“Point-free” Put-based Bidirectional
Programming

Hugo Pacheco

HASLab, INESC TEC & University of Minho, Braga, Portugal
Former
National Institute of Informatics, Tokyo, Japan
Future

Big Camp

Karuizawa - February 18th, 2013

BXs and Lenses

e lenses are one of the most popular BX frameworks

get

S Y
S \Y

put

Framework

data S=V = Lens {get: S — V
,put:S—V =S}

Lens laws w/ partiality

e PUTGET law e GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.
get defined for put defined for
updated sources. empty view updates.

get

]

put

s'=putsv = v =gets v=gets=s=putsv

Lens programming

e BX applications vary on the bidirectionalization approach
e common trait: derive a lens from a get specification

e get-based domain-specific lens languages:
e put total (— expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

e put partial (— updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery

Partial Evaluation and Program Manipulation, 2007.
Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008

Motivation - Ambiguous put

e it is well-known that there are many possible well-behaved
puts for a get

4

get

putq

puty

putg

height : (Int, Int) — Int
height (w, h) = h

putheight; : (Int, Int) — Int — Int
putheight; (w, h) b’ =
let w = win (w',h')

putheighty, : (Int, Int) — Int — Int
putheighty (w, h) b =
let w = h in(w/, H)

putheights : (Int, Int) — Int — Int
putheights (w, h) b =
let w/ =if h’ = hthen w else 3 in (w/, h')

Motivation - An unpractical assumption

e get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

e but the most suitable put does not exist!
o for get = height...
o shall putheign: preserve the width? (rectangle)

4

puty
L = el

e shall putheign: update the width? (square)

2

0 e
-—

e each BX approach will provide its own solution!

Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GETPUT and PUTGET hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

@ (flip put) v is idempotent, i.e., put (put s v) v = putsv

® put s is injective
Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v < s = put sv

@ S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012

Put-based bidirectional programming

e however, writing put: S — V — S is much more difficult than
writing get : S — V
get-based = combinators hide synchronization

sLusv
getr, = gety; get,
puts.e S = put s o put, (getr s)

idea: language of injective put s combinators from V to S
put-based = combinators hide synchronization

Sd_yLy

Framework

data S <V = Putlens {put:S —V — S
,get:S — V}

A point-free put-based bidirectional language

e functional languages: data domain of algebraic data types

e algebraic data types = sums of products

data [A] = [] | A:[A] [A] Maybe A
data Maybe A = Nothing | Just A out¢Tin °“tH’"

Either () (A,[A]) FEither) A

e we will build a point-free put language that reverses...

@ H. Pacheco and A. Cunha
Generic Point-free Lenses
Mathematics of Program Construction, 2010.

. and is inspired in the injective language from...

@ S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004.

Products - Creating pairs

Add left element to the source

V f:(A B)— B— A addl: (A B)<B

)
put (x,y) y' = (X', y")
where x' = if y' = y then x else f (x,y) y’

get (x,y)=y

Keep left element in the source

keepl : (A,B) < B
keepl = addl (\(x,y) y' — x)

e similar for addr, keepr

Products - Destroying pairs

Drop right element in the view

Vi:A— B.egl: A=(A,B)
put x (xX',y) | fx' =y =x
get x = (x,f x)

e partial put and get: equality test to guarantee injectivity
e for every pair (x,y), y can be reconstructed from f x

e similar for eqgr

Products - Parallel put application

Apply two putlenses to both sides of a pair

YV f: 51 = Vl,g : 52 <= V5. fXg : (51,52)<:(V1, V2)
put (s1,%) (v, v2') = (s1/, s2')
where s = putr s; vi/
52, = putg s V2/
get (s1,52) = (vi, v2)
where v; = getr s1
Vo = géetg S

Sums - Creating choices

Retrieve a choice from the source

choice : Either AA<= A
put (Left x) x' = Left x’'
put (Right x) x' = Right x’
get s = either id id s

Create a choice in the source (conditional)

V p: Either AA— A — Bool. p?: Either AA< A
put s x' | either id id s =x' = s
| otherwise = if p s x’ then Left x’ else Right x’

get s = either id id s

Insert a left/right choice in the source

inl : Either AB<= A inr : Either AB<B
put s x' = Left x’' put s y' = Right y'
get (Left x) = x get (Right y) =y

Sums - Destroying choices

Ignore a choice in the view

Vi:S<V,g:5<W. vg:S< Either Vi V,

put s (Left vi) = puts s vy

put s (Right v») = putg s v»

get s | isJust (getr s) A isNothing (gety s) = fromJust (gets s)
| isNothing (getr s) A isJust (getg s) = fromJust (getg s)

e constraint: the domains of gets and getg; must be disjoint
e extension (observable get domains)

data S <V = Putlens {put:S —V — S
, get: S — Maybe V'}

Delete a left/right choice from the view

inl° : A< Either A B inr® : B« Either A B
put s (Left x) = x put s (Right y) =y
get x = Just (Left x) get y = Just (Left y)

Sums - Conditionals

Ignore choice in the view w/ source conditional

Vp:S— Bool,f:S<V1,8:S< V. £V, g: S« Either Vi V;
Vg =¢pofVo_,0g
dom f s = case gets s of
{ Nothing — False
; Just _ — True}

Coreflexive filter

Vp:A— Bool. ¢pp: A=A
putsv|pv=v
get s = if p s then Just s else Nothing

if-then-else view conditional

Vp:S—V —Bool,f:S<V,g:S<V.ifpthenfelseg:S<V
if p then f else g = (f vy, , &) o p?

Sums - Disjoint put application

Applies two putlenses to distinct sides of a choice

VI:5 < V1,g152<: Vs. f+g: Either S; S, < Either V; V>
put (Just (Left s1)) (Left vi’) = Left (putr (Just s1) vi’)

put _ (Left v") = Left (puts Nothing v1")
put (Just (Right s5)) (Right v»') = Right (putg (Just s2) v')
put _ (Right v»') = Right (putg Nothing v»")

get (Left s1) = liftM Left (gets s1)
get (Right s;) = liftM Right (get, s»)

e extension (source value creation)

data S <V = Putlens {put : Maybe S — V — S
, get : S — Maybe V'}

Isomorphisms

B
assocl : ((A, B), C) <= (A, (B, 0))

assocr : (A, (B, C)) < ((A, B), C)

Sums

coswap : Either B A<« Either A B

coassocl : Either (Either A B) C < Either A (Either B C)
coassocr : Either A (Either B C) < Either (Either A B) C

Distributivity
distl : Either (A,

I

(Either A B, C)

C) (B, C)«<=
distr : Either (A, B) (A, C) < (A, Either B C)

Algebraic data types

inga : [A] <= Either () (A, [A])
nil : [A] <1, cons : [A] <= A, [A]
nil = ingay o inl

cons = injaj o inr

outp) : Either () (A, [A]) <[A]
nil® : 1< [A], cons® : A, [A] < [A]
nil® = inl° o outya

cons® = inr° o out|aj

A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::=id | Put o Put | Prod | Sum | Cond | Iso | Rec

Prod ::= addl f | addr f | keepl | keepr -- create pairs
| eql f|eqrf -- destroy pairs
| Putx Put -- product
Sum ::= choice | p? | inl | inr -- create choices
| PutVPut | Putv, Put | inl°|inr® -- destroy choices
| Put+ Put -- sum
Cond ::= ¢, | if p then Put else Put -- conditional put app.
Iso ::=swap | assocl | assocr -- rearrange pairs
| coswap | coassocl | coassocr -- rearrange choices
| distl | distr -- distr. choices over pairs

Rec :=in| out | u(X: Putx) -- recursive put

Example (i-th element)

e get function

A
ith: Int — [A] — A choice
ith 0 (x : xs) = x A YA
ithi(x:xs)=ith(i—1)xs keepr ithPut
(AJAD) (Int,[A])

e put-based lens cons id % keepl
ithPut : Int — [A] < A (Al (Int,(A,[AD)
ithPut i = eqr (const i) o ithPut’ addl(xs v — 0) (+1) x cons
ithPut’ : (Int,[A]) < A (Int[A]) (Int,[A])
ithPut' = (zero Vy(j xs)—i=0 nonzero) o choice V A(iyz5) —i=0

where zero = addl (As v — 0) o cons o keepr (Int,[A))

nonzero = ((+1) x cons o keepl) o ithPut’

get (ithPut 2) "abcde" = Just ’c’
put (ithPut 2) (Just "abcde") ’x’ = "abxde"

Example (DB projection)

[Name]
e get function out
(+ (Name,[Name])
type Person = (Name, City) i
mapname : [Person] — [Name]
mapname [] =[]
mapname ((n, ¢) : xs) = n: mapname xs

id + addr city X mapnamePut
() + (Person,[Person])

in

[Person]

L] put—based lens Sebastian Kiel get Sebastian
Zhenjiang Tokyo Zhen];iang

|

. v

mapnamegut : [Persolg] = [(Ij\clfme.] Hugo Kol o
mapnamerut = maprut (adar cit Sebastian Tokyo Sebastian

ph . _p b(" y) wid Tim NeXVC\ly Tim

where city s v = maybe "NeuCity" id s Zhenjiang NewCity Zhenjiang

mapPut : B< A — [B] < [A]
mapPut f = ino (id + f x mapPut f) o out

Example (DB projection w/ environment)

e put-based lens

Sebastian Kiel get Sebastian
mapnamePut : [Person] <= [Name] Zheniiang Tokyo Znenjiang
[Person] \i]
mapnamePut = mapPut (addr city) Hugo NewCity put Hugo
; _ Sebastian Kiel Sebastian
where city people n = o NewCity < Tim
case lookup n people of Zhenjiang Tokyo Zhenijiang

Just c — ¢
Nothing — "NewCity"

e extension (global environment)
data S<E: V = Putlens {put : (E — Maybe S) - E -V — S
,get:S — Maybe V'}

addr: (E — A — B) = (A,B)<=A

local :§ <— V - S<«<=V
Maybe S E

local f =1f {put e2s e v =putfid(e2se)v}

Example (DB projection w/ state)

e put-based lens

mapnamePUt = runST (>‘e v — 0) Sebastian Kiel get Sebastian

Zhenjiang Tokyo Zhenijian:
mapnamePutST : [Person] <= [Name] ang o yand
[Person],int v

_ Hugo NewCity0 Hugo
mapnamePUtST - mapPut $ Segastian Kiel put Segastian
updateST upd (addr city) Tim NewCity2 < ~ Tim
Zhenjiang Tokyo Zhenjiang

where city i people n =
case lookup n people of
Justc — ¢
Nothing — "NewCity" H show i
updies=i+1
e extension (state)
data S<E:S V = Putlens {put : (E — Maybe S) - E — V — State S5t S
,St
,get: S — Maybe V'}
runST : (E — V—>St)—>S<E?V—>S<E:V
.St

updateST : (St 4 E - S = S5t) > S<=V > SV
E,st E,st

“Supercompositional” Example (maximum segment sum)

e get function

mss : [Int] — Int
mss = maximum o map sum o segments

segments

[Int]

[[Int]] —222" o [Int] —20mem o jnt

e but for put...

@ put,,,, sum has to return a consistent list of segments
® put,,.imum has to return a list of sums that correspond to the
sums of the updated segments

@ decompose segments into a data index/ segments of positions
(type ldx A = Map Pos A)

[Int] indexes [(POS, Int)] Map.fromList X segmentsomap (IdX /nt, [[POS]])

(ldx Int,[[Pos]]) mapsumsegsmax Int

“Supercompositional” Example (maximum segment sum)

(ldx Int,[[Pos]])

. (1d x in) o undistr
9 pUtm3P5“m55g5maX in CPS to (Idx Int,()) + (ldx Int,([Pos],[[Pos]]))

keep the data index updated
o [updateStfinal s is the result from g id x k“!” Ld X keepl
f \9 [[] withS: execute put g with the result from f
vi | wve

keepl ((Idx Int [Pos]) (Idx Int,[[Pos]]))
-- continuation-passing style logk“pgpgpm
eqCPS :: S <— V,
q9 Est o X
N 5 V2 sum Put
E,St + (Int s Int)
- S é,?—'l' (V17 VQ) bang OT maxPut
Int + Int
e extension (put “side-effects”) choice

Int
-- modify the original source before applying pu?‘

withS§ : (St 5 E—-S—-V —5S5) >S5V 55V
E,St E,St

-- modify the updated view before applying put
withV :: (St - E — V — V)—>S<E:sV—>5<§V
St ;

-- modify the updated source after applying put
updateS::(St—>E—>5—>S)—>5<ETV—>S§V
St ,

Implementation

Framework

data S<E:S V = Putlens {put : (E — Maybe S) - E — V — State S5t S
,St
, get : S — Maybe S}

Tupled Framework

data S<E:S V = Putlens {getput : S — (Maybe V,E — V — State St S)
,St

, create : E — V — State St S}

Conclusions

e a point-free put-based BX language
e a put specification style dual to specifying get

e users write put
e the combinators provide get for free

e ‘“similar" maintainability
e the combinators encapsulate different put behaviors
e complex put behaviors by composition (and using extensions)

+ full control of the backward transformation (user's intentions)
4+ more expressive than existing total get-based languages
+ better updatability than existing partial get-based languages

Future Work

e prove completeness

Conjecture

Our language can express every well-behaved put function for any
get function in the following point-free language.

Get :=my | ma |A| x| inl | inr | p? | V| + | in | out | u(X : Getx)

e put-based recursion patterns
e synthesize more efficient put and get functions

e languages for other domains (e.g., lenses for relational data)

@ A. Bohannon, B. C. Pierce, and J. A. Vaughan
Relational lenses: a language for updatable views
Principles of Database Systems, 2006.

