
XPTO

An XPath Preprocessor with Type-aware Optimization

Flávio Ferreira and Hugo Pacheco

Departamento de Informática
Universidade do Minho, Braga, Portugal,
{flavioxavier|hpacheco}@di.uminho.pt

Abstract. Various languages allow specific query languages for selection
and transformation of portions of documents. Such structure-shy queries
are defined generically for different data types, and only specify specific
behaviours for a few relevant subtypes. This is, for example a well-known
feature of XML query languages, that allow selection of element nodes
without specifying exactly the path to these elements.
We have implemented a system for performing optimizations on XPath
expressions by compilation into schema-specialized programs. The core
of the system consists of a combinator library, based on algebraic laws for
transformation of structure-shy and XPath specific features into structure-
sensitive programs, and vice-versa. We show how the core library can be
extended with laws for specific XPath features and adapted to construct
an effective rewrite system for specialization and optimization of XPath
queries. The front-end for this system transforms an XML Schema file
and an XPath query into an internal representation where optimizations
are preformed and generates an Schema specific query program written
in the functional language Haskell. The front-end itself is implemented
in Haskell.

Keywords Haskell, XPath, schema-specialization, optimization, prepro-
cessor

1 Introduction

Developed for sharing data across different information systems, the XML markup
language structures the data in a tree-based representation that can be stored it
in regular text files. XPath is a simple query language for using XML that is an
essential ingredient of XQuery and XSLT. It follows a structure-shy program-
ming technique to navigate through the hierarchy of XML nodes. Structure-shy
programs can be significantly more concise, and understandable, by focusing
on the essence of the algorithm rather than oozing with boilerplate code [13].
However, structure shyness reduces the efficiency of queries, due to the need to
traverse the whole document when looking for particular elements and the need
to perform dynamic checks to determine whether to apply specific or generic
behavior for each element node.

Various efforts have been made in the last few years to improve XPath effi-
ciency [15,8]: one of them is schema-based optimization [12]. Schema-awareness
is usualy synonym of using schema-knowledge to perform some optimizations
on XPath expressions, by trying to eliminate impossible path expressions or to
remove redundant conditions. We go further by performing type-specialization
and optimization over the query, this means, the query semantics are simplified
taking in account the document’s structure, as described in the schema’s type
definition, and refining the specialized query into a Haskell functional program.
A type-safe, type-directed rewrite system can be created for transforming XPath
structure-shy queries into structure-sensitive point-free functional programs [3].
This system relies upon a set of algebraic laws, formulated for transformation of
point-free programs [2]. Type-specialized queries are point-free program specific
for the schema in use, and may be run against any XML document that conforms
to such schema.

Much of the theoretical work, including the Haskell implementation of the
rewrite system itself, has been explored in a previous paper [3]. We will focus
on parsing and outputting the optimized queries and the infrastructure needed
harnesses this work into a fully functional XPath preprocessor.

This system is particular useful when the same query needs to be run against
multiple documents conforming to the same schema multiple times. For example,
web services commonly involve extraction of information from XML databases.
Such extractions can be expressed according to previously well-defined selection
functions in the XPath language(Figure 1) and are likely to be performed several
times (imagine a regular PHP website based on a XML database). Software
maintenance is also strictly related to generation of tests and summary reports
on data stored in XML databases.

In Section 2, we present some concrete examples to motivate our approach.
In Section 3, we explain in detail our implementation and show how the front-
end can be used for tackling different scenarios. In Section 4, we briefly present
the formalization of XPath axis and some of the algebraic laws for specialization
into point-free structure-sensitive programs. Later, in Section 5, we perform some
tests on our tool and compare it with other XPath processors. We end with a
discussion of related work (Section 6) and concluding remarks (Section 7).

2 Motivating Examples

In this section, we will study some query examples for different degrees of
structure-shyness. They will be specialized against the XML Schema in Figure 2
representing documents that hold information about movies and actors.

Retrieve all titles from the document

//title

This query selects all title elements at arbitrary depth, and works in a very
similar way to the previous one. The descendant-or-self XPath axis is structure-
shy, in the sense that it does not specifies the exact path to reach title elements

The following grammar describes a very resumed XPath syntax:

xpath := expr (’,’ expr) ?
expr := unionexpr | numliteral
unionexpr := expr ’union’ expr
location := ’/’ ? (step (’/’ step)∗)
step := axis ’::’ test pred ∗
axis := ’child’ | ’descendant’ | ’self’ | ’descendant-or-self’
test := name | ’*’ | ’text()’ | ’node()’
pred := ’[’ xpath ’]’

name := any document tag

The full syntax is available in the XPath language reference [19]. Abbrevi-
ated syntax is available and heavily used, where for instance // expands to
/descendant-or-self::node()/ and an element name without preceding axis mod-
ifier expands to /child::name.

Fig. 1. Summary of XPath.

imdb

movie actor

name played

role awardtitleyear

box_officereviewdirectortitle

valuecountry

* *

*

*
year

date

?

* *

Fig. 2. A movie database schema, inspired by IMDb (http://www.imdb.com/).

from the document’s imdb root element. From the user’s perspective, structure-
shyness helps specifying queries that are become more understandable, concise,
and adaptative to other schemas. However, we would like to optimize the query
by taking into account information about the schema. Knowing that title ele-
ments can occur under movie and played elements, we want to derive an opti-
mized query similar to:

imdb/(movie/title union actor/played/title)

Retrieve all movie actors from the document

//movie/actor

This query asks to retrieve every actor elements that are direct children
of movie elements appearing at any depth in the document’s tree. This is an

http://www.imdb.com/

example of a query that, for this particular schema, can be simplified to an
empty query because there is no actor element under movie.

Retrieve the third element from merging movie titles and reviews

(//movie/(title union review))[3]

This query can be constructed from the previous example, by changing the
selection to both title and review elements, inside movie elements. Merging the
results means applying the set union over the result sets. XPath’s result sets
have order, what means that all title tags will appear before review tags. By
indexing the final result, we are asking for a title if there are more than 2 title
elements defined, or for a review otherwise.

In the following sections we will demonstrate how these transformations can
be achieved through algebraic rewriting of XPath axis representations. This ex-
amples will be revisited in Section 3.

3 Front-end

Figure 3 defines the architecture of our tool, that can be divided into six func-
tional blocks: parser, transformation, generation, compilation, execution and
evaluation.

The parsing block consists on parsers for XPath and XML Schemas specifiers.
They involve the conversion of parsed abstract syntax trees into our Haskell type-
safe representation.

The transformation block is the kernel of our tool and specializes XPath
queries into optimized point-free expressions. As already mentioned, this kernel
was developed in previous work.

The optimized query can then be outputted as Haskell source code (gener-
ation), along with the constraining type definition, and furtherly compiled and
linked with a XML parser into a program and executed with one or more XML
argument files. It is also possible to ignore the last three blocks, by evaluating
the resulting point-free function directly from our tool.

Parsers Since we process several XML languages, the front-end functions are
combined with parsers and pretty-printers for XML,XSD and XPath abstract
syntax trees. In the conversion to our type-safe representation, XML and XSD
parsers were inherited from the 2LT project [1]: for XML we use the HaXml
parser, implemented with monadic parser combinators[9], and for XSD we de-
fine XML Schema instances for HaXml (XML Schemas are themselves XML
files). The XPath parser and pretty-printer were hand-crafted and implemented
with the fast combinator parser library Parsec [14], based on predictive LL(1)
grammars. They are XPath 2.0 compliant and support the full specification [19].

XML
Schema

(.xsd)

Xpath
Expression

.xsd.xsdXML
files

(.xml)

XSD
parser and
converter

XPTO
Kernel

Haskell
Module

(.hs)

XPath
parser and
converter

F (a → [*])

Type a

Parse Transform

Evaluate

Generate Compile + Link Execute

F (a → [*])

F (a → [*]) ghc

XML Result
Set ([*])

XML
parser

and
converter

XML Result
Set ([*])

Executable

a

XML
parser

and
converter

.xsd.xsdXML
files

(.xml)

Evaluate

a

Fig. 3. Architecture of our tool

Laziness XML parsing is the most expensive operation in XPath query process-
ing, due to the great amounts of data frequently stored in such file databases.
For this reason, we should avoid parsing unnecessary element nodes. Haskell lazy
evaluation addresses this problem, by delaying term evaluation until it’s result
is known to be needed, leading to potential improvements on execution time.
By matching the Xpath query against to the XSD schema definition, properties
for order, repetition and existence of elements can be inferred. This knowledge,
essential to our strategy, helps identifying and selecting only the desired nodes
for the query and allows the lazy parser to stop when the further elements are
not included in the result set. Note that, however, allowing laziness in parsing
compromises validation of the full document, but also makes it less sensitive to
possible errors at greater depth.

There are plenty of examples where laziness would dramatically improve
parsing times, such as the third presented example, where the selected element
must belong to one of the initial occurrences on the left branch of the XML tree.
Parsing is also avoided when the query is optimized to an empty query.

4 Rewrite System

The various algebraic laws for query transformation can be harnesses into a
type-safe, type-directed rewriting system for generalization, specialization and
optimization of structure-shy programs. We will present a mean of guaranteeing
type-safeness in the representation of types, values and functions over them.

To ensure type-safety in our rewire system, a universal representation of
types does not suffice. Some rewrite laws make explicit reference to types, and

therefore enforce their own type definition. To achieve this, we will need type-
representations at the value level, which can be provided by using generalized
algebraic data types (GADTs), a powerful generalization of Haskell data types
[17]. For all parameterized data Type a, their inhabitants must be representations
of type a.

Analogously to types, we need to represent functions in the same type-safe
manner. For this purpose, we resort again to a GADT, allowing function’s type-
checking for free: impossible or incorrect compositions of functions are checked
against Haskell’s native type system and rejected.

The developed rewrite system is defined as a composition of strategies, that
are themselves smaller rewrite systems. Strategies for this rewrite system are
type-preserving, and can be encoded in Haskell as monadic functions. Construc-
tors can be defined for different approaches like point-free, strategic or Xpath
representations.

Our strategy is defined as specialization of the XPath strategic combinators
into point-free functional programs, and a powerful set of laws needs to be applied
in order to guarantee that the resulting functions are on the canonical form, this
means, do not contain any redundancy.

For a detailed explanation on the representation of types,functions and XPath
expressions and to the strategy used in the rewriting of queries, please refer to
[3] or to the extended version of this paper in http://haskell.di.uminho.pt/
2ltdocs/xpto/xpto.pdf.

We will demonstrate how to apply the specialization to each of the examples
initially presented. The first step is to parse the input schema into our type
representation:

fst ◦ f4g = f
snd ◦ f4g = f

ff
×-Cancel

Fig. 4. Example of a point-free law.

t = xsd2type "../examples/imdbNoTVDir.xsd"

After that we have to, for each query, parse the XPath query into our func-
tional XPath representation:

q1 = imdb / ((child / movie / child / title)
⋃

(child / actor / child / played / child / title))
q2 = descself / child / movie / child / actor
q3 = descself / child / movie / ((child / title)

⋃
(child / review)) I index 3

Finally, we convert the XPath structure-shy queries into point-free structure-
sensitive functions.

http://haskell.di.uminho.pt/2ltdocs/xpto/xpto.pdf
http://haskell.di.uminho.pt/2ltdocs/xpto/xpto.pdf

For the first example, the query has been divided into two expressions, one for
each possible occurrence of the tag title in the document. In point-free notation
(Figure 4), fst and snd take the first and second elements of a pair, and split
generates a pair by application of two distinct functions to a value. As long
as our representation of XML elements is opaque, we need to define a generic
decapsulator unX , where X is any element, opens the content of a type. Since
XPath result sets are untyped, mkDyn allows us to represent different types as
the same type. Note that the outer listcat is concatenating the result of these
two expressions.

pf2 = listcat ◦ ((listmap (mkDyn ◦ fst ◦ unEmovie) ◦ fst ◦ unEimdb)4(concat ◦ (listmap
(listmap (mkDyn ◦ fst ◦ unEplayed) ◦ snd ◦ unEactor) ◦ snd ◦ unEimdb)))

For the second example, as expected, the query was reduced to a void path,
and always returns empty.

pf1 = listnil

For the third query, not much can be optimized, in terms of XPath structure.
The point-free function has exactly the same semantics as the XPath expression.

pf3 = index 3 ◦ concat ◦ listmap (listcat ◦ ((wrap ◦mkDyn ◦ fst ◦ unEmovie)4
(listmap mkDyn ◦ fst ◦ snd ◦ snd ◦ unEmovie))) ◦ fst ◦ unEimdb

If we want to generate an Haskell module with the query and corresponding
data types for the schema, we need to serialize the Type a structure, because
there can be no two data types with the same name, and the schema might
contain elements with the same tag but different types.

t ′ = serializeTypeSmart t

For last, we may generate an Haskell module with the point-free query and
the schema’s type definition. The boolean argument sets if we allow laziness in
parsing or not.

prettyPrint (type2HsModule True t ′ pf)

5 Tests and Benchmarking

In this section we discuss the results of comparing the developed front-end
against Saxon Schema-Aware, one of the most popular and fastest XPath proces-
sors in the market[10]. Next we present some benchmarking tests on the example
XPath queries. 1

1 Benchmark and profiling tests were run for all the examples. For testing, GHC version
6.6 with optimization flag -O2 has been used. The Haskell XML parser used was
HaXml development version 1.17.

newtype Imdb = Imdb{unImdb :: ([Movie], [Actor])}
newtype Movie = Movie{unMovie :: (Title, (Year , ([Review],

(Director , [BoxOffice]))))}
newtype Actor = Actor{unActor :: (Name, [Played])}
...

Here, we represent XML element tags from the schema’s type definition from Figure 2
with Haskell data types. Each newtype defines a XML node, with it’s own markup
tag. For each node, a reverse method is provided for untagging values of it’s type.

Fig. 5. Haskell datatypes for the schema of Figure 2.

Fig. 6. Comparison tests between our tool and Saxon SA and profiling times.
2

By analysis of the results in Figure 5, we can see that Saxon has a reasonably
high starting time of ∼ 0.80s for all the queries. However, it proves to be very
efficient in general. Parsing time grows linear with the XML document size, and
execution times are almost constant for queries with different features.

Our tool performs very differently. For inconsistent queries that are optimized
to a void path, such as the first example (Section 2), Haskell’s lazy evaluator
doesn’t require the input XML document to be parsed and the processing is

instantaneous. On the other side, Saxon always parses the input XML file inde-
pendently on the query, since it has optimistic algorithms for evaluating XPath
queries, but doesn’t refine the queries before evaluation.

For valid XPath queries that do not require evaluating the whole document,
lazy parsing proves to make a significant difference, depending on the relative
position of the queried elements in the document.

Concluding, despite the lack of optimizations and specializations, Saxon SA
proves to be faster than our implementation, which can still be greatly improved
by refining transformation strategies and internal representations. Parsing times
have a great influence on the results (> 90% of the total time), and Java language
is a much faster language than Haskell in handling large structures.

However, the most relevant feature for determining this theory’s success is the
precise cost of evaluating an XPath query in relation to the query’s complexity.

We have studied the efficiency of our implementation, specially in relation to
the XML database size. More theoretical tests should be done in the near future,
inspired on Gottlob et al continuous study on the precise complexity of Xpath
query processing [7].

6 Related work

Type-directed partial evaluation Partial evaluation is a technique for specializing
programs with knowledge of some of it’s input data. It can be seen as a special
case of program transformation, but emphasizes full automation and generation
of program generators as well as transformation of single programs. Further, it
is adopted by compilers and interpreters and gives insight into the properties of
programming languages themselves.

Danvy [4], and more recently Ens-Lyon [18], present type-directed partial
evaluators based on typed lambda-calculus. Type-directed partial evaluation uses
no symbolic evaluation for specialization, and naturally processes static compu-
tational effects. Therefore, source programs must be closed and monomorphically
typeable.

Our rewrite system is somehow similar, in the sense that we perform opti-
mizations on queries, based on their composite type definition and preprocess
their structure-shyness by partially evaluating generic traversals. By generating
specialized and optimized programs, it resembles the effort of partial evaluation
in program optimization and compilation.

Saxon compiled queries Kay is the creator of Saxon [10], a very popular XSLT
and XQuery Processor that claims an important role on XML processing over
Java and .NET. Since it’s last version, Saxon Schema-Aware features direct
compilation of XQuery queries (and ,consequently, XPath) into Java source code,
reducing execution times.

The main difference to our strategy is the notion of schema-aware opti-
mizations. Saxon improves execution times mainly by removing the overhead
of parsing the XPath query and performing some optimizations over it without

schema-awareness [11], meaning that the optimizations are mostly related to
java code and algorithmia. Schema-awareness implies validating the input and
output documents against a schema type definition, what represents a cost in
efficiency, compared to a non-schema-validating scenario.

In our approach, schema-awareness not only allows XML validation, but most
of all consists on the specialization of queries according to the schema definition.
The final result is a straightforward selection function with a built-in type rep-
resentation, against which the input XML document is parsed.

Being the most similar to ours, with the same goals, this approach represents
an important comparison reference, relevant in the testing of our solution and
final conclusions about efficiency and usability.

Xpath core language Genevès et al [6] propose a method for normalizing XML
queries into a minimal “core“ language, as specified in the XPath/XQuery for-
mal semantics [5]. This translation is achieved through a three-staged approach.
The first step is to normalize the expression into a minimal but fully expres-
sive “XPath core“ expression, before replacing all the context position references
for equivalents computed from the context node. At last, steps involving reverse
axis are converted to steps using the corresponding forward axis [16]. Normalized
XPath queries in the “core“ language belong to a state-less forward-only subset,
and therefore, are more straightforward and optimized queries.

Although not formally defined, this approach addresses the possibility to
transform XPath queries into simpler and faster programs, preserving their se-
mantics. Such normalizations may inspire new rules for our model, such as, avoid
evaluating backward axis by converting them to the most similar forward axis
representation.

7 Concluding Remarks

In this paper, we discuss the practical application of our Haskell-based Xpath
optimization system and the achieved performance. More information on the
transformation theory used in this tool can be found at [3] or in the extended
version available at http://haskell.di.uminho.pt/2ltdocs/xpto/xpto.pdf.

In particular, we have embedded the general transformation kernel into an
XPath transformation framework, by creating specific rules for handling XPath
combinators. The developed framework also embeds a complete XPath 2.0 parser
and XML parsing support, wrapped inside a front-end for evaluating XPath
queries based on schema-validation and automated generation of structure-sensitive
Haskell programs.

At last, we illustrate by example how the framework can be used to optimize
different queries.

7.1 Future Work

Though already useful in practise, our approach suffers from various limitations
that we intend to overcome.

http://haskell.di.uminho.pt/2ltdocs/xpto/xpto.pdf

Further combinators and languages Although studies prove that people tend not
to use many Xpath 2.0 functionalities, and although our current solution covers
most of most used, it is still limited. New combinators should be added, specially
XPath native functions.

Our rewrite system is directed to optimization of queries as selection func-
tions. Adding support for XML transformations and evolutions under XQuery
or XSLT would prove the potentially of this approach in XML processing.

Improve internal representations Actually, XSD schemas are represented as in-
stances of a generalized algebraic data type with basic constructors. However,
many XML Schema constraints get lost in the conversion, such as type restric-
tions. The existent Type representation should be extended in order to support
type constraints.

XML Parsing Parsing times represent the most of the execution time of opti-
mized queries. This is the most crucial aspect to be improved in the near future,
if we want this tool to have impact in current XML processing techniques. Better
parsing performance may be achieved by changing to the Haskell XML Toolbox
parser (http://www.fh-wedel.de/~si/HXmlToolbox/), or by manually improv-
ing the actual HaXml version. Moreover, much of these limitations are bound
to the language itself, reason for which we are seriously considering in map-
ping these type-safe structures, rewrite system and algebraic laws into an object
oriented-language, with much more efficient and elaborated parsing libraries.

Coupled transformations integration This project was born as an extension to
provide our coupled transformations rewrite system with the ability to refine
not only data structures, but also migration functions for values bound to those
structures. In the same line of the previous work [3], the developed rewrite system
could be adapted and linked with the two-level transformation framework, in
order to allow optimization of the migration functions.

The addition of a strategy for optimization of SQL queries would provide the
two-level transformation framework with the ability to optimize transformed
queries specifically for target model.

Acknowledgments

Thanks to Alcino Cunha and Joost Visser for the dedication and inspiring dis-
cussions about representation and transformation of XPath.

References

1. Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled schema
transformation and data: Conversion for xml and sql. In PADL 2007, pages 290–
304. Springer-Verlag, LNCS 4085, February 2007.

http://www.fh-wedel.de/~si/HXmlToolbox/

2. A. Cunha and J. Sousa Pinto. Point-free program transformation. Fundam. In-
form., 66(4):315–352, 2005.

3. A. Cunha and J. Visser. Transformation of structure-shy programs: Applied to
xpath queries and strategic functions. In ACM SIGPLAN 2007 Workshop on
Partial Evaluation and Program Manipulation, 2007.

4. Olivier Danvy. Type-directed partial evaluation. In POPL ’96: Proceedings of
the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 242–257, New York, NY, USA, 1996. ACM Press.

5. D. Draper, P. Fankhauser, M. Fernandez, A. Malhotra, K. Rose, M. Rys, J. Simeon,
and P. Wadler. XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft,
February, 2005.

6. Pierre Genevès and Kristoffer Rose. Compiling xpath into a state-less forward-only
subset. Technical report, IBM T. J. Watson Research Center, 2004.

7. Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. The com-
plexity of xpath query evaluation and xml typing. J. ACM, 52(2):284–335, 2005.

8. Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. Optimized translation
of xpath into algebraic expressions parameterized by programs containing naviga-
tional primitives. In WISE ’02: Proceedings of the 3rd International Conference
on Web Information Systems Engineering, pages 215–224, Washington, DC, USA,
2002. IEEE Computer Society.

9. G. Hutton and E. Meijer. Monadic parser combinators. Journal of Functional
Programming, 8(4):437–444, 1996.

10. Michael Kay. Saxon: Anatomy of an xslt processor. In IBM developerWorks, 2001.
11. Michael Kay. Xslt and xpath optimization. In XML Europe, 2004.
12. A. Kwong and M. Gertz. Schema-based optimization of XPath expressions. Sub-

mitted for publication, available from the authors, 2002.
13. R. Lämmel, E. Visser, and J. Visser. Strategic programming meets adaptive pro-

gramming. Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 168–177, 2003.

14. Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators
for the real world. Technical Report UU-CS-2001-27, Department of Computer
Science, Universiteit Utrecht, 2001.

15. Philippe Michiels. Xquery optimization. Technical report, University of Antwerp,
Belgium, 2003.

16. Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. Xpath: Looking for-
ward. In EDBT ’02: Proceedings of the Worshops XMLDM, MDDE, and YRWS on
XML-Based Data Management and Multimedia Engineering-Revised Papers, pages
109–127, London, UK, 2002. Springer-Verlag.

17. S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference
for generalised algebraic data types. Technical Report MS-CIS-05-26, Univ. of
Pennsylvania, July 2004.

18. K.H. Rose. Type-directed partial evaluation in Haskell. ”Preliminary proceedings of
the 1998 APPSEM workshop on normalization by evaluation. BRICS Notes, nos.
NS 981”, 1998.

19. W3C. XML path language (XPath) 2.0, W3C candidate recommendation, 2006.

	XPTO
	Flávio Ferreira andHugo Pacheco

