Functional Logic Semantic Bidirectionalization for

Freel!

Hugo Pacheco

HASLab
INESC TEC & Universidade do Minho, Braga, Portugal

FATBIT/SSaaPP Workshop
Braga - September 18th 2012

Towards Functional Logic Semantic

Bidirectionalization for Free!

Hugo Pacheco

HASLab
INESC TEC & Universidade do Minho, Braga, Portugal

FATBIT/SSaaPP Workshop
Braga - September 18th 2012

BXs and Lenses

@ lenses are one of the most popular BX frameworks

get

put

@ existing lens systems vary on the bidirectionalization approach

@ how is a lens derived from a specification?

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Functional Semantic Bidirectionalization

@ Voigtlander proposed the semantic bidirectionalization of
Haskell functions [POPL'09]

get

Sa 4>—> Va

Sa Va
put

@ put via the polymorphic interpretatation of get
@ limited expressiveness - only polymorphic get functions

@ limited updatability - even for the mixed approach of
Voigtlander et al. [ICFP'10]

Functional Logic Semantic Bidirectionalization for Free! / Hugo Pacheco

The Lens Laws

o PUTGET law o GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.

get

A

put

get (putv's) C v/ put (gets)s C s

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

A Better GETPUT Law?

@ when the view is modified there are many source updates
@ anything can happen! - no restriction on the permitted

translations

get

s >

view
update

?
put

Hugo Pacheco

Functional Logic Semantic Bidirectionalization for Free!

A Better GETPUT Law?

@ when the view is modified there are many source updates

@ only “good” can happen - only minimal source updates are
permitted

get

s 4>—> v

view
update

put

V Vs, s diff (put v/ s)s < diff s's PUTDIFF
@ the differencing function depends on the source type

diffs:5—=S—>N

Functional Logic Semantic Bidirectionalization for Free! / Hugo Pacheco

Functional Logic Semantic Bidirectionalization

@ Idea: use Curry, a functional logic programming language, to
compute such minimal updates

o functional programming: Haskell-like syntax

@ logic programming: logic variables, built-in search (findall,
best)

get

s ——Pp—— v

diff g : S =S =N

put

@ derive diff from the source type

@ derive put from get and diff

Functional Logic Semantic Bidirectionalization for Free! / Hugo Pacheco

A diff for Algebraic Data Types

@ a generic diff for algebraic data types

@ Eelco Lempsink, Sean Leather and Andres Loh
Type-Safe Diff for Families of Datatypes
Workshop on Generic Programming 2009.

@ we implement this diff in Curry

diffND/_,‘st : [a] — [a] — N
diffND e [][] = 0
diffNDyist [] (v :ys) =1+ diffNDyist [] ys - insert
diffNDist (x : xs) [] = 1+ diffNDpist xs [] -- delete
diffND ist (x : xs) (y : ys)

| x=:=y = diffNDys xs ys -- copy

| x=/=y=1+4diffNDys (x :xs) ys -- insert

? 1+ diffNDyjst xs (y : ys) -- delete

diff Lt s' s = unpack $ head $ best (An — diffND s’ s =:= n) (<)

@ this diff calculates the sequence of insert, delete and copy
operations with the minimal cost

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Curry Implementation

@ we implement put in Curry as a non-deterministic function

put:V —>S5—S
putv' s=putnnv s=:=5¢
where n = diff's v' s
s’ free
diff's v/ s = unpack $ head $ best
(An — let s’ free in get s' =:= v/ & diffNDs s’ s =:= n)

putn:N—>V —>§—S
putnnv's| gets’ ==v' & diffs s’ s=:=n=s" where s’ free

© calculate the minimal difference between any new source
(whose view is v') and the original source s

@ return any new source whose difference to the original source
sisn

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Example 1 (halve) - First Attempt

@ calculate the first half of a list

gethalve

[1,2,3,4] —>—> [1,2]

A 4
[5,2,1,6,2,3,4] [5,2,1,6]

Puthaive

get = halve
halve :: [a] — [a]
halve [] =[]
halve (x : xs) = x : halve’ xs xs
where halve’ xs [] =[]
halve’ xs [y] =]
halve' (x:xs) (y:z:zs) = x: halve’ xs zs

@ is this the best result?

Functional Logic Semantic Bidirectionalization for Free!

Hugo Pacheco

Calculating a View Complement

@ view complement = source data not present in the view

@ put should only recover data from the view complement

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Calculating a View Complement

@ view complement = source data not present in the view

noncomplement

@ put should only recover data from the view complement

@ how to calculate the complement in Curry?

noncomplement ¢ s = findfirst (Ax — get x =:= get s & matchs x s)

complementg s = inverts s (noncomplements s)

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Calculating a View Complement

o we refine diff to take into account the source complement

diffNDyis: - [a] — [(a,a)] = N
diftNDyi: [1[1 =0
diffNDyist [1 ((v,y): ys) = insert
diffNDist (x : xs) [] = delete
diffND st (x : xs) ((v,y) : ys)
| x ==y & isVar v =:= False = copy
| x ==y & isVar v=:= True = insert ? delete
Ix=/=y = insert ? delete
diff Lt s' s = unpack $ head $ best (An — diffND s’ cs =:= n) (X)
where cs = zip (complement s) s

@ we do not allow source data not in the complement to be
copied

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Example 1 (halve) - Second Attempt

@ calculate the complement of the source

noncomplement ;o [1,2,3,4] = [1,2, _a, _b]
complement ;o [1,2,3,4] = [_a, _b, 3,4]

o calculate the first half of a list (revisited)

g€thatve
[1,2,3,4] [1,2]
A 4
[5,2,1,6,_a,3,4]
[5,2,1,6,3,_a,4] [5,2,1,6]
2,1 4
[5,2,1,6,3,4,_a] Pibnatve

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

Example 2 (/ength)

@ compute the length of a list

getlen_qth

1,23 —Pp—> 3

[1,2]
[1,3] 2
[2’3] pUtlength

get = length

length :: [a] = N

length[] =0

length (x : xs) = 1 + length xs

Functional Logic Semantic Bidirectionalization for Free!

Hugo Pacheco

Example 3 (append)

@ append two lists into a single list

gelappend

([1,21134) ——Pp—>{ [1,2,3,4]

([0,11,2,3,4,5])
([0,1,2],[3,4,5]) [0,1,2,3,4,5]
([0,1,2,3],[4,5]) PUlappend

get = append

append :: ([a], [a]) — [a]
append ([], ys) = ys
append (x : xs, ys) = x : append (xs, ys)

o diff for pairs of lists

diff Lise e == ([a],[2]) = ([a], [a]) — N

Functional Logic Semantic Bidirectionalization for Free!

Hugo Pacheco

Example 4 (zip)

@ join the elements of two lists pair-wise into a single list

getzip

([1,2,3],"abcd") —>—> [(1,'a",(2,'6"),(3,'c)]

\ 4

@200y 2 @0
o putzip

get = zip

zip :: ([a], [b]) — [(a, b)]
zip ([], ys) =[]

zip (xs,[]) =[]

zip (x:xs,y 1 ys) = (x,y) : zip (xs, ys)

Functional Logic Semantic Bidirectionalization for Free!

Hugo Pacheco

Example 5 (/spine)

@ calculate the left spine of a binary tree

getlsp'me

/\—>—>
2 3

[1,2]

[0,1]

3 pUtlsm'ne

data Tree a = Empty | Node a (Tree a) (Tree a)

get = Ispine

Ispine :: Tree a — [a]

Ispine Empty =[]

Ispine (Node x | r) = x : Ispine |

Functional Logic Semantic Bidirectionalization for Free!

Hugo Pacheco

Conclusions

@ a semantic bidirectionalization approach using Curry
@ users define any get : S — V function, and we derive:

e a diff s function
e a non-deterministic put : V — S — S function that lazily
returns the “best” new sources

Scoreboard: Future Work:
+ expressivness @ automate the tool
+ updatability @ improve the reduction strategy for
+ properties infinite search spaces (e.g. filter)
— efficiency @ improve diff

Functional Logic Semantic Bidirectionalization for Free! Hugo Pacheco

