BiFluX: A Bidirectional Functional Update
Language for XML

Hugo Pacheco
Joint work with Tao Zan and Zhenjiang Hu

National Institute of Informatics, Tokyo, Japan

BiG Camp

Karuizawa — September 3rd, 2013

BXs and Lenses

e lenses are one of the most popular BX frameworks

get

s —}'/—> v

Framework

data s=v = Lens {get::s — v
,put:is —v—s}

(Partial) Lens laws

e PUTGET law e GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.
get defined for put defined for
updated sources. empty view updates.

get

]

put

s’ € putsv' = v =gets v € gets=s=putsv

Get-based lens programming

e BX applications vary on the bidirectionalization approach

e write a single program that denotes both transformations

e bidirectionalization: write get in get
a familiar (unidirectional)
programming language and
derive a suitable put through
particular techniques s

put

e bidirectional programming
languages: programs can be s v
interpreted both as a get
function and a put function

Get-based lens programming

e common trait: write get and derive put automatically

e easier to maintain
e inherent ambiguity problem: many puts for a get; which one
to choose?
o get the height of a box with width and height

4

get
4 —> 4

o shall putheign: preserve the width? (rectangle)

4

ut
L] =

e shall putheigh: update the width? (square)

2

I
-

e current solutions: only one put assumption

Put-based lens programming

e new alternative approach: write put and derive get
e only one get per put: get s=v < s=putsv

e put fully describes a BX

e Constraint solving s 4>_,

@ S. Fischer, Z. Hu and H. Pacheco
“Putback” is the Essence of Bidirectional
Programming
GRACE-TR 2012-08, GRACE Center, National
Institute of Informatics, December 2012. s

e Put programming language

H. Pacheco, Z. Hu and S. Fischer S
Combinators for “Putback” Style Bidirectional
Programming

Technical report, July 2013, Submitted. S

Putlenses (put programming language)

e normally, users write a get : S — V transformation

e but writing a put : S — V — S update strategy is evidently
harder

e putlenses: language of injective puts:V — S
transformations, for any source s

Framework

data s<v = Putlens {put::s - v — s
,gets > v}

Putlenses language (Overview)

Language of point-free putlens combinators over ADTs

Put ::=id | Puto< Put
| ®p|botp
| effect f Put
| Prod | Sum | Cond | Iso | Rec
Prod ::= addfst f | addsnd f | keepfstOr | keepsndOr | copy
| remfst f | remsnd f
| Put® Put
==inj p | injsOr | injl | injr
| PutV Put | Put V, Put | Put &/ Put | Put & Put
| uninjl | uninjr
| Put+ Put
Cond ::= ifthenelse | ifVthenelse | ifSthenelse

Sum

Iso ::=swap | assocl | assocr
| coswap | coassocl | coassocr
| distl | distr

Rec :=in|out

-- basic combinators
-- partial combinators
-- monadic effects

-- create pairs

-- destroy pairs

-- product

-- Create sums

-- destroy sums

-- destroy sums

-- sum

-- conditional put app.
-- rearrange pairs

-- rearrange sums

-- distr. sums over pairs
-- algebraic data types

Motivation: Bidirectional programming languages

combinatorial: build complex transformations by composing

smaller ones
[« % ﬁ@ﬂ |
S g v v
U/

require describing the concrete steps that connect source/view

for instance, putlenses are very flexible but they are:
o low-level (canonical set of combinators)
e bad at updating a small part of a source while leaving the rest
unchanged
impractical for larger databases: painful to traverse the source
document and explicitly ignore unrelated parts

Idea: Bidirectional update language

e Bidirectional transformation language: programmers write
type-changing transformations
e that abstract a source into a view (get: S — V)
o that refine a view into a source using the original database as
oracle (puts:V —5)
e Bidirectional update language: programmers write
type-preserving updates
e that modify a source database by embedding some view
information (put v:S — S)

XML update languages

e XML query and transformation languages (XPath, XQuery,
XSLT, XDuce) are bad for specifying small updates

e dedicated languages for in-place XML updates:

o XQuery Update Facility
® imperative language
e ill-understood semantics semantics (aliasing, side-effects,

depends on traversal order)

e Flux (Functional Lightweight Updates for XML)
e functional language
e clear semantics
e straightforward type-checking

e XUpdate, XQuery!, etc...

Proposal: BiFluX

e we propose BiFluX, a bidirectional variant of Flux

e modest syntactic extension
e notion of view (feat. pattern matching, view-source alignment)
e static restrictions to ensure well-behavedness

e Flux: fixed input schema e BiFluX: fixed source and
& new output schema view schemas

e unidirectional in-place e bidirectional semantics as
semantics putlenses

A BiFluX example (1)

Is this a put function?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>
WHERE title = "Through the Looking-Glass"

S = books [book [author [String |+, title [String]]x]
V = String

A BiFluX example (1)

Is this a put function?

UPDATE $source/books/book BY

INSERT BEFORE title

VALUE <author>$view</author>
WHERE title = "Through the Looking-Glass"

S = books [book [author [String |+, title [String]]x]
V = String

e adds the view as the last author to the source authors

e violates GETPUT!

A BiFluX example (2)

Is this a put function?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>
WHERE title = "Through the Looking-Glass"

S = books [book [author [String |+, title [String]]x]
V = String

A BiFluX example (2)

Is this a put function?

UPDATE $source/books/book BY

REPLACE author[last()]

WITH <author>$view</author>
WHERE title = "Through the Looking-Glass"

S = books [book [author [String |+, title [String]]x]
V = String

e replaces the last author in the source with the view author

e well-behaved put function

Static types and lenses

e XDuce-style regular expression types
(with n-guarded recursion)

7 = Bool | String | n[7] | () | 7|7’ | 7,7 | 7% | X
e Flux: values as sequences e BiFluX: strongly-typed
of trees implementation as ADTs

- , e bidirectional semantics
vix ks =x

L. v, T E{rs}s{rv} = lens
e typing judgment

FE{r}s{r'}

e statically generated lenses

Subtyping as lenses

Flux: type-checking with inclusion-based subtyping

r < 7 iff |r] C |7]

we use regular expression subtyping as a “black box’

we reuse an algorithm with additional witness functions among
underlying ADT values

ucast

dcast (ucast x) = x

o< 7
~_ - ucast total

dcast .
e dcast partial

but... we implement the witness functions as putlenses

R /
T <llens T

Core language

BiFluX — core language — lenses
we consider two different semantics

o default bidirectional semantics as lenses
e Flux “standard” in-place semantics (insert, delete)

we introduce pattern matching support (to decompose views)

core BiFluX language:

e == “core XQuery expressions”

p = “simple XPath expressions”

pat = “linear, sequence-based XDuce patterns”
u ::= “Flux in-place updates”

s := "BiFluX lens updates”

Core language: Expressions and Paths

e like Flux, we reuse uXQ expressions (core XQuery) as a “black

box

Expressions ex= ()| e € |n[e]|letx =eine
|ifethene’elsee” | e ~ €

| forx € ereturne’ | p

Paths p:x=alp:t|p/p|ple]l] $x

| w | true | false | snapshot patin p
Axes a = self | child | dos
Tests ¢ := n|* | string |bool

e Expressions: create trees, variables, value comparison, paths

Paths: navigate a tree

Axes: change the current focus
Tests: examine the structure of the tree

Core language: Patterns

pattern matching is very useful for XML transformations
(XDuce, CDuce)

not as important for typical XML updates (XQuery!, Flux)
Flux relies on paths to navigate source documents

but... lossy paths are not suitable for decomposing views
(injectivity = union of paths?)

BiFluX supports pattern matching to decompose views

pat = $x|$xasT|T -- variables, types
| ()| n[pat] | pat, pat’ -- empty, label, sequence

syntactic restriction: linear patterns (no choice — $x | (), no

star — ($x)x)

Core language: In-place updates

e in-place updates (Flux) modify specific parts of the source and
leave the remaining data unchanged, producing:

e a target tree & a target type

u == skip|u;u |ifethenu |letpat =einu
| inserte | delete | d[u]
d == p]left|right | children | iter

e Updates: combination of updates, add variables to the
environment, insert expression at current position, delete
current position, navigate in a direction and apply an update

e Directions: navigate the tree (path, beginning, end, child
sequence, iterate over each element)

In-place update example

Insert a b as the first child of each child of the root node
children [iter [children [left [insert b]]]]

Core language: Bidirectional updates

e bidirectional updates (BiFluX) take source and view types,
producing:
e a put function that modifies specific parts of the source to
embed all view information
e a get function that computes a view of a given source

s == fail|s;s'|ds[s]|[s]dv | replacee | updu
| letpat =eins |letSpat = eins | letV pat = eins
| ifethenselses’ | ifSethenselses’ | ifV ethenselses’
| alignposes sr | alignes ps py sr

ds = p|children | iter

dv == $x/p
ifethenrelser’ | let pat = einr
delete | keepl r | keepr r

,
|

Core language: Bidirectional updates (basic combinators)

e if we do not embed view information, we must fail

e bidirectional composition (s;s’) embeds different view
information into the source in two steps s and s’

T|SST| 5

v1 V1 v2 V2

e not lens composition!

o formally, well-behavedness requires “source disjointness”
(XPath intersection has been studied by the XML community)

e remember... it is different from in-place composition

7 —{oT v 7]

Core language: Bidirectional updates (environment)

e environment contains three kinds of variable bindings:
e source variables: lenses from the current source focus
e view variables: sequence that constitutes the current view
e normal variables: independent of the current source/view

e three kinds of let expressions:
e letS pat = eins: adds a new source (and environment)
variable from an expression using only source variables
e letV pat = eins: adds a new view (and environment) variable
from an expression using only view variables
e let pat = eins: adds a new environment variable from any
expression

e three kinds of if-then-else combinators:

e ifSethenselses’: source condition
e ifVethenselses’: view condition
e ifethenselses’: arbitrary condition

Core language: Bidirectional updates (directions)

e source directions (ds]s]):
e apply a lens to the current
focus, yielding a new focus
e |lens composition
e jter embeds the same view
into each element in the
current focus

e view directions ([s]dv)

unfolds structure of the view
variable-rooted paths ($x/p)
no relative view paths

only injective paths

Core language: Bidirectional updates (embedding)

e replace the current source with
by some expression (replacee):
e evaluate the expression as lens
e must use the whole view
e subtyping as a lens

e run an in-place update as a lens
(upd u):
e apply an in-place update to
the source
e view must be empty 0:0
e subtyping upcast function
e wait a minute... is this a valid
lens? GetPut? ...putlens
semantics

Core language: Bidirectional updates (alignment)

e all our updates this far can only iterate over source sequences

e we introduce constructors for alignment two source and view
sequences:
e alignpos es s r: matching by position
e align es ps py s r: matching according to two paths ps and py

e
P
2\Js

e e is a filtering condition on source values
e r allows to recover source elements that satisfied es but have
no match in the view, but updating them so that —eg

r == ifethenrelser |letpat =einr
| delete | keepl r | keepr r

Bidirectional update example

Embed the view to each children of the source

children [iter [letV $v = $view /child::ain replace $v]]

source

[a][a][a]

AAA_» AAhi
\

$v
e the view is put back in duplicated to the source

e the view a type must be a subtype of the source a type
o the derived get function tests for equality of all children

BiFluX language

e BiFluX high-level language (changes to Flux in red):

Stmt n= Upd [WHERE Expr] | IF Expr THEN Stmt ELSE Stmt
| | Stmt ; Stmt | { Stmt } | LET Pat = Expr IN Stmt
| CASE Expr OF { Cases }
Upd == INSERT (BEFORE | AFTER) Path VALUE Expr
| INSERT AS (FIRST | LAST) INTO Path VALUE Expr
| DELETE [FROM] Path | REPLACE [IN] Path WITH Expr
| UPDATE Path BY Stmt
| UPDATE Path BY VStmt FOR VIEW Path [Match]
| KEEP Path AS (FIRST | LAST) | CREATE VALUE Expr
Cases = Pat — Stmt | Cases '|" Cases
VStmt = VUpd'| VUpd | VUpd
VUpd = MATCH — Stmt
| UNMATCHS — Stmt
| UNMATCHV — Stmt
Match = MATCHING BY Path
| MATCHING SOURCE BY Path VIEW BY Path
Path =
Pat =

Expr

Conclusions

e reviewed concepts on bidirectional transformation languages
e introduced a novel idea of bidirectional update language
e presented the BiFluX bidirectional XML update language
e unveiled the details of a in-place/bidirectional core language

e BiFluX is work in progress

e our current prototype already supports typical BX examples
(not shown in this presentation)

finish the implementation of the prototype (with examples)

at the moment no type inference for patterns and no path
intersection (not crucial... we could reuse existing algorithms)

provide more static guarantees (totality, etc)

optimization of underlying putlenses

