
Enforcing ideal-world leakage bounds in

real-world secret sharing MPC frameworks

José Bacelar Almeida1,4 Manuel Barbosa1,3 Gilles Barthe2 Hugo

Pacheco1,4 Vitor Pereira1,3 Bernardo Portela1,3

July 10, 2018 @ CSF 2018

1INESC TEC, Portugal

2IMDEA Software Institute, Spain

3FC Universidade do Porto, Portugal

4DI Universidade do Minho, Portugal



Multi-Party Computation (MPC)

• powerful cryptographic

paradigm

• allow two or more mutually

distrusting parties to

collaboratively compute over

their private data, only

revealing the result of the

computation

• theoretical foundations laid

almost 30 years ago

• recently growing for

privacy-critical applications

1



MPC Software Stacks

• a few MPC frameworks in recent years

(Sharemind, FRESCO and others)

• non-expert programmers develop MPC

applications in “traditional” languages

uint maximum (uint [1] xs)

{

uint m = xs[0];

for (uint i=1; i<size(xs); i+=1)

if (xs[i]>m) m = xs[i];

return m;

}

• program compiled to sequence of secure

MPC protocols for very simple tasks

• evaluation done by distributed virtual

machine

2



MPC Dilemma: eficiency vs...

• from previous slide: program
compilation−−−−−−→ secure MPC protocols

• secure protocols for simple tasks:

• add/mul, and/or, ...

• simple tasks are composable!

• however...

• impractical to run the whole program obliviously

• private control flow requires exploring all program paths

• what about leaking control flow?

3



MPC Dilemma: ...vs security

• practical languages

• information flow type system

• MPC-specific public control-flow restrictions

• special declassify operation

• good performance still requires a MPC expert

• which values to declassify? at which security cost?

• how much does this program leak?

secret maximum (secret xs) {

secret m = xs[0];

for (public i=1; i<size(xs); i+=1)

if declassify(xs[i]>m) m = xs[i];

return m; }

• a programmer: not obvious... all comparisons?

forall i; 0<=i<size(xs) && 0<=j<size(xs) ==> public(xs[i] < xs[j])

• a MPC expert: nothing! (with suitable preprocessing)

4



This paper: A Leakage-Aware MPC Software Stack

• provide early and end-to-end security

guarantees for MPC programs

• this presentation (passive w/ leakage)

• language-based techniques

• specify security policies

• automatically check security

policies

• prove secure compilation

• cryptographic techniques

• protocol execution

• language-based security ⇒
cryptographic security

5



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

6



High-level Language

• we adopt SecreC, a C++-like language used for writing MPC

applications in the Sharemind framework

• formally, a WHILE language with arrays, declassification and

public/secret primitive operations

• standard information-flow type system (public v secret) that

enforces public-control flow

• semantics gives meaning to a TTP computing directly over the data

• small-step semantics, instrumented with leakage

〈p,m〉 →l 〈p′,m′〉
〈p,m〉 ⇓l m′

Remember later

We will assume that all programs are safe

7



High-level Security

• program p is secure for Φ (non-interference)(
〈p, x1〉 ⇓l1 y1
〈p, x2〉 ⇓l2 y2

)
⇒ Φ(x1, x2) ⇒ l1 = l2

• relational leakage specification

Φ`(x , y) , `(x) = `(y)

• relational security Hoare logic {Φ} p {Ψ}(
〈p, x1〉 ⇓l1 y1
〈p, x2〉 ⇓l2 y2

)
⇒ Φ(x1, x2) ⇒ Ψ(y1, y2) ∧ l1 = l2

• compositional reasoning about pairs of executions of the same

program running in lockstep.

Remember later

Can be efficiently verified using self-composition techniques

8



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

9



Low-level Language

• low-level semantics runs a program as a distributed MPC protocol

• each party keeps a local state of additive shares

M = (M1,M2, . . . ,Mn)

• secret-shared encoding of public values (no communication)

v = (v , v ,−v , v , v ,−v . . . )
v = v + v − v + v + v − v + . . .

• local evaluation rules (no communication, asynchronous execution)

〈p,Mi 〉V 〈p′,M′i 〉

• global evaluation rules for declassify and secure operations (secure

communication, synchronous execution)

〈p,M〉Vt,c 〈p,M′〉

10



Low-level Security

• protocol π is correct for program p

〈p,Unshare(x̄)〉 ⇓ Unshare(ȳ)⇒ 〈π, x̄〉 ⇓t,c ȳ

• protocol π is secure for Φ (for party i) (non-interference)

x = Unshare(x̄) ∧ x ′ = Unshare(x̄ ′) ⇒

Φ(x , x ′) ∧

(
〈π, x̄〉 ⇓t,c ȳ

〈π, x̄ ′〉 ⇓t′,c′ ȳ ′

)
⇒ (ti , ci ) = (t ′i , c

′
i )

Remember later

Leakage relation over (unshared) values.

11



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

12



Secure Compilation

• compile a program p into a composite protocol πp

• πp = sequence of π declassify and π sop

Secure Compilation

Let p be a well-typed and Φ-secure program. Then we have that

protocol πp is correct for p and secure for Φ.

• proof sketch

• p is well-typed ⇒ no secret values in public computations

• high-level control flow = low-level control flow

• πp is synchronously executed
• compositional notions of low-level correctness and security

• simple proofs by non-interference

13



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

14



Cryptography – Real world vs Ideal world

• in the real world, A interacts

with three participants,

executing the MPC protocol

• in the ideal world, A will

interact with a trusted party,

ideally executing the protocol

• cryptographic security states

that the views of A should be

indistinguishable, i.e.

RealA ≡ IdealA

15



Cryptography – From language-based security

Cryptographic Security

correctness ∧ security ⇒ crypto security

• proof sketch

• correctness ⇒ we can replace a real protocol execution for its

corresponding ideal program

• security ⇒ we can construct a simulator that receives the leakage to

construct input shares; it can then run the protocol to produce traces

and coins that are indistinguishable from the real ones

16



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

17



Leakage Cancelling – Example

1. write a (more efficient) program that leaks more than desired (e.g.

all comparisons)

secret maximum (secret xs) {

secret m = xs[0];

for (public i=1; i<size(xs); i+=1)

if declassify(xs[i]>m) m = xs[i];

return m; }

2. cancel this leakage with an (efficient) probabilistic preprocessing

operation (e.g. oblivious shuffle)

secret auction (secret xs)

{ return maximum(shuffle(xs)); }

Intuition

Applying a random permutation to the input makes the sequence of

comparisons look random, and useless to an attacker that does not know

which permutation was applied (assuming that all elements are distinct).

18



Leakage Cancelling – Formally

• lift security to probabilistic programs(
〈p, x1〉 ⇓l̃1 ỹ1
〈p, x2〉 ⇓l̃2 ỹ2

)
⇒ Φ(x1, x2) ⇒ l̃1 = l̃2

• a probabilistic program p0 is a correct preprocessing for a

deterministic program p

〈p, x〉 ⇓l y ⇒ 〈p0; p, x〉 ⇓l′ ỹ ⇒=⇒ ỹ = 1y

• a Φ-secure program p0 with deterministic leakage is a secure

preprocessing for a Ψ-secure program p (non-interference)(
〈p0, x1〉 ⇓l1 ỹ1
〈p0, x2〉 ⇓l2 ỹ2

)
⇒ Φ(x1, x2) ⇒ Ψ̃(ỹ1, ỹ2)

Ψ̃(ỹ1, ỹ2) , ∀y .Pry1←ỹ1 [Ψ(y1, y)] = Pry2←ỹ2 [Ψ(y2, y)]

19



Motivation

High-level Language

Low-level Language

Compilation

Cryptography

Optimization

Tool

Conclusions

20



Implementation - SecreC Verification Tool

• relies on the Dafny-Boogie verification toolchain:

• safety (for cryptographic security): standard deductive verification

• security: product programs

• currently: deterministic programs, no support for leakage cancelling

Development

https://github.com/haslab/SecreC

21



Experiments

• leaky SecreC programs from the Sharemind SDK

• application server for computing over encrypted data

• developed by Cybernetica

• https://github.com/sharemind-sdk/secrec

SecreC LOC Leakage (Automated*) Cancelling (Manual)

quick-sort 101 all comparisons shuffle; leakage = ∅
radix-sort 135 row permutation shuffle; leakage = ∅
gaussian 178 row permutation shuffle; leakage = ∅
k-apriori 414 frequent itemsets up to k leakage = output

* automated verification requires procedure and loop annotations

22

https://github.com/sharemind-sdk/secrec


Conclusions

• work focus: language-based security treatment for MPC stack

• challenges:

• programming languages

• secure compilation

• cryptographic realizations

• final remarks:

• possible to achieve secure evaluation for leakage-aware language

• probabilistic non-interference vs. cryptographic security

• interesting combination of PL and Crypto tools/techniques

23


	Motivation
	High-level Language
	Low-level Language
	Compilation
	Cryptography
	Optimization
	Tool
	Conclusions

