics as
putlenses

s

... ...

v

A BiFluX example (1)

Is this a put function?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• adds the view as the last author to the source authors

• violates GetPut!

A BiFluX example (1)

Is this a put function?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• adds the view as the last author to the source authors

• violates GetPut!

A BiFluX example (2)

Is this a put function?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• replaces the last author in the source with the view author

• well-behaved put function

A BiFluX example (2)

Is this a put function?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>

WHERE title = "Through the Looking-Glass"

S = books [book [author [String]+, title [String]]∗]
V = String

• replaces the last author in the source with the view author

• well-behaved put function

Static types and lenses

• XDuce-style regular expression types [Hosoya et al., ICFP
2000, TOPLAS 2005] (with n-guarded recursion)

τ ::= Bool | String | n[τ] | () | τ |τ ′ | τ, τ ′ | τ ∗ | X

• Flux: values as sequences
of trees

γ; x ` s ⇒ x ′

• typing judgment

Γ ` {τ} s {τ ′}

• BiFluX: strongly-typed
implementation as ADTs

• bidirectional semantics

γ; Γ ` {τS} s {τV } ⇒ lens

• statically generated lenses

Subtyping as lenses

• Flux: type-checking with inclusion-based subtyping

τ <: τ ′ iff [|τ |] ⊆ [|τ ′|]

• we use regular expression subtyping as a “black box”

• we reuse an algorithm with additional witness functions among
underlying ADT values [Lu and Sulzmann, APLAS 2004]

τ

ucast
%%

<: τ ′

dcast

dd
dcast (ucast x) = x

ucast total

dcast partial

• but... we implement the witness functions as putlenses

τ <:lens τ
′

Core language

• BiFluX → core language → lenses

• we consider two different semantics
• default bidirectional semantics as lenses
• Flux “standard” in-place semantics (insert, delete)

• we introduce pattern matching support (to decompose views)

• core BiFluX language:

e ::= “core XQuery expressions”

p ::= “simple XPath expressions”

pat ::= “linear, sequence-based XDuce patterns”

u ::= “Flux in-place updates”

s ::= “BiFluX lens updates”

Core language: Expressions and Paths

• like Flux, we reuse µXQ expressions (core XQuery) as a “black
box” [Colazzo et al., JFP 2005]

Expressions e ::= () | e, e ′ | n[e] | let x = e in e ′

| if e then e ′ else e ′′ | e ≈ e ′

| for x ∈ e return e ′ | p

Paths p ::= a | p :: t | p/p′ | p[e] | $x

| w | true | false | snapshot pat in p

Axes a ::= self | child | dos

Tests φ ::= n | * | string |bool

• Expressions: create trees, variables, value comparison, paths

• Paths: navigate a tree

• Axes: change the current focus

• Tests: examine the structure of the tree

Core language: Patterns

• pattern matching is very useful for XML transformations
(XDuce, CDuce)

• not as important for typical XML updates (XQuery!, Flux)

• Flux relies on paths to navigate source documents

• but... lossy paths are not suitable for decomposing views
(injectivity = union of paths?)

• BiFluX supports pattern matching to decompose views

pat ::= $x | $x as τ | τ -- variables, types
| () | n[pat] | pat, pat ′ -- empty, label, sequence

• syntactic restriction: linear patterns (no choice – $x | (), no
star – ($x)∗)

Core language: In-place updates

• in-place updates (Flux) modify specific parts of the source and
leave the remaining data unchanged, producing:

• a target tree & a target type

u ::= skip | u; u′ | if e then u | let pat = e in u
| insert e | delete | d [u]

d ::= p | left | right | children | iter

• Updates: combination of updates, add variables to the
environment, insert expression at current position, delete
current position, navigate in a direction and apply an update

• Directions: navigate the tree (path, beginning, end, child
sequence, iterate over each element)

In-place update example

Insert a b as the first child of each child of the root node

children [iter [children [left [insert b]]]]

s

a b a

ac

s

a b a

ac bbb

Core language: Bidirectional updates

• bidirectional updates (BiFluX) take source and view types,
producing:

• a put function that modifies specific parts of the source to
embed all view information

• a get function that computes a view of a given source

s ::= fail | s; s ′ | ds[s] | [s]dv | replace e | upd u
| let pat = e in s | letS pat = e in s | letV pat = e in s
| if e then s else s ′ | ifS e then s else s ′ | ifV e then s else s ′

| alignpos eS s r | align eS pS pV s r
ds ::= p | children | iter
dv ::= $x/p
r ::= if e then r else r ′ | let pat = e in r

| delete | keepl r | keepr r

Core language: Bidirectional updates (basic combinators)

• if we do not embed view information, we must fail

• bidirectional composition (s; s ′) embeds different view
information into the source in two steps s and s ′

s : S s' : S s'' : S

v1 : V1 v2 : V2

• not lens composition!

• formally, well-behavedness requires “source disjointness”
(XPath intersection has been studied by the XML community)

• remember... it is different from in-place composition

t : T t' : T' t'' : T''

Core language: Bidirectional updates (environment)

• environment contains three kinds of variable bindings:
• source variables: lenses from the current source focus
• view variables: sequence that constitutes the current view
• normal variables: independent of the current source/view

• three kinds of let expressions:
• letS pat = e in s: adds a new source (and environment)

variable from an expression using only source variables
• letVpat = e in s: adds a new view (and environment) variable

from an expression using only view variables
• let pat = e in s: adds a new environment variable from any

expression

• three kinds of if-then-else combinators:
• ifS e then s else s′: source condition
• ifV e then s else s′: view condition
• if e then s else s′: arbitrary condition

Core language: Bidirectional updates (directions)

• source directions (ds[s]):
• apply a lens to the current

focus, yielding a new focus
• lens composition
• iter embeds the same view

into each element in the
current focus

• view directions ([s]dv)
• unfolds structure of the view
• variable-rooted paths ($x/p)
• no relative view paths
• only injective paths

s1 : S1 s1' : S1

v : V

s : S s' : S

s : S s' : S

v1 : V1

v : V

Core language: Bidirectional updates (embedding)

• replace the current source with
by some expression (replace e):

• evaluate the expression as lens
• must use the whole view
• subtyping as a lens

• run an in-place update as a lens
(updu):

• apply an in-place update to
the source

• view must be empty
• subtyping upcast function
• wait a minute... is this a valid

lens? GetPut? ...putlens
semantics

S

T

V

expr

T <: S

s : S t : T

() : ()

s' : S
T <: Su

Core language: Bidirectional updates (alignment)

• all our updates this far can only iterate over source sequences

• we introduce constructors for alignment two source and view
sequences:

• alignpos eS s r : matching by position
• align eS pS pV s r : matching according to two paths pS and pV

a1 a2

b1 b2 b3

b1 b2 b3

• eS is a filtering condition on source values

• r allows to recover source elements that satisfied eS but have
no match in the view, but updating them so that ¬eS

r ::= if e then r else r ′ | let pat = e in r
| delete | keepl r | keepr r

Bidirectional update example

Embed the view to each children of the source

children [iter [letV $v = $view/child::a in replace $v]]

source

a a a

view

a$v

source

a a a

• the view is put back in duplicated to the source

• the view a type must be a subtype of the source a type

• the derived get function tests for equality of all children

BiFluX language

• BiFluX high-level language (changes to Flux in red):

Stmt ::= Upd [WHERE Expr] | IF Expr THEN Stmt ELSE Stmt
| | Stmt ; Stmt | { Stmt } | LET Pat = Expr IN Stmt
| CASE Expr OF { Cases }

Upd ::= INSERT (BEFORE | AFTER) Path VALUE Expr
| INSERT AS (FIRST | LAST) INTO Path VALUE Expr
| DELETE [FROM] Path | REPLACE [IN] Path WITH Expr
| UPDATE Path BY Stmt
| UPDATE Path BY VStmt FOR VIEW Path [Match]
| KEEP Path AS (FIRST | LAST) | CREATE VALUE Expr

Cases ::= Pat → Stmt | Cases ′|′ Cases
VStmt ::= VUpd ′|′ VUpd | VUpd
VUpd ::= MATCH → Stmt

| UNMATCHS → Stmt
| UNMATCHV → Stmt

Match ::= MATCHING BY Path
| MATCHING SOURCE BY Path VIEW BY Path

Path ::= . . .
Pat ::= . . .
Expr ::= . . .

Conclusions

• reviewed concepts on bidirectional transformation languages

• introduced a novel idea of bidirectional update language

• presented the BiFluX bidirectional XML update language

• unveiled the details of a in-place/bidirectional core language

• BiFluX is work in progress

• our current prototype already supports typical BX examples
(not shown in this presentation)

Future work

• finish the implementation of the prototype (with examples)

• at the moment no type inference for patterns and no path
intersection (not crucial... we could reuse existing algorithms)

• provide more static guarantees (totality, etc)

• optimization of underlying putlenses

