
Delta Lenses over Inductive Types

Hugo Pacheco, Alcino Cunha, Zhenjiang Hu
hpacheco@di.uminho.pt, alcino@di.uminho.pt, hu@nii.ac.jp

Techn. Report TR-HASLab:02:2012

Feb. 2012

HASLab - High-Assurance Software Laboratory
Universidade do Minho

Campus de Gualtar – Braga – Portugal
http://haslab.di.uminho.pt

TR-HASLab:02:2012
Delta Lenses over Inductive Types
by Hugo Pacheco, Alcino Cunha, Zhenjiang Hu

Abstract

Existing bidirectional languages are either state-based or operation-based, depending
on whether they represent updates as mere states or as sequences of edit operations.
In-between both worlds are delta-based frameworks, where updates are represented
using alignment relationships between states. In this paper, we formalize delta lenses
over inductive types using dependent type theory and develop a point-free delta lens
language with an explicit separation of shape and data. In contrast with the already
known issue of data alignment, we identify the new problem of shape alignment and
solve it by lifting standard recursion patterns such as folds and unfolds to delta lenses
that use alignment to infer meaningful shape updates.

Keywords: bidirectional lenses, model alignment, point-free programming

1 Introduction
One of the most successful approaches to bidirectional transformation (BX) are the
so-called lenses [FGM+07], an instantiation of the well-known view-update problem.
A lens S Q V encompasses a forward transformation get : S → V that abstracts
sources of type S into abstract views of type V , together with a backward transformation
put : V × S → S that synchronizes a modified view with the original source to
produce a new modified source model. Naturally, such synchronization in general is
non-deterministic, since there may be many possible modified sources that reflect a
certain view-update.

The above state-based formulation of the view-update problem, where the backward
transformation receives only the updated view, underpins many BX languages that have
been proposed to various application domains. Although very flexible, this formulation
implies that the put function must somehow align models and recover a high-level
description of the update (a delta describing the relation between elements of the updated
and original view), to be then propagated to the source model. A large part of the non-
determinism in the design space of a state-based BX language concerns precisely the
choice of a suitable alignment strategy.

Some state-based languages [FGM+07, MHN+07, PC10] do not even explicitly con-
sider this alignment step, and end up aligning values positionally, i.e., elements of the
view are always matched with elements of the source at the same position, even when
they are rearranged by an update. This suffices for in-place updates that only modify
data locally without affecting their order, but produces unsatisfactory results for many
other examples. Other state-based languages [XLH+07, BFP+08] go slightly further and
align values by keys rather than by positions. Nevertheless, this specific alignment
strategy is likewise fixed in the language and might not be suitable for values without
natural keys (or for translating updates that modify keys themselves).

On the other hand, operation-based BX languages [MHT04, HHI+10, HPW12] avoid
this potential alignment mismatch by relying on an alternative formulation, where the
backward transformation receives a description of the update as a low-level sequence of
edit operations. The drawback of this approach is that put only considers a fixed update
language (typically allowing just add, delete, and move operations), defined over very
specific types, making it harder to integrate such languages in a legacy application that
does not record such edits.

To unify both worlds and benefit from both the loose coupling of state-based ap-
proaches and the more refined updatability of operation-based approaches, Diskin et
al [DXC11] formulated an abstract delta lens framework that encompasses an explicit
alignment operation (that computes view deltas), and where put is an update-based
transformation that propagates view deltas into source deltas. Matching lenses [BCF+10]
are the first bidirectional language that we are aware of promoting this separation prin-
ciple. They generalized dictionary lenses [BFP+08] over strings, by decomposing values
into a rigid structure or shape, a container with “holes” denoting element placeholders,
and a list of data elements that populate such shape. This enables elements to be freely
rearranged according to delta information. Users can then specify an alignment strategy
that computes the view update delta as a correspondence between element positions.

The main limitation of their matching lens combinators is that they are shape pre-
serving: when recast in the context of general user defined data types, their expressivity
amounts to a mapping transformation map l : T A Q T B over a polymorphic data
type, being l : A Q B a normal state-based lens operating on its elements. In this setting,
lenses are sensible to data modifications (on the A and B components of values) but not

0

to shape modifications (on the T component of values) and the behavior of the backward
transformation is rather simple: it just copies the shape of the view, overlapping the
original source shape, and realigns elements using the explicitly computed delta rather
than by position. Consider, as an example, the following transformation that computes
the left elements of the left spine of a binary tree of pairs:

data Tree A = Empty | Node A (Tree A) (Tree A)

map π1
ord ◦ lspine : Tree (Char × Int) Q [Char]

This transformation is expressed in a point-free language similar to the one introduced
in [PC10]. The forward transformation first computes the left spine, followed by mapping
the lens π1

ord that projects the left element of a pair (using ord to create default right
values). By porting the matching lens approach to this domain, we could easily define
map : (A Q B) → ([A] Q [B]). Unfortunately, the same does not apply to lspine :
Tree a → [a], since it changes the shape of the source. Leaving lspine as a standard
state-based lens would produce less-then-optimal results. For example, if we insert a new
element at the head of the view and use a best match alignment strategy for inferring the
deltas, put would behave as follows (with deltas represented graphically):

let s =

(’a’,97)

(’b’,98) (’c’,99) in get s = [’a’,’b’] put [’x’,’a’,’b’] s =

(’x’,120)

(’a’,97)

(’b’,98)

(’c’,99)

Although the order of the elements in the view list changes, put successfully retrieves
their associations with the original pairs due to the improved behavior of map modulo
deltas. Unfortunately, the propagated deltas are ignored by lspine since it does not fit the
mapping corset imposed by the matching lens framework. With the extra information at
hand we could have done better though: using delta information we could recognize ’x’
as a new insertion to the head of the view list, and propagate it back as an insertion to
the head of the source tree, as depicted below.

let s =

(’a’,97)

(’b’,98) (’c’,99) in get s = [’a’,’b’] put [’x’,’a’,’b’] s =

(’x’,120)

(’a’,97)

(’b’,98) (’c’,99)

It is easy to justify that this behavior induces a smaller change and is thus more
predictable. As another example, consider the transformation filter l : [Either a b] Q [a]
that filters all the left alternatives of a list. Again, this lens is not a mapping and thus not
expressible as a matching lens. If we consider that it behaves positionally, inserting a
new element at the head of the view and deleting the rear element would produce the
following result:

1

let s = [L 1,R’a’,L 2,R’b’] in getfilter l s = [1, 2] putfilter l [0, 1] s = [L 0,R’a’,L 1,R’b’]

A better solution would be to use the deltas to recognize insertions and deletions in the
view, and propagate them to the same relative positions, as follows:

let s = [L 1,R’a’,L 2,R’b’] in getfilter l s = [1, 2] putfilter l [0, 1] s = [L 0,L 1,R’a’,R’b’]

The lesson to learn is that likewise a positional data alignment (the matching of
data elements) is only reasonable for in-place updates, a positional behavior on shapes
(that ignores the shapes of the original source and overrides it with the shape of the
updated view) is innate for mapping scenarios but again ineffective for shape-changing
transformations that restructure source shapes into different target shapes and for which
simple overriding for put is not possible. In this paper, we focus on the treatment and
propagation of generic deltas (independently of the more particular heuristic techniques
that can be used to infer this information for specific application scenarios), identify
the new problem of shape alignment (the matching of new and old shapes) and propose
to answer it with the development of a delta lens language, whose inhabitants are
lenses with an explicit notion of shape and data that can perform both data and shape
alignment. Our language is designed in such a way that many lens programs written in
our previous state-based lens language from [PC10] can be lifted to delta lens programs
without significant effort by users.

In the next section (Section 2), we introduce the theoretical concepts required for
our development, formalize the notion of deltas and present our particular application
domain of inductive types. Section 3 reviews the abstract delta lens framework [DXC11]
and proposes a lower-level variant that is more suitable for the implementation of our
bidirectional delta-based language. In Section 4, we provide a set of primitive delta lens
combinators and redefine the point-free lens combinators from [PC10] as delta lenses
over shapes. Section 5 studies the construction of recursive delta lenses and lifts standard
recursion patterns such as folds and unfolds to lenses that propagate shape updates as
inferred from the deltas between data elements. Section 6 compares related work and
Section 7 synthesizes the main contributions and directions for future work.

2 Deltas over Polymorphic Inductive Types
Higher-order functors The central requirement for this paper is the existence of
types that have an explicit notion of shape and data. In functional programming, these
are known as polymorphic data types, i.e., types parameterized by type variables like
the trees and lists in our introduction. A non-polymorphic inductive data type T can
be defined as the fixed point T = µF of a regular (endo) functor F : ∗ → ∗ in the
semantic domain of choice. The isomorphism outF : T → F T can then be used to
expose its top-level structure, and its converse inF : F T → T to determine how values
of that type can be constructed. Likewise, a polymorphic inductive data type T A can
be defined as the fixed point T A = µ(B A) of a partially applied regular bi-functor

2

B : ∗ → ∗ → ∗ [JJ97], with outB : T A → B A (T A). An alternative formulation, that
we will use in this paper, is to characterize the polymorphic type constructor T as the
fixed point T = µF of a higher-order functor (ho-functor) F : (∗ → ∗)→ (∗ → ∗), such
that T A = (µF) A and outF : T A → F T A. This formulation is more expressive,
namely enabling the definition of non-regular nested data types [JG07], but we restrict
the syntax of ho-functors to the following regular family equivalent to the formulation
as bi-functors (though necessary to model shapes):

F = A | Par | Id | F �F | F �F | F �F

In this language, A returns the constant type A, Par denotes the type parameter,
Id recursive invocation and � and � higher-order sums and products. Composition
� applies an unary functor to an higher order functor. The application of a regular
ho-functor F to a regular functor F yields a regular functor, that can be defined by
addition (F ⊕G), multiplication (F ⊗G) and composition (F �G) of regular functors,
plus identity (Id) and constants (A), for a given non-polymorphic type A. In particular,
for the primitives we have A F = A, Par F = Id , and Id F = F , and for the combinators
(F �G) F = F F ⊕G F , (F �G) F = F F ⊗G F , and (F �F) G = F �F G . For
example, the type constructors of lists and trees can be represented as follows:

[] = µL L = 1� Par � Id Tree = µT T = 1� Par � (Id � Id)

A transformation f between functors F and G applied to data elements of type A and
B is denoted by f : F A→ G B , or to emphasize the shape, f : FA → GB . Whenever f is
polymorphic, i.e., independent from the type of data, it is called a natural transformation
and denoted by f : F →̇ G .

Positions Polymorphic inductive data types can be seen as instances of container
types [AAG05]. A container type S.P consists of a type of shapes S together with a family
P of position types indexed by values of type S . The extension of a container is a functor
JS . PK that when applied to a type A (the type of the content) yields the dependent
product1 Σs : S . (P s → A). A value of type JS .PK A is thus a pair (s, f) where s : S is a
shape and f : P s → A is a total function from positions to data elements. A polymorphic
data type T A is isomorphic to the extension JT 1 . PK A, where the dependent
type of positions can be inductively defined over functor representations [AAG05] and
polymorphically for the type A of data elements, for each value v : T A2:

P : ∀{T : ∗ → ∗}, v : T A. ∗
P {Id } a = 1 -- unit type
P {C } a = 0 -- empty type
P {F ⊕G } (i1 a) = P {F } a -- left branches
P {F ⊕G } (i2 b) = P {G } b -- right branches
P {F ⊗G } (a, b) = P {F } a + P {G } b -- left or right components
P {µF } a = P {F (µF)} (out a) -- recursive unfolding

1A dependent type may depend on values. The dependent function space ∀a : A. B a character-
izes functions that, given a value a : A emits values of the dependent type B a . When B does not
depend on a , this degenerates into the normal function space A → B . The dependent cartesian
product Σa : A. B a models pairs where the type of the second component depends on the first.
Again, when B does not depend on a , it models the cartesian product A × B . To simplify the
presentation, we will often mark some arguments of a dependent function space as implicit using
curly braces. In principle, these parameters can be omitted and their value inferred from the context.

2Note that the type of positions for a value of type T A is the same as the type of positions for
its shape of type T 1.

3

(◦) : (B ∼ C)→ (A ∼ B)→ (A ∼ C) id :A ∼ A
(∪) : (A ∼ B)→ (A ∼ B)→ (A ∼ B) ⊥ :A ∼ A
(∩) : (A ∼ B)→ (A ∼ B)→ (A ∼ B) top :A ∼ A
(−) : (A ∼ B)→ (A ∼ B)→ (A ∼ B) ·◦ : (A ∼ B)→ (B ∼ A)
〈·, ·〉 : (A ∼ B)→ (A ∼ C)→ (A ∼ B × C) π1 :A × B ∼ A
(×) : (A ∼ B)→ (C ∼ D)→ (A × C ∼ B × D) π2 :A × B ∼ B
[·, ·] : (A ∼ C)→ (B ∼ C)→ (A+ B ∼ C) i1 :A ∼ A+ B
(+) : (A ∼ B)→ (C ∼ D)→ (A+ C ∼ B +D) i2 : B ∼ A+ B

Figure 1: Point-free relational combinators

The type of positions for P {F �G } a is handled by unrolling the composition
F �G according to the following equations, where F �G applies a functor G to the
parameters of an ho-functor F .

Id �G = G Id �G = Id
C �G = C C �G = C
(F ⊕G)�H = (F �H)⊕ (G �H) (F �G)�G = (F �G)� (G �G)
(F ⊗G)�H = (F �H)⊗ (G �H) (F �G)�G = (F �G)� (G �G)
(F �G)�H = F � (G �H) (F �G)�G = F � (G �G)
(µF)�G = µ(F �G) Par �G = G � Par

Inspired by shapely types [Jay95] notation, the isomorphism T A ∼= JT 1 . PK A
will be witnessed by three functions: shape : T A → T 1 that extracts the shape,
data : ∀v : T A. (P v → A) that extracts the data, and recover : JT 1 . PK A → T A
that rebuilds the data type. Being an isomorphism, these functions satisfy the equations
recover (shape x , data x) = x and (shape (recover x), data (recover x)) = x . For lists,
the shape [1] is isomorphic to naturals Nat = {0, 1, ...}, and thus we have shape l =
length l , P l = {0 . . length l − 1}, and data l = λn → l !! n .

Deltas In our work, we model a delta b ∆ a between a target value b and a source value
a as a correspondence relation P b → P a (an arrow in the Rel category) from positions
in the target value to positions in the source value. Matching lenses [BCF+10] capture
the same concept but assume that a shape has a list of positions, while we formulate
it in a type-safe manner with a dependent type. We will also distinguish vertical deltas
that model updates between values of the same type, from horizontal deltas that establish
correspondences between values of different (view and source) types [Dis11]. In our
setting, this correspondence relation must be simple, i.e., each target position has non-
ambiguous provenance and is related to at most one source position. In practice, this
assumption does not restrict any particular kind of correspondences. For example,
when constructing views every view element must necessarily be uniquely related to a
source element and when performing an update we can still insert, delete and duplicate
elements. The only implication is that elements must be considered atomically, i.e.,
we can not express for example that an element in the view is the combination of two
elements in the source.

To describe deltas we will use a standard set of point-free relational combinators
(Figure 1), including relational composition (◦) and regular set operations such as union

4

(∪), intersection (∩) and difference (−). The converse of a relation R is given by R◦, ⊥
denotes the empty relation and top the largest relation, and the other combinators handle
products and sums. The domain and range of a relation r : A ∼ B will be denoted by
δR ⊆ id : A ∼ A and ρR ⊆ id : B ∼ B , respectively. To preserve simplicity, some
combinators will only be used in controlled situations. For example, if a relation R is
injective and simple (like getM presented further on), then R◦ is also simple. By resorting
to this language, we can reason about deltas using the powerful algebraic laws ruling its
combinators. More details on these laws can be found in [Oli07].

3 Laying Down Delta Lenses
In Diskin’s et al [DXC11] delta-based framework, updates are encoded as triples (s, u, s ′)
where s, s ′ are the source and target values and u is a delta between elements of s
and s ′, and lens transformations are arrows that simultaneously translate states and
deltas. In our presentation, we choose to separate the state-based and delta-based
components of the lenses. This, together with the dependent type notation, leads to a
simpler formulation of delta lenses for polymorphic inductive data types: operationally,
the delta-based components required for defining composite delta lens can be ignored
by end users, which are only required to understand the more intuitive interface of
the state-based components. Also, lens transformations are no longer partially defined
modulo additional properties entailing preservation of the incidence between values
and deltas.

Definition 1 (Delta lens - adapted from [DXC11]). A delta lens l (d-lens for short), denoted
by l : S A QN V B , is a bidirectional transformation that comprises four total functions:

get : S A→ V B
getN : ∀{s ′ : S A, s : S A}. s ′∆ s → get s ′∆ get s
put : ∀(v , s) : V B × S A. v ∆ get s → S A
putN : ∀{(v , s) : V B × S A}, d : v ∆ get s. put (v , s) d ∆ s

Note that S 1 and V 1 are the types of shapes and A and B are the types of data elements. The
d-lens is called well-behaved if it satisfies the following properties:

get (put (v , s) d) = v PUTGET

put (get s, s) id = s GETPUT

getN (putN d) = d PUTGETN

putN id = id PUTIDN

In the above definition, the state-based component of the d-lens is given by the
functions get , that computes a view of a source value, and put , that takes a pair containing
a modified view and an original source, together with a delta from the modified view
to the original view, and returns a new modified value. The delta-based function getN
translates a source delta into a delta between views produced by get , and putN receives
a view delta and computes a delta from the new source produced by put to the original
source. Properties PUTGET and GETPUT are the traditional state-based ones: view-to-
view roundtrips preserve view modifications; and put must preserve the original source
for identity updates. PUTGETN and PUTIDN denote similar laws on deltas: view-to-view
roundtrips preserve view updates; and putN must preserve identity updates. It is easy to
see that our formulation is equivalent to the well-behaved d-lenses from [DXC11]. For
example, their GETID property is a consequence of our axiomatization.

5

We can convert a d-lens l : S A QN V B into a state-based lens blcdiff : S A Q V B

that receives an alignment function diff : ∀v ′ : V B , v : V B . v ′∆ v , estimating a delta
from the pre- and post-states of view updates, but forgets shape and alignment for
further compositions. We omit its definition and properties, but they have already been
studied in [DXC11] and put to practice in [BCF+10].

Abstractly, d-lenses are simple to understand since they transform updates (vertical
deltas) into updates. However, to propagate view updates, putN must somehow recover
an horizontal delta between the non-modified view and the original source that provides
the required traceability information to calculate a new source update [HHI+10]. From
an implementation perspective, an alternative formulation of d-lenses that compute and
process these horizontal deltas explicitly is preferable (instead of, for instance, having to
infer them at run-time for specific executions). As such, we propose an alternative frame-
work of horizontal d-lenses, whose delta-based functions explicitly return the horizontal
deltas induced by the state-based transformations. Moreover, it is convenient to include
in this less abstract framework a create function [BFP+08] that reconstructs a default
source value from a view value for situations where the original source is not available.

Definition 2 (Horizontal d-lens). An horizontal d-lens l (hd-lens for short), denoted by
l : S A QM V B , comprises three total functions get , put , and create : V B → S A, plus three
horizontal deltas:

getM : ∀{s : S A}. get s ∆ s
putM : ∀{(v , s) : V B × S A}, d : v ∆ get s. put (v , s) d ∆ (v , s)
createM : ∀{v : V B }. create v ∆ v

It is called well-behaved if it satisfies PUTGET, GETPUT and the following properties:

get (create v) = v CREATEGET

createM ◦ getM = id CREATEGETM

putM d ◦ getM = i1 PUTGETM

[getM, id] ◦ putM id = id GETPUTM

The horizontal deltas are complements of the state-based functions that explicitly
record the traceability of their execution: getM denotes a delta from the resulting view to
the original source and vice-versa for createM, while putM is a delta from the new source
to the input view-source pair. In practice, this will mean that the deltas of most of our
lens combinators can be derived by construction by reversing their behaviors on states.
The delta-based laws also dualize the state-based laws, with the insight that the type of
positions of a view-source pair is the disjoint sum of the positions in the view and in the
source. For example, while the CREATEGET law states that abstracting a created source
shall yield the original view, the CREATEGETM law evidences that the corresponding
delta on views shall also preserve all view elements (identity).

We now show how hd-lenses can be used to implement the abstract framework of
d-lenses:

Definition 3. An hd-lens l : S A QM V B can be lifted to a d-lens lN : S A QN V B by
defining getN d = get◦M ◦ d ◦ getM and putN d = [getM ◦ d , id] ◦ putM d .

Theorem 1. If an hd-lens l : S A QM V B is well-behaved, then the d-lens lN is well-behaved.

Proof. The state-based laws dismiss proofs. The property PUTGETN is proven using
PUTGETM and by knowing that get◦M ◦ getM = id , since PUTGETM entails that getM is a
total and injective relation. PUTIDN follows directly from GETPUTM.

6

4 Combinators for Horizontal Delta Lenses
Map A state-based lens can be lifted to a mapping hd-lens as follows:

∀l : A Q B . S l : SA QM SB

get s = S get l s getM = id
put (v , s) d = recover (shape v , dput ∪ dcreate) putM d = i1

dput = put l ◦ 〈data v , data s ◦ d〉
dcreate = (create l ◦ data v) ◦ (id − δdput)

create v = S create l v createM = id

Likewise to the state-based functor mapping lens from [PC10], the get and create
functions simply map the components of the basic lens over the data elements, producing
trivial deltas (all positions are preserved). Instead of aligning elements by their positions,
put now performs global data alignment based on the view update deltas: for each view
element v , if it relates to a source element s , put (v , s) is applied3; otherwise a default
source is generated with create l v . The putM delta is also trivial, since all elements in the
new source come from elements in the view. Mapping defines a functor on the category of
hd-lenses, since it preserves identity (F id = id) and composition (F f ◦F g = F (f ◦ g))
laws (composition is defined below).

Natural transformation Given a natural lens that only transforms shapes (a lens
whose get , put and create functions are natural transformations), denoted by F Q̇G , we
can lift it to a reshaping hd-lens using the following combinator:

∀l : S Q̇V . l : S Q̇MV

get s = get l s getM {s } =
←−−
get l s

put (v , s) d = put l (v , s) putM {(v , s)} d =
←−−
put l (v , s)

create v = create l v createM {v } =
←−−−−
create l v

∀f : F →̇ G.
←−
f : ∀s : F A. f s ∆ s

←−
f = data (f (recover (shape s, id)))

The state-based components of the hd-lens are determined by the value-level func-
tions of the argument lens. The horizontal deltas are calculated using a semantic ap-
proach inspired in [Voi09], by running the value-level functions against sources with the
data elements replaced by the respective positions, thus inferring the correspondences
in the target. This is performed by the auxiliary function←−· . Many useful examples of
these natural hd-lens transformations are polymorphic versions of the usual isomor-
phisms handling the associativity and commutativity of sums and products, such as
swap : (F ⊗G)A QM (G ⊗F)A. Another primitive combinator that falls under this
category is the identity hd-lens id : FA QM FA. Nevertheless, this combinator is only
interesting to lift lenses that already have a reasonable behavior, as is the case of isomor-
phisms. As long as the behavior of the d-lens is completely determined by the argument
lens, the lifted versions of the lspine and filter l examples from the introduction, though
natural lenses, would not solve the alignment problem.

3Here, we are building a function from view positions to source elements as a relation P v ∼ A.
The relation dput matches view elements with existing source elements and dcreate creates fresh
source elements for the remaining unmatched view elements. The filter (id − δdput) guarantees
that the relational union is simple.

7

The lifting of natural transformations to hd-lenses also defines a functor on the
category of hd-lenses, since id = id and (f ◦ g) = f ◦ g . Moreover, it is also a natural
transformation in that category, since f ◦ F g = G g ◦ f . This opens the door to an
interesting optimization, since in a composition involving only natural transformations
and mappings, the latter can be all grouped together and trivially fused.

Composition We now show that the point-free combinators from our previous state-
based lens language [PC10, PC11] are also arrows in the category of hd-lenses. Two
fundamental point-free combinators are identity and composition. Identity id :TA → TA

can be defined using a mapping. Composition can be lifted to hd-lenses as follows:

∀f : VB QM UC , g : SA QM VB . (f ◦ g) : SA QM UC

get s = get f (getg s) getM = getMg ◦ getMf

put (v , s) dU = putg (putf , s) dV putM dU = [putf M, i2] ◦ putMg dV

putf = put f (v , getg s) dU putf M = (id + getMg) ◦ putMf dU

dV = [getMf ◦ dU , id] ◦ putMf dU dV = [getMf ◦ dU , id] ◦ putMf dU

create v = createg (create f v) createM = createMf ◦ createMg

In the put direction, the intermediate delta dV passed to putg maps elements in
the result of put f (u, getg s) dV to elements in gets s . Since id ◦ f = f = f ◦ id and
f ◦ (g ◦h) = (f ◦g)◦h we have a category of hd-lenses. To demonstrate that our design is
robust, composition of d-lenses subsumes composition of hd-lenses: (f ◦ g)N = fN ◦gN. A
more liberal kind of forgetful composition is also possible by first converting the d-lenses
into normal lenses, as used in [BCF+10] for combining d-lenses not matching on their
intermediate shapes. However, this composition is deemed ill-formed in [DXC11] since
the resulting lenses may identify and align updates differently.

Product The product projection hd-lenses can be defined as follows:

∀f : FA → GA. π1
f : (F ⊗G)A QM FA

get (x , y) = x getM = i1
put (z , (x , y)) d = (z , y) putM d = [i1, i2 ◦ i2]
create z = (z , f z) createM = i1

◦

∀f : GA → FA. π2
f : (F ⊗G)A QM GA

get (x , y) = y getM = i2
put (w , (x , y)) d = (x ,w) putM d = [i2 ◦ i1, i1]
create w = (f w ,w) createM = i2

◦

Note that the projection lenses are not natural despite get being so: the default parameter
f may be defined for a concrete type A, making create non-natural. Yet, they enjoy
kind of naturality laws modulo product (π1

h ◦ (f×g) = f ◦ π1
createg◦h◦get f) and modulo

mapping (π1
h ◦ (F ⊗G) f = F f ◦ π1

F createf ◦h◦F get f), with a precise characterization of
how the default generation function must be adapted.

The product bi-functor × applies two hd-lenses in parallel, and is defined as follows:

8

∀f : FA QM HB , g : GA QM IB . f×g : (F ⊗G)A QM (H ⊗ I)B

get (x , y) = (get f x , getg y) getM = getMf + getMg

put ((z ,w), (x , y)) d = (put f (z , x) d1, putg (w , y) d2) putM d = dists ◦ (putMf d1 + putMg d2)

d1 = i1
◦ ◦ d ◦ i1 d1 = i1

◦ ◦ d ◦ i1
d2 = i2

◦ ◦ d ◦ i2 d2 = i2
◦ ◦ d ◦ i2

create (z ,w) = (create f z , createg w) createM = createMf + createMg

When computing put , the product combinator splits the delta over the view pair
in two deltas mapping only left or only right elements, to be passed to put f and putg ,
respectively. The dists combinator is an alias for the isomorphism (A + B) + (C + D) ∼
(A + C) + (B + D). By halving the deltas, the puts of the argument lenses will loose
the delta correspondences for view elements that were swapped to a different side of
the view pair. For example, the d-lens π1×π1 : ((F ⊗G)⊗ (F ⊗G)) A QM (F ⊗F) A
would only be able to restore left/right information for left/right elements. Given the
polymorphic nature of this combinator, which is agnostic to the concrete instantiations
of the functors F and G , this is the only reasonable behavior. A more refined behavior,
involving non-trivial fitting of the right data elements of y that are related to the left
view z into the original left view x , to be restored by put f , would only be possible for
very specific functor instantiations. The product hd-lens is a bi-functor in the category of
hd-lenses, preserving identity and composition laws.

Sum Both the either combinator and the sum bi-functor are valid hd-lenses and can
be defined as follows:

∀p : HB → 2, f : FA Q HB , g : GA Q HB . [f , g]p : (F ⊕G)A Q HB

get (i1 x) = get f x getM {i1 x } = getMf {x }
get (i2 y) = getg y getM {i2 y } = getMg {y }
put (z , i1 x) d = put f (z , x) d putM {(z , i1 x)} d = putMf {(z , x)} d

put (z , i2 y) d = putg (z , y) d putM {(z , i2 y)} d = putMg {(z , y)} d

create z = p z ? create f z : createg z createM {z } = p z ? createMf {z } : createMg {z }

∀f : FA Q HB , g : GA Q IB . f + g : (F ⊕G)A Q (H ⊕ I)B

get (i1 x) = i1 (get f x) getM {(i1 x)} = getMf {x }
get (i2 y) = i2 (getg y) getM {(i2 y)} = getMg {y }
put (i1 z , i1 x) d = i1 (put f (z , x)) putM {(i1 z , i1 x)} d = putMf {(z , x)} d

put (i1 z , i2 y) d = i1 (create f z) putM {(i1 z , i2 y)} d = i1 ◦ createMf {z }
put (i2 w , i1 x) d = i2 (createg w) putM {(i2 w , i1 x)} d = i1 ◦ createMg {w }
put (i2 w , i2 y) d = i2 (putg (w , y)) putM {(i2 w , i2 y)} d = putMg {(w , y)} d

create (i1 z) = i1 (create f z) createM {(i1 z)} = createMf {z }
create (i2 w) = i2 (createg w) createM {(i2 w)} = createMg {w }

For the horizontal deltas, the implicit parameters must be known to disambiguate
which sides of the sums were consumed and produced by the forward transformations.
Again, the sum hd-lens is a bi-functor in the category of hd-lenses, preserving identity
and composition laws.

Bang Similarly to the projection lenses, it is also possible to define a combinator !
combinator that erases the source, and replaces each source with the unit value can be
defined as follows:

9

∀f : 1A → FA. !f : FA QM 1A

get x = 1 getM = ⊥
put (1, x) d = x putM d = i1
create 1 = f 1 createM = ⊥

At the value, the !f d-lens applies the argument function f to reconstruct a source
value. Like in [PC11], we can phrase a lifted version of the uniqueness law f = !createf ⇔
f : F A QM 1.

5 Recursion Patterns as Horizontal Delta Lenses
Apart from map, the previously presented hd-lens combinators only propagate deltas
over rigid shapes (in the sense that they only process shapes polymorphically without
further detail) and do not perform any sort of alignment. For mappings, updates may
change the cardinality of the data (a container structure such as a list may increase or
decrease in length), but alignment can be reduced to the special case of data alignment,
with the shape of the update being copied to the result. This problem becomes more
general whenever lenses are also allowed to restructure the types, in particular recursive
ones, whose values have a more elastic shape: by changing the number of recursive
steps, an update can alter the shape of the view (and thus the number of placeholders
for data elements), requiring a non-trivial matching with the original source shape. If
this problem of shape alignment is not addressed, then the tendency is to reflect these
view modifications at the “leaves” of the source shape, causing the precise positions
at which the modifications occur in the view shapes to be ignored. The goal of this
section is to understand how we can use the delta information to infer meaningful
shape changes. Two combinators will be introduced: catamorphisms (folds) to consume
recursive sources, and anamorphisms (unfolds) to produce recursive views.

Higher-order functor mapping A ho-functor maps natural transformations to nat-
ural transformations via an operation ∀f : F →̇ G. F f : F F →̇ F G [JG07]. For regular
ho-functors we can define a similar operation ∀f :F A→ G A. F f :F F A→ F G A for
functions that are not natural transformations. Moreover, this operation can be lifted to a
hd-lens ∀f : FA QM GA. F f : F F A QM F GA defined polytypically over the structure of
the ho-functor, as follows:

∀f : FA QM GA. F f : F F A QM F GA

Id f = f
Par f = id
C f = id
(F �G) f = F f×G g
(F �G) f = F f + G f

Similarly to the calculus of positions, for the case of composition (F �G) f , we can not
use regular functor mapping F (G f) because the resulting shapes are not the same.
Instead, we define inductive functions that unroll value-level compositions using the
same set of equations. The same treatment will be adopted for further definitions.

Note that, unlike our primitive hd-lens functor mapping combinator, this time the
transformation occurs at the level of shapes and not at the data level (the type A of
elements is preserved).

10

Catamorphism Given an hd-lens algebra f : F GA QM GA, the catamorphism (|f |)F :
µF A QM GA could be defined as the unique hd-lens that satisfies the following equation:

∀f : F GA QM GA. (|f |)F : µF A QM GA

(|f |)F = f ◦ F (|f |)F ◦ outF

Although this definition receives and propagates deltas, it will not use such infor-
mation to perform shape alignment. In particular, putF (|f |)F

will match the view and
source values positionally (like the fzip combinator from [PC10]) and pass incomplete
delta information to the f argument of the fold due to the lossy behavior of the product
d-lens. Our proposal is to adapt it using deltas to recognize shape modifications. As a
convention, since fold/unfolds recursively consume/produce source values, we identify
insertions and deletions at the “head” of the source while proceeding recursively4. If
none of the elements at the “head” of the view are related to source elements, then we are
confident that they were created with the update and can thus be safely propagated as
an insertion to the source. Conversely, if none of the elements at the “head” of the source
are related to view elements, we delete such elements before proceeding. Otherwise we
proceed positionally.

The “head” of a value of an arbitrary inductive data type can be considered as
everything not contained in its recursive occurrences, i.e., something with the same
top-level shape but with the recursive occurrences erased. Such head can be computed
by the expression F ! ◦ outF : µF A→ F 1 A. The delta between the head elements of
the source s : µF A and the elements of the original view get s : G A can be determined
by composing the delta of the previous expression with the (converse of the) delta of the
catamorphism, as clarified in the following diagram5:

F 1 A F µF A
F !oo µF A

outFoo
(|f |)F // G A

P (getF ! (outF s))
getMF !

// P (outF s)
id

// P s P (get s)
getM(|f |)F

oo

If none of the positions in the range of the delta get◦M(|f |)F
◦ getMF ! are contained in

the range of the delta representing the view-update, then we can safely delete the head
of the source. The concept of head of the updated view is a bit more tricky: in fact, what
we need is the elements of the view that would be necessary to build a head in the source.
These can be computed by issuing a create and then erasing the recursive occurrences:
getF ! ◦ create f : G A → F 1 A. If none of the positions in the range of this delta are
contained in the domain of the delta representing the view-update we proceed with an
insertion.

Equipped with these procedures to detect insertions and deletions, we can specify
the put of the catamorphism as follows:

4Note that moving is not an operation on shapes. For instance, if we swap the elements of a
list [1, 2, 3] to [3,2,1], the shapes of both lists are the same [1, 1, 1], where 1 is the unique value
inhabiting the unit type 1.

5Notice how the delta-component of a transformation can be obtained just by dualization of the
respective state-component (reversing the order of compositions and replacing product combinators
by the respective sum combinators on positions). As such, from now on, only the state-component
of the transformations will be presented.

11

put(|f |)F (v, s) d =

grow (v, s) if V 6= ⊥ ∧ (ρV ∩ δd) = ⊥
shrink (v, s) if S 6= ⊥ ∧ (ρS ∩ ρd) = ⊥
putf◦F (|f |)F◦outF

(v, s) d otherwise
where V = createMf ◦ getMF ! S = get◦M(|f |)F ◦ getMF !

Insertion The head of the view can be isolated by invoking create f to produce a
value of type F G A. To propagate this newly created head, we need a way to pair
each G A inside F G A with the original source of type µF A, to which we can apply
put(|f |)F

recursively. In category theory, a functor is said strong if it is equipped with
a function σF : F A × B → F (A × B), denoted strength, that pairs the B with
each A inside the functor. This function can easily be lifted and defined polytypically
for every regular ho-functor. Not taking deltas into account, the grow procedure can
be specified as depicted in Figure 2. Notice that, if the functor contains more than one
recursive occurrence (for trees for example), then σF will duplicate the original source
for each recursive invocation of put . This is because, when invoking σ at a recursive step,
the catamorphism does not know how to split the source so that each piece is related
to the respective recursive view. Instead, the duplicated sources will be later aligned
recursively. For example, unrelated source elements will be deleted by shrink . The actual
implementation of grow is inF ◦ σputF (d ◦ createMf) ◦ (create f × id), where σputF is
a polytypic auxiliary definition that implements the specification F put(|f |)F

◦ σF , with
the necessary propagation of deltas to the recursive invocations of put . Given a lens
SA QM VA, we define the σputF combinator that receives a delta and pairs view values
inside the functor with duplicated source values, invoking put (with the delta) to process
recursive cases:

σputF : ∀(v , s) : F V A × SA. v ∆ get s → F S A

σputId (v , s) d = put (v , s) d
σputC (v , s) d = v

σputPar (v , s) d = v
σputF � G ((x , y), s) d = (σputF (x , s) (d ◦ i1), σputG (y , s) (d ◦ i2))

σputF � G (i1 x , s) d = σputF (x , s) d

σputF � G (i2 y , s) d = σputG (y , s) d

σputMF : ∀{(v , s) : F V A × SA}, d : v ∆ get s. (σputF (v , s) d) ∆ (v , s)

σputMId {(v , s)} d = putM {(v , s)} d
σputMC {(v , s)} d = i1

σputMPar {(v , s)} d = i1
σputMF � G {((x , y), s)} d =

[(i1 + id) ◦ σputMF {(x , s)} (d ◦ i1), (i2 + id) ◦ σputMG {(y , s)} (d ◦ i2)]

σputMF � G {(i1 x , s)} d = σputMF {(x , s)} d

σputMF � G {(i2 y , s)} d = σputMG {(y , s)} d

Here, σputMF is the horizontal delta induced by σputF .

Deletion Again not taking deltas into account, the shrink procedure can be specified
as depicted in Figure 3. This time, we unfold the source value to expose its head to
be erased by the auxiliary function reduceF , and then apply put(|f |)F

to the argument

12

µF A F µF A
inFoo

F (G A × µF A)

F put(|f |)F

OO

G A × µF A
createf ×id

//

grow

OO

F G A × µF A

σF

OO

Figure 2: Specification of grow for
folds.

µF A G A × µF A

put(|f |)Foo

G A × µF A

shrink

OO

id×outF

// G A × F µF A

id×reduceF

OO

Figure 3: Specification of shrink for
folds.

view and the reduced source. In the implementation, put(|f |)F
is invoked with the delta

get◦M ◦ reduce◦F M ◦ getM ◦ d that reflects the shape changes performed by reduceF . The
function reduce that merges the recursive occurrences of a functor into a single value is
defined as follows:

reduceF : F F A → FA

reduceId x = x
reduceC x = zero
reducePar x = zero
reduceF � G (x , y) = plus (reduceF x , reduceG y)
reduceF � G (i1 x) = reduceF x
reduceF � G (i2 x) = reduceF y

Here, we assume that the type F A is a monoid, supporting two operations zero : F A
and plus : F A × F A → F A. Note that the horizontal delta reduceMF can be
computed using the semantic approach since we assume that the monoid instances (and
consequently reduceF) are polymorphic.

In order to erase the head, function reduceF should merge all recursive occurrences
into a single value. If the source type is a monoid, i.e., has an empty value zero : µF A
and a binary concatenation operation plus : µF A × µF A → µF A, then we can
polytypically define reduceF just by folding the sequence of recursive occurrences using
the monoid operations. For types other than lists, there could be more than one possible
monoid implementation. We provide default instances for many types, but the user
is free to provide their own implementation. We require that monoid operations are
natural transformations so that we can automatically compute deltas using the semantic
technique presented before.

Examples We can now encode the examples from the introduction as hd-lenses. For
example, the lspine lens can be defined as the following hd-lens fold:

lspine : TreeA QM []A
lspine = (|inL ◦ (id + id×π1

const [])|)T

plusTree : Tree ⊗Tree →̇ Tree zeroTree : ∀A. Tree A
plusTree t Empty = t zeroTree = Empty
plusTree t (Node x l r) = Node x (plusTree t l) r

13

µG A × F A

grow

��

outG×id //G µG A × F A

σF
��

G (µG A × F A)

G putbd(f)ceG��
F A G F Acreatef

oo

Figure 4: Specification of grow for
unfolds.

µG A × F A

shrink

��

id×get f // µG A × G F A

id×reduceF

��
F A µG A × F Aputbd(f)ceG

oo

Figure 5: Specification of shrink for
unfolds.

With the given monoid implementation, when ran against the introductory example
this lens produces the desired result. Note that although no deletion is performed by the
view update, the σput procedure for insertions will duplicate the original source tree, but
the right-side duplicated tree will be successfully marked as deleted by our backward
semantics and disposed of by the monoid. Also for the lspine example, we know that an
insertion followed by a deletion (of the ’x’ element for instance) would lead to no effect
on the source.

In our language, a type F (G A) is different in shape from an isomorphic type
(F �G) A. For example, for the filtering lens from the introduction to produce the
desired behavior the source type must be shaped as ([]� (Id ⊕B))A and not []A+B . It
can then be defined using a catamorphism over the isomorphic type µ(L � (Id ⊕B)):

filter l : [A + B] QM [A]
filter l = (|(inL •∇π2) ◦ coassoc ◦ (id + distl)|)L � (Id ⊕B)

By running this lens against the example from the introduction, right values are
now restored properly. Here, f •∇ g is an alias for [f , g]const True and the combina-
tors coassoc : (F ⊕ (G ⊕H))A QM ((F ⊕G)⊕H)A and distl : ((F ⊕G)⊗H)A QM
((F ⊗H)⊕ (G ⊗H))A are hd-lens isomorphisms. We also do not provide a default
function to π2 because it would be never used by •∇ .

Anamorphism Analogously to catamorphisms, anamorphisms recursively construct
view values. Given an hd-lens coalgebra f : FA QM G F A, the positional anamorphism
bd(f)ceG : FA QM µGA can be defined as the unique hd-lens that satisfies the following
equation:

∀f : FA QM G F A. bd(f)ceG : FA QM µGA

bd(f)ceG = inG ◦ G bd(f)ceG ◦ f

This time, we adapt it to recognize insertions and deletions at the head of the view
while proceeding recursively. If none of the elements at the head of the view are related
to source elements (i.e., if none of the positions in the range of the delta getMF ! are
contained in the domain of the delta representing the view-update), then we align the
head as an insertion. For anamorphisms, the concept of head of the source is the more
tricky one. Hence, if none of the elements of the source that would be necessary to build
a head in the view are related to view elements (i.e., if none of the positions in the range

14

of the delta get◦Mbd(f)ceF
◦ getMf ◦ getMF ! are contained in the range of the delta representing

the view-update), then we delete the head of the source.
Formally, we specify the put of the anamorphism as follows:

putbd(f)ceG (v, s) d =

grow (v, s) if V 6= ⊥ ∧ (ρV ∩ δd) = ⊥
shrink (v, s) if S 6= ⊥ ∧ (ρS ∩ ρd) = ⊥
putinG◦G bd(f)ceG◦f

(v, s) d otherwise
where V = getMG ! S = get◦M(|f |)G ◦ getMf ◦ getMG !

Insertion The grow procedure is specified as depicted in Figure 4. The head of the view
is isolated by applying outG to produce a value of type G G A. As for catamorphisms,
we propagate this newly created head using the strength combinator σF followed by
G putbd(f)ceG

to apply put recursively using the original delta d . The recursively computed
value of type G F A is then converted into a source value with a new head using create f .

Deletion The shrink procedure can be defined as depicted in Figure 5. To expose the
head of the source, we invoke get f to produce a value of type G F A, that can be erased
by the reduceG function. We then apply putbd(f)ceG

to the argument view and the reduced
source. In the implementation, putbd(f)ceG

is invoked with the delta get◦M ◦reduce◦F M ◦get
◦
Mf ◦

getM ◦ d that reflects the shape changes performed by reduceG .

Examples Some examples of lenses that can be defined using this combinator are
sieving a list to keep each second element, and list concatenation (combining a fold with
an unfold):

sieve : A→ []A QM []A
sieve x = bd((id •∇π2 + π2

const x) ◦ coassoc ◦ (id + distr ◦ (id×outL)) ◦ outL)ceL

data NeList a = NeNil [a] | NeCons a (NeList a) NeList ∼= µN
cat : ([]⊗ [])A QM []A
cat = (|inL ◦ (id + id •∇ id) ◦ coassoc ◦ (outL + id)|)N ◦ bd((π2

! + assoc) ◦ distl ◦ (outL×id))ceN

6 Related Work
This paper builds on the work first presented in [PC10, PC11], describing a point-free lens
language and corresponding algebraic laws. Like other state-based approaches [FGM+07,
MHN+07], our previous language only considered a simple positional alignment strat-
egy that proves to be unsatisfactory for insertion, deletion or reordering updates over
arbitrary structures.

In [DXC11], Diskin et al discusses the inherent limitations of state-based approaches
and proposed an abstract delta lens framework, whose lenses propagate deltas rather
than states. They also show how delta lenses can be packaged as ordinary state-based
lenses by resorting to an alignment operation that estimates deltas. Their development
of the framework is mostly theoretical, focusing on the new bidirectional axioms for
deltas and the relationship with ordinary lenses, and their only delta lens combinator is
composition. An abstract framework where horizontal delta propagation is explicitly
considered is given in [Dis11].

15

Matching lenses [BCF+10] extended the Boomerang domain-specific language of
bidirectional string transformations [BFP+08] to consider delta-based alignment. Each
matching lens separates values into a rigid shape and a list of data elements and maps an
ordinary lens over the inner elements. The backward propagation can be computed using
the delta associations inferred by the alignment phase. Since they focus on mappings,
matching lenses assume that shape propagation is kept positional (SKELPUT law) and
obey a restrictive premise enforcing the propagation of all source elements to the view
(GETCHUNKS law), thus ruling out our two running examples.

The decoupling between shape and data is also at the heart of Voigtländer’s semantic
bidirectionalization approach [Voi09], that provides an higher-order put interpreter for
polymorphic Haskell get functions. Nevertheless, this choice is motivated by different
goals other than alignment, namely to avoid restricting the syntax of the forward transfor-
mations. In fact, mapping lenses are not definable in this framework, since polymorphic
functions can only alter the shape, and shape alignment is kept positional even in the
hybrid approach from [VHMW10], that uses a syntactically calculated state-based lens
between shapes to handle shape updates.

A series of operation-based languages developed by researchers from Tokyo ([MHT04,
LHT07, HHI+10] and more) treat alignment by annotating the view states with internal
tags that indicate edit operations for specific types. Despite this enables put to provide a
more refined type-specific behavior, it must always consider a fixed update language
and more complicated updates (typically reorderings) are not supported natively and
must be approximated by less exact updates.

A truly operation-based approach is the symmetric framework of edit lenses [HPW12],
that handles updates in the form of the edits that describe the changes rather than whole
annotated states. They provide combinators for inductive products, sums, lists and two
particular combinators over container structures, namely mapping and restructuring.
While mapping is similar to our delta-based variant, their restructuring combinator
requires the positions of the transformed containers to be in bijective correspondence,
meaning that it can not add nor delete elements and thus does not support our running
examples. Additionally, their language of updates over containers classifies edits into
insertion and deletion at the rear positions of containers and rearrangement of the
elements of a container without changing its shape. This entails that shape alignment is
kept positional, as insertions and deletions at arbitrary positions are always reflected at
the end positions of the shape.

7 Conclusion
In this paper, we have proposed a concrete point-free delta lens language to build lenses
with an explicit notion of shape and data over inductive data types, by lifting a previous
state-based point-free lens language [PC10]. Our delta lens framework instantiates the
abstract framework of delta lenses first introduced in [DXC11], meaning that lenses
now propagate deltas to deltas and preserve additional delta-based bidirectional round-
tripping axioms. In particular, we have instrumented the standard fold and unfold
recursion patterns with mechanisms that use deltas to infer and propagate edit opera-
tions, thus performing the desired shape alignment. In the future, our technique could be
instrumented to handle more refined edit operations that might make sense for particular
types. The use of dependent types has provided a more concise formalism that simplifies
the existing delta-based bidirectional theory and clarifies the connection between the
state- and delta-based components of the framework. An implementation of our point-

16

free delta lenses, using a simple minimal edit sequence differencing algorithm [Tic84], in
the Haskell non-dependently typed language is available through the Hackage package
repository as part of the pointless-lenses library.

Likewise to matching lenses, that incorporate implicit parsing and pretty printing
steps to decompose values into shape and data, a more practical implementation of delta
lenses should be able to “deltify” ordinary point-free lenses by using type annotations
that make the shape/data distinction explicit. We leave that extension for future work.

Acknowledgements This work is supported by Fundação para a Ciência e a Tec-
nologia, under grant PTDC/EIA-CCO/120838/2010 FATBIT: Foundations, Applications
and Tools for Bidirectional Transformation. Part of this work was performed while Hugo
Pacheco was visiting the National Institute of Informatics, supported by an NII Grand
Challenge Project on Bidirectional Model Transformation.

References
[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers: constructing strictly positive

types. Theor. Comput. Sci., 342:3–27, 2005.

[2] D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C. Pierce. Matching
lenses: alignment and view update. In ICFP’10, pages 193–204. ACM, 2010.

[3] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang:
resourceful lenses for string data. In POPL’08, pages 407–419. ACM, 2008.

[4] Z. Diskin. Model Synchronization: Mappings, Tiles, and Categories. In Joo Fernan-
des, Ralf Lmmel, Joost Visser, and Joo Saraiva, editors, GTTSE’09, volume 6491 of
LNCS, pages 92–165. Springer, 2011.

[5] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to Delta-Based Bidirectional
Model Transformations: the Asymmetric Case. J Obj. Techn., 10:6: 1–25, 2011.

[6] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. TOPLAS’07, 29(3):17, 2007.

[7] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirectionalizing
graph transformations. In ICFP’10, pages 205–216. ACM, 2010.

[8] M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In POPL’12. to appear, 2012.

[9] P. Jansson and J. Jeuring. PolyP - a polytypic programming language extension. In
POPL’97, pages 470–482. ACM, 1997.

[10] C. Jay. A semantics for shape. Sci. Comput. Program., 25:251–283, 1995.

[11] P. Johann and N. Ghani. Initial algebra semantics is enough! In TLCA’07, pages
207–222. Springer, 2007.

[12] D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of xquery. In PEPM’07,
pages 21–30. ACM, 2007.

[13] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In
ICFP’07, pages 47–58. ACM, 2007.

17

[14] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating.
In Wei-Ngan Chin, editor, APLAS’04, volume 3302 of LNCS, pages 2–20. Springer,
2004.

[15] J. N. Oliveira. Data transformation by calculation. In Ralf Lämmel, João Saraiva,
and Joost Visser, editors, GTTSE’07, volume 5235 of LNCS, pages 139–198. Springer,
2007.

[16] H. Pacheco and A. Cunha. Generic Point-free Lenses. In Claude Bolduc, Jules
Desharnais, and Bchir Ktari, editors, MPC’10, volume 6120 of LNCS, pages 331–352.
Springer, 2010.

[17] H. Pacheco and A. Cunha. Calculating with lenses: optimising bidirectional trans-
formations. In PEPM’11, pages 91–100. ACM, 2011.

[18] W. Tichy. The string-to-string correction problem with block moves. ACM Trans.
Comput. Syst., 2:309–321, 1984.

[19] J. Voigtländer. Bidirectionalization for free! (Pearl). In POPL’09, pages 165–176.
ACM, 2009.

[20] J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and semantic
bidirectionalization. In ICFP’10, pages 181–192. ACM, 2010.

[21] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic
model synchronization from model transformations. In ASE’07, pages 164–173.
ACM, 2007.

18

