
“Point-free” Put-based Bidirectional
Programming

Hugo Pacheco

HASLab, INESC TEC & University of Minho, Braga, Portugal
Former

National Institute of Informatics, Tokyo, Japan
Future

Big Camp

Karuizawa - February 18th, 2013

BXs and Lenses

• lenses are one of the most popular BX frameworks

S

S V

V

get

put

Framework

data S⇒V = Lens {get : S → V
, put : S → V → S }

Lens laws w/ partiality

• PutGet law

put must translate
view updates exactly.
get defined for
updated sources.

s'

s

v'
put

get

s ′ = put s v ′ ⇒ v ′ = get s ′

• GetPut law

put must preserve
empty view updates.
put defined for
empty view updates.

s v

get

put

v = get s ⇒ s = put s v

Lens programming

• BX applications vary on the bidirectionalization approach

• common trait: derive a lens from a get specification

• get-based domain-specific lens languages:
• put total (– expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

• put partial (– updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery
Partial Evaluation and Program Manipulation, 2007.

Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008.

Motivation - Ambiguous put

• it is well-known that there are many possible well-behaved
puts for a get

get
4

4

4

height : (Int, Int)→ Int
height (w , h) = h

put1 22

4
putheight1 : (Int, Int)→ Int → Int
putheight1 (w , h) h′ =

let w ′ = w in (w ′, h′)

put2

2

2 2

putheight2 : (Int, Int)→ Int → Int
putheight2 (w , h) h′ =

let w ′ = h′ in (w ′, h′)

put3
3

2 2

putheight3 : (Int, Int)→ Int → Int
putheight3 (w , h) h′ =

let w ′ = if h′ ≡ h then w else 3 in (w ′, h′)

Motivation - An unpractical assumption

• get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

• but the most suitable put does not exist!

• for get = height...
• shall putheight preserve the width? (rectangle)

put1 22

4

• shall putheight update the width? (square)

put2

2

2 2

• each BX approach will provide its own solution!

Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GetPut and PutGet hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

1 (flip put) v is idempotent, i.e., put (put s v) v = put s v

2 put s is injective

Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v ⇔ s = put s v

S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012.

Put-based bidirectional programming

• however, writing put : S → V → S is much more difficult than
writing get : S → V

• get-based = combinators hide synchronization

S
f

=⇒ U
g

=⇒ V

get f ;g = get f ; getg
put f ;g s = put f s ◦ putg (get f s)

• idea: language of injective put s combinators from V to S
• put-based = combinators hide synchronization

S
f⇐=U

g⇐=V

Framework

data S⇐V = PutLens {put : S → V → S
, get : S → V }

A point-free put-based bidirectional language

• functional languages: data domain of algebraic data types

• algebraic data types = sums of products

data [A] = [] | A : [A]
data Maybe A = Nothing | Just A

[A]

out
��

Either () (A, [A])

in

OO
Maybe A

out
��

Either () A

in

OO

• we will build a point-free put language that reverses...
H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

... and is inspired in the injective language from...
S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004.

Products - Creating pairs

Add left element to the source

∀ f : (A,B)→ B → A. addl : (A,B)⇐B
put (x , y) y ′ = (x ′, y ′)
where x ′ = if y ′ ≡ y then x else f (x , y) y ′

get (x , y) = y

Keep left element in the source

keepl : (A,B)⇐B
keepl = addl (λ(x , y) y ′ → x)

• similar for addr , keepr

Products - Destroying pairs

Drop right element in the view

∀ f : A→ B. eql : A⇐ (A,B)
put x (x ′, y ′) | f x ′ ≡ y ′ = x
get x = (x , f x)

• partial put and get: equality test to guarantee injectivity

• for every pair (x , y), y can be reconstructed from f x

• similar for eqr

Products - Parallel put application

Apply two putlenses to both sides of a pair

∀ f : S1⇐V1, g : S2⇐V2. f ×g : (S1,S2)⇐ (V1,V2)
put (s1, s2) (v1

′, v2
′) = (s1

′, s2
′)

where s1
′ = putf s1 v1

′

s2
′ = putg s2 v2

′

get (s1, s2) = (v1, v2)
where v1 = getf s1

v2 = getg s2

Sums - Creating choices

Retrieve a choice from the source

choice : Either A A⇐A
put (Left x) x ′ = Left x ′

put (Right x) x ′ = Right x ′

get s = either id id s

Create a choice in the source (conditional)

∀ p : Either A A→ A→ Bool . p? : Either A A⇐A
put s x ′ | either id id s ≡ x ′ = s

| otherwise = if p s x ′ then Left x ′ else Right x ′

get s = either id id s

Insert a left/right choice in the source

inl : Either A B⇐A
put s x ′ = Left x ′

get (Left x) = x

inr : Either A B⇐B
put s y ′ = Right y ′

get (Right y) = y

Sums - Destroying choices

Ignore a choice in the view

∀ f : S⇐V1, g : S⇐V2. f Og : S⇐Either V1 V2

put s (Left v1) = putf s v1
put s (Right v2) = putg s v2
get s | isJust (getf s) ∧ isNothing (getg s) = fromJust (getf s)

| isNothing (getf s) ∧ isJust (getg s) = fromJust (getg s)

• constraint: the domains of getf and getg must be disjoint

• extension (observable get domains)

data S⇐V = PutLens {put : S → V → S
, get : S → Maybe V }

Delete a left/right choice from the view

inl◦ : A⇐Either A B
put s (Left x) = x
get x = Just (Left x)

inr◦ : B⇐Either A B
put s (Right y) = y
get y = Just (Left y)

Sums - Conditionals

Ignore choice in the view w/ source conditional

∀ p : S → Bool , f : S⇐V1, g : S⇐V2. f Op g : S⇐Either V1 V2

f Op g = φp ◦ f Oφ¬ p ◦ g

dom f s = case getf s of
{Nothing → False
; Just → True }

V1

V2

S

S

S

S

f

g

ϕp

ϕ¬p

Coreflexive filter

∀ p : A→ Bool . φp : A⇐A
put s v | p v = v
get s = if p s then Just s else Nothing

if-then-else view conditional

∀ p : S → V → Bool , f : S⇐V , g : S⇐V . if p then f else g : S⇐V
if p then f else g = (f Oφdom f

g) ◦ p?

Sums - Disjoint put application

Applies two putlenses to distinct sides of a choice

∀ f : S1⇐V1, g : S2⇐V2. f + g : Either S1 S2⇐Either V1 V2

put (Just (Left s1)) (Left v1
′) = Left (putf (Just s1) v1

′)
put (Left v1

′) = Left (putf Nothing v1
′)

put (Just (Right s2)) (Right v2
′) = Right (putg (Just s2) v2

′)
put (Right v2

′) = Right (putg Nothing v2
′)

get (Left s1) = liftM Left (getf s1)
get (Right s2) = liftM Right (getg s2)

• extension (source value creation)

data S⇐V = PutLens {put : Maybe S → V → S
, get : S → Maybe V }

Isomorphisms

Products
swap : (B,A)⇐ (A,B)
assocl : ((A,B),C)⇐ (A, (B,C)) assocr : (A, (B,C))⇐ ((A,B),C)

Sums
coswap : Either B A⇐Either A B
coassocl : Either (Either A B) C⇐Either A (Either B C)
coassocr : Either A (Either B C)⇐Either (Either A B) C

Distributivity

distl : Either (A,C) (B,C)⇐ (Either A B,C)
distr : Either (A,B) (A,C)⇐ (A,Either B C)

Algebraic data types

in[A] : [A]⇐Either () (A, [A]) out [A] : Either () (A, [A])⇐ [A]

nil : [A]⇐ 1, cons : [A]⇐A, [A] nil◦ : 1⇐ [A], cons◦ : A, [A]⇐ [A]
nil = in[A] ◦ inl nil◦ = inl◦ ◦ out [A]

cons = in[A] ◦ inr cons◦ = inr◦ ◦ out [A]

A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::= id | Put ◦ Put | Prod | Sum | Cond | Iso | Rec
Prod ::= addl f | addr f | keepl | keepr -- create pairs

| eql f | eqr f -- destroy pairs
| Put×Put -- product

Sum ::= choice | p? | inl | inr -- create choices
| PutOPut | PutOp Put | inl◦ | inr◦ -- destroy choices
| Put + Put -- sum

Cond ::= φp | if p then Put else Put -- conditional put app.
Iso ::= swap | assocl | assocr -- rearrange pairs

| coswap | coassocl | coassocr -- rearrange choices
| distl | distr -- distr. choices over pairs

Rec ::= in | out | µ(X : PutX) -- recursive put

Example (i-th element)

• get function

ith : Int → [A]→ A
ith 0 (x : xs) = x
ith i (x : xs) = ith (i − 1) xs

• put-based lens

ithPut : Int → [A]⇐A
ithPut i = eqr (const i) ◦ ithPut ′

ithPut ′ : (Int, [A])⇐A
ithPut ′ = (zeroOλ(i,xs)→i≡0 nonzero) ◦ choice
where zero = addl (λs v → 0) ◦ cons ◦ keepr

nonzero = ((+1)×cons ◦ keepl) ◦ ithPut ′

A

+A A

(A,[A])

[A]

(Int,[A])

(Int,[A])

(Int,(A,[A]))

(Int,[A])

(Int,[A])

choice

keepr

cons

addl(�s v ! 0)

ithPut0

id ⇥ keepl

(+1) ⇥ cons

O�(i,xs)!i⌘0

get (ithPut 2) "abcde" = Just ’c’

put (ithPut 2) (Just "abcde") ’x’ = "abxde"

Example (DB projection)

• get function

type Person = (Name,City)
mapname : [Person]→ [Name]
mapname [] = []
mapname ((n, c) : xs) = n :mapname xs

• put-based lens

mapnamePut : [Person]⇐ [Name]
mapnamePut = mapPut (addr city)

where city s v = maybe "NewCity" id s

mapPut : B⇐A→ [B]⇐ [A]
mapPut f = in ◦ (id + f ×mapPut f) ◦ out

[Name]

+() (Name,[Name])

()

out

(Person,[Person])+

[Person]

+id addr city ⇥ mapnamePut

in

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo Kiel
Sebastian Tokyo
Tim NewCity
Zhenjiang NewCity

get

put

Example (DB projection w/ environment)

• put-based lens

mapnamePut : [Person] ⇐=
[Person]

[Name]

mapnamePut = mapPut (addr city)
where city people n =

case lookup n people of
Just c → c
Nothing → "NewCity"

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo NewCity
Sebastian Kiel
Tim NewCity
Zhenjiang Tokyo

get

put

• extension (global environment)

data S⇐=
E

V = PutLens {put : (E → Maybe S)→ E → V → S

, get : S → Maybe V }

addr : (E → A→ B)→ (A,B)⇐=
E

A

local : S ⇐=
Maybe S

V → S⇐=
E

V

local f = f {put e2s e v = put f id (e2s e) v }

Example (DB projection w/ state)

• put-based lens

mapnamePut = runST (λe v → 0)

mapnamePutST : [Person] ⇐=
[Person],Int

[Name]

mapnamePutST = mapPut $
updateST upd (addr city)

where city i people n =
case lookup n people of

Just c → c
Nothing → "NewCity" ++ show i

upd i e s = i + 1

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo NewCity0
Sebastian Kiel
Tim NewCity2
Zhenjiang Tokyo

get

put

• extension (state)

data S⇐=
E ,St

V = PutLens {put : (E → Maybe S)→ E → V → State St S

, get : S → Maybe V }
runST : (E → V → St)→ S⇐=

E ,St
V → S⇐=

E
V

updateST : (St → E → S → St)→ S⇐=
E ,St

V → S⇐=
E ,St

V

“Supercompositional” Example (maximum segment sum)

• get function

mss : [Int]→ Int
mss = maximum ◦map sum ◦ segments

[Int]
segments // [[Int]]

map sum // [Int]
maximum // Int

• but for put...
1 putmap sum has to return a consistent list of segments
2 putmaximum has to return a list of sums that correspond to the

sums of the updated segments

1 decompose segments into a data index/ segments of positions
(type Idx A = Map Pos A)

[Int]
indexes // [(Pos, Int)]

Map.fromList × segments◦map π1 // (Idx Int, [[Pos]])

(Idx Int, [[Pos]])
mapsumsegsmax // Int

“Supercompositional” Example (maximum segment sum)

2 putmapsumsegsmax in CPS to
keep the data index updated

V1

S

V2

f g
updateS:final s is the result from g
withS: execute put g with the result from f

-- continuation-passing style
eqCPS :: S⇐=

E ,St
V1

→ S⇐=
E ,St

V2

→ S⇐=
E ,ST

(V1,V2)

(Idx Int,[[Pos]])

+(Idx Int,()) (Idx Int,([Pos],[[Pos]]))

(id ⇥ in) � undistr

((Idx Int,[Pos]) (Idx Int,[[Pos]]))

[Int]

(Int , Int)+()
sumPut

lookupsegPut

keepl

Int

+Int Int
bang 0

choice

maxPut

X

id ⇥ keepr id ⇥ keepl
eqCPS

• extension (put “side-effects”)

-- modify the original source before applying put
withS :: (St → E → S → V → S)→ S⇐=

E ,St
V → S⇐=

E ,St
V

-- modify the updated view before applying put
withV :: (St → E → V → V)→ S⇐=

E ,St
V → S⇐=

E ,St
V

-- modify the updated source after applying put
updateS :: (St → E → S → S)→ S⇐=

E ,St
V → S⇐=

E ,St
V

Implementation

Framework

data S⇐=
E ,St

V = PutLens {put : (E → Maybe S)→ E → V → State St S

, get : S → Maybe S }

Tupled Framework

data S⇐=
E ,St

V = PutLens {getput : S → (Maybe V ,E → V → State St S)

, create : E → V → State St S }

Conclusions

• a point-free put-based BX language

• a put specification style dual to specifying get
• users write put
• the combinators provide get for free

• “similar” maintainability
• the combinators encapsulate different put behaviors
• complex put behaviors by composition (and using extensions)

+ full control of the backward transformation (user’s intentions)

+ more expressive than existing total get-based languages

+ better updatability than existing partial get-based languages

Future Work

• prove completeness

Conjecture

Our language can express every well-behaved put function for any
get function in the following point-free language.

Get ::= π1 | π2 |4|×| inl | inr | p? |O | + | in | out | µ(X : GetX)

• put-based recursion patterns

• synthesize more efficient put and get functions

• languages for other domains (e.g., lenses for relational data)

A. Bohannon, B. C. Pierce, and J. A. Vaughan

Relational lenses: a language for updatable views

Principles of Database Systems, 2006.

