
Functional Logic Semantic Bidirectionalization for
Free!

Hugo Pacheco

HASLab
INESC TEC & Universidade do Minho, Braga, Portugal

FATBIT/SSaaPP Workshop
Braga - September 18th 2012

Towards Functional Logic Semantic
Bidirectionalization for Free!

Hugo Pacheco

HASLab
INESC TEC & Universidade do Minho, Braga, Portugal

FATBIT/SSaaPP Workshop
Braga - September 18th 2012

BXs and Lenses

lenses are one of the most popular BX frameworks

S

S V

V

get

put

existing lens systems vary on the bidirectionalization approach

how is a lens derived from a specification?

Functional Logic Semantic Bidirectionalization for Free! 2 / 17 Hugo Pacheco

Functional Semantic Bidirectionalization

Voigtländer proposed the semantic bidirectionalization of
Haskell functions [POPL’09]

S ! V !
get

V !S !
put

derive

put via the polymorphic interpretatation of get

limited expressiveness - only polymorphic get functions

limited updatability - even for the mixed approach of
Voigtländer et al. [ICFP’10]

Functional Logic Semantic Bidirectionalization for Free! 3 / 17 Hugo Pacheco

The Lens Laws

PutGet law

put must translate
view updates exactly.

s'

s

v'
put

get

get (put v ′ s) v v ′

GetPut law

put must preserve
empty view updates.

s v

get

put

put (get s) s v s

Functional Logic Semantic Bidirectionalization for Free! 4 / 17 Hugo Pacheco

A Better GetPut Law?

when the view is modified there are many source updates
anything can happen! - no restriction on the permitted
translations

s

v'
put

v

get

view
update

SS?

s

v'
put

v

get

view
update

s'

∀ v ′, s, s ′. diff (put v ′ s) s 6 diff s ′ s PutDiff

the differencing function depends on the source type

diff S : S → S → N

Functional Logic Semantic Bidirectionalization for Free! 5 / 17 Hugo Pacheco

A Better GetPut Law?

when the view is modified there are many source updates

only “good” can happen - only minimal source updates are
permitted

s

v'
put

v

get

view
update

s'

∀ v ′, s, s ′. diff (put v ′ s) s 6 diff s ′ s PutDiff

the differencing function depends on the source type

diff S : S → S → N

Functional Logic Semantic Bidirectionalization for Free! 5 / 17 Hugo Pacheco

Functional Logic Semantic Bidirectionalization

Idea: use Curry, a functional logic programming language, to
compute such minimal updates

functional programming: Haskell-like syntax

logic programming: logic variables, built-in search (findall,
best)

V
get

VS
put

derive

S

derive

derive

di↵ S : S ! S ! N

derive diff from the source type

derive put from get and diff

Functional Logic Semantic Bidirectionalization for Free! 6 / 17 Hugo Pacheco

A diff for Algebraic Data Types

a generic diff for algebraic data types

Eelco Lempsink, Sean Leather and Andres Löh
Type-Safe Diff for Families of Datatypes
Workshop on Generic Programming 2009.

we implement this diff in Curry

diffNDList : [a] → [a] → N
diffNDList [] [] = 0
diffNDList [] (y : ys) = 1+ diffNDList [] ys -- insert
diffNDList (x : xs) [] = 1+ diffNDList xs [] -- delete
diffNDList (x : xs) (y : ys)

| x =:= y = diffNDList xs ys -- copy
| x = / = y = 1+ diffNDList (x : xs) ys -- insert

? 1+ diffNDList xs (y : ys) -- delete

diff List s ′ s = unpack $ head $ best (λn → diffND s ′ s =:= n) (6)

this diff calculates the sequence of insert, delete and copy
operations with the minimal cost

Functional Logic Semantic Bidirectionalization for Free! 7 / 17 Hugo Pacheco

Curry Implementation

we implement put in Curry as a non-deterministic function

put :: V → S → S
put v ′ s = putn n v ′ s =:= s ′

where n = diff ′
S v ′ s

s ′ free

diff ′
S v ′ s = unpack $ head $ best

(λn → let s ′ free in get s ′ =:= v ′ & diffNDS s ′ s =:= n)

putn :: N → V → S → S
putn n v ′ s | get s ′ =:= v ′ & diff S s ′ s =:= n = s ′ where s ′ free

1 calculate the minimal difference between any new source
(whose view is v ′) and the original source s

2 return any new source whose difference to the original source
s is n

Functional Logic Semantic Bidirectionalization for Free! 8 / 17 Hugo Pacheco

Example 1 (halve) - First Attempt

calculate the first half of a list

[1,2,3,4]

[5,2,1,6]

[1,2]

[5,2,1,6,2,3,4]

gethalve

puthalve

get = halve

halve :: [a] → [a]
halve [] = []
halve (x : xs) = x : halve′ xs xs

where halve′ xs [] = []
halve′ xs [y] = []
halve′ (x : xs) (y : z : zs) = x : halve′ xs zs

is this the best result?

Functional Logic Semantic Bidirectionalization for Free! 9 / 17 Hugo Pacheco

Calculating a View Complement

view complement = source data not present in the view

?

get

put

free
noncomplement

free

invert

put should only recover data from the view complement

how to calculate the complement in Curry?

noncomplementS s = findfirst (λx → get x =:= get s & matchS x s)

complementS s = invertS s (noncomplementS s)

Functional Logic Semantic Bidirectionalization for Free! 10 / 17 Hugo Pacheco

Calculating a View Complement

view complement = source data not present in the view

?

get

put

free
noncomplement

free

invert

put should only recover data from the view complement

how to calculate the complement in Curry?

noncomplementS s = findfirst (λx → get x =:= get s & matchS x s)

complementS s = invertS s (noncomplementS s)

Functional Logic Semantic Bidirectionalization for Free! 10 / 17 Hugo Pacheco

Calculating a View Complement

we refine diff to take into account the source complement

diffNDList : [a] → [(a, a)] → N
diffNDList [] [] = 0
diffNDList [] ((v , y) : ys) = insert
diffNDList (x : xs) [] = delete
diffNDList (x : xs) ((v , y) : ys)

| x =:= y & isVar v =:= False = copy
| x =:= y & isVar v =:= True = insert ? delete
| x = / = y = insert ? delete

diff List s ′ s = unpack $ head $ best (λn → diffND s ′ cs =:= n) (6)
where cs = zip (complement s) s

we do not allow source data not in the complement to be
copied

Functional Logic Semantic Bidirectionalization for Free! 11 / 17 Hugo Pacheco

Example 1 (halve) - Second Attempt

calculate the complement of the source

noncomplementList [1, 2, 3, 4] = [1, 2, a, b]

complementList [1, 2, 3, 4] = [a, b, 3, 4]

calculate the first half of a list (revisited)

[1,2,3,4]

[5,2,1,6]

[1,2]

[5,2,1,6,_a,3,4]
[5,2,1,6,3,_a,4]
[5,2,1,6,3,4,_a]

gethalve

puthalve

Functional Logic Semantic Bidirectionalization for Free! 12 / 17 Hugo Pacheco

Example 2 (length)

compute the length of a list

[1,2,3]

2

3

[1,2]
[1,3]
[2,3] putlength

getlength

get = length

length :: [a] → N
length [] = 0
length (x : xs) = 1+ length xs

Functional Logic Semantic Bidirectionalization for Free! 13 / 17 Hugo Pacheco

Example 3 (append)

append two lists into a single list

([1,2],[3,4])

[0,1,2,3,4,5]

[1,2,3,4]

([0,1],[2,3,4,5])
([0,1,2],[3,4,5])
([0,1,2,3],[4,5])

getappend

putappend

get = append

append :: ([a], [a]) → [a]
append ([], ys) = ys
append (x : xs, ys) = x : append (xs, ys)

diff for pairs of lists

diff List × List :: ([a], [a]) → ([a], [a]) → N

Functional Logic Semantic Bidirectionalization for Free! 14 / 17 Hugo Pacheco

Example 4 (zip)

join the elements of two lists pair-wise into a single list

([1,2,3],"abcd")

[(1,'x'),(2,'y')]

[(1,'a'),(2,'b'),(3,'c')]

([1,2],['x','y',_a,'d'])
([1,2],"xyd")

putzip

getzip

get = zip

zip :: ([a], [b]) → [(a, b)]
zip ([], ys) = []
zip (xs, []) = []
zip (x : xs, y : ys) = (x , y) : zip (xs, ys)

Functional Logic Semantic Bidirectionalization for Free! 15 / 17 Hugo Pacheco

Example 5 (lspine)

calculate the left spine of a binary tree

[0,1]

[1,2]
1

2 3

0

1 3

0

1

3

getlspine

putlspine

data Tree a = Empty | Node a (Tree a) (Tree a)

get = lspine

lspine :: Tree a → [a]
lspine Empty = []
lspine (Node x l r) = x : lspine l

Functional Logic Semantic Bidirectionalization for Free! 16 / 17 Hugo Pacheco

Conclusions

a semantic bidirectionalization approach using Curry

users define any get : S → V function, and we derive:

a diff S function
a non-deterministic put : V → S → S function that lazily
returns the “best” new sources

Scoreboard:

+ expressivness

+ updatability

+ properties

– efficiency

Future Work:

automate the tool

improve the reduction strategy for
infinite search spaces (e.g. filter)

improve diff

Functional Logic Semantic Bidirectionalization for Free! 17 / 17 Hugo Pacheco

