
Relatório de Estágio
da

Licenciatura em Engenharia de Sistemas e Informática

Exploring the 2LT Design Space

Hugo José Pereira Pacheco

38204

Departamento de Informática da Universidade do Minho

Supervisores:
Alcino Cunha - Dept. de Informática da Universidade do Minho
José Nuno Oliveira - Dept. de Informática da Universidade do Minho

Braga, 2007

About this document. . .

The present document describes an internship entitled Exploring the 2LT Design Space, carried out in
the Theory and Formal Methods research group from the Department of Informatics at the University of
Minho.
This project is part of a larger research project about Two Level Transformations, and was supervised
by Alcino Cunha and José Nuno Oliveira.
Text and layout were written in LATEX, the document preparation system for the TeX typesetting program.
Images were produced using Omnigraffle Pro.

Omnigraffle Pro is a registered trademark from the The Omni Group.

Acknowledgments

I must begin by thanking professor José Nuno for the seamlessly passionate classes and earnest dis-
cussions that made me embark on the formal methods “boat“.

Who also deserve the most acknowledgment are Alcino Cunha, my supervisor, and Joost Visser for
the sustained faith in my abilities and all the knowledge they have shared with me in the last two years.

Finally, I dedicate this work to every person who has ever taught me something valuable for life during
the long road to become a software engineer.

i

ii

“There are two ways of constructing a software design; one way is to make it so simple that there
are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.“

C. A. R. Hoare

iii

iv

Abstract

Computing is full of situations where one wants to transform a data format into a different format.
Transforming a data type implies coupled transformations of the data instances conforming to that type.
Moreover, to yield model interoperability, bidirectional transformations capable of translating between
models are required. A formal approach to bidirectional coupled transformation of data is provided by
two-level transformations, based on calculational data refinement, for transformation of abstract software
specifications into concrete low-level programs.

This approach to data calculation has been in use at Minho University, and is the foundation of the
“2LT bundle“ of tools, including an animated tool for performing two-level transformations, that can be
fetched from http://haskell.di.uminho.pt/svn/wsvn/2lt/.

This thesis is devoted to the study of possible extensions to the “2LT bundle“. The first contribution
is the extension of the two-level rewrite system to allow explicitly handling abstraction transformations.
This solves an important misbehaved termination problem for partial backward transformations. After,
we study in detail the rewriting of point-free expressions over fix-point recursive types. A consequence
of this study is the implementation of a one-level rewrite system for point-free program calculation from
scratch, as an instance of a generic rewrite system that supports native type and functor equality. The
last contribution is motivated by the limitations of stateless two-level transformations in the preservation
of abstract information for backward value transformations. A library is provided for bidirectional trans-
formations based on the view-update problem, that encompass statefull transformations from concrete
representations into abstract models.

Key-words: Data calculation, Coupled transformations, Bidirectional transformations, Two-level
Transformations, Program calculation

http://haskell.di.uminho.pt/svn/wsvn/2lt/

ii

Contents

List of Images v

List of Tables vii

Glossary vii

1 Introduction 1
1.1 Internship Objectives . 1
1.2 Structure of the Document . 2

2 Data Transformations 3
2.1 Representation of Types . 4

2.1.1 User-defined datatypes . 5
2.2 Representation of Functions . 6

2.2.1 Rewriting Examples . 8
2.3 Representation of Two-level Transformations . 9

2.3.1 Generic Combinators . 9

3 Two-Level Transformations with Partiality 11
3.1 Adding Explicit Partiality . 11

3.1.1 Generic Combinators . 13
3.1.2 Haskell implementation . 14

3.2 Coupled Transformation of XPath queries . 14
3.2.1 XPath Examples . 15

3.3 Relaxing type-safety . 18
3.4 Summary . 19

4 Type-safe Rewriting with Single Recursion 21
4.1 Rewriting SYB Combinators . 22

4.1.1 Using recursion patterns . 23
4.2 Implementation in Haskell . 24

4.2.1 Functors Approach . 26
4.2.2 Combinators Replication Approach . 28
4.2.3 Functor-representation Class Approach . 29

4.3 Summary . 31

5 Developing a Rewrite System from Scratch 33
5.1 Some notions on Rewrite Systems . 33
5.2 Language Definition: properties and features . 34

5.2.1 Terms and Type System . 34
5.2.2 Variables and Rules . 35
5.2.3 Input and Output . 36

5.3 Implementation . 36

iii

5.3.1 An overview of the compiler . 36
5.3.2 Monads . 37

5.4 Libraries for One-level transformations . 38
5.4.1 Point-free . 38
5.4.2 Srap Your Boilerplate . 39
5.4.3 Xpath . 40
5.4.4 Examples . 41

5.5 Tracing . 42
5.6 Efficiency . 43
5.7 Summary . 43

6 Bidirectional Lenses 45
6.1 A motivating Example . 45
6.2 Bidirectional Lenses Theory . 46

6.2.1 Handling Partiality . 48
6.3 Representation of Lenses . 48
6.4 Lens Combinators . 49

6.4.1 Generic Lenses . 49
6.4.2 Tree combinators . 51
6.4.3 Conditional combinators . 55
6.4.4 XPath and Lenses . 55

6.5 Supporting Single-Recursion . 55
6.6 Summary . 56

7 Conclusions and Future Work 57
7.1 Future Work . 57

A Point-free laws 65

B Proofs for partialized refinements 69
B.1 One . 69

B.1.1 Left Either . 69
B.1.2 Right Either . 69
B.1.3 Left Product . 70
B.1.4 Right Product . 70
B.1.5 Map keys . 70
B.1.6 Map values . 71

B.2 All . 72
B.2.1 Either . 72
B.2.2 Product . 73
B.2.3 Map . 74

C Invariants for Partial Two-level Transformations 77

iv

List of Figures

2.1 A movie database schema, inspired by IMDb (http://www.imdb.com/). 5
2.2 Haskell datatypes for the schema of Figure 6.1. 6

3.1 An evolution of the original movie database example (Figure 6.1). 16

5.1 Core syntax for our generic rewrite system. 37
5.2 An overview of our compiler. 38

6.1 The get direction of xfork . 52

v

http://www.imdb.com/

vi

List of Tables

1.1 Previous research on two-level transformations. 1

5.1 Benchmarking times for XPath expressions over a non-recursive schema. 43
5.2 Benchmarking times for a type-unifying expression over a recursive schema. 43

vii

viii

Glossary

DI Departament of Informatics

LESI Degree on Computer Science and Systems Engineering

UM Universsityof Minho

XML Extensible Markup Language

XPath XML Path Language

XPTO XPath Preprocessor with Type-aware Optimization

SQL Structured Query Language

1LT One-level Transformation

2LT Two-level Transformation

PF Point-free

Happy The Parser Generator for Haskell

Parsec A Monadic Parser Combinator Library for Haskell

GHC Glasgow Haskell Compiler

SyB Scrap Your Boilerplate

AST Abstract Syntax Tree

LL(k) Top-down parser for context-sensitive grammars with k look-ahead

LR(k) Bottom-up parser for context-free grammars with k look-ahead

GUI Graphical User Interface

API Application Programming Interface

VDM Vienna Development Method

TH Template Haskell

ix

x

Chapter 1

Introduction

1.1 Internship Objectives

Data transformations frequently occur in software engineering, whenever interoperability between
different data models is pursued, even though the programmer is not always aware of the techniques they
comprise.

With the ever growing list of technological offers,“bridging the gap“ between technology layers becomes
of most importance to ensure sharing of information among software applications.

Data refinement is deeply concerned with data transformation and expresses the relationship between
abstract data specifications and concrete implementations.

A formal approach to data transformation by calculation has been studied at Minho University, based
on the theoretical concepts of calculational data refinement and point-free program transformation, and
enables the formalization of type-safe two-level transformations.

A two-level transformation consists of a type-level transformation of a data format coupled with
value-level transformations of data instances corresponding to that format, where relations between data
formats are expressed in a point-free algebraic style.

During the last years, research has been done for the purpose of bringing these concepts into pratical
implementations, giving birth to the “2LT bundle“, a powerful set of tools available from the UMinho
Haskell libraries. These are important for mechanizing repetitive tasks and accelerate the data transfor-
mations from demonstration examples to scaled-up real-size case-studies.

However, the separate developing of solutions toward different goals imposed the existence of several
implementations with distinct features.

We will describe the different branches of the “2LT bundle“, in relation to the features we consider
of most importance (Table 1.1): the representation of value transformers as point-free expressions, the
support for single-recursive types, the concern for partial backward transformations and the encoding of
types using type-safe tags.

Point-Free Single Recursion Partiality Type-safe Tags
2LT Core [COV06] ×

√
× ×

2LT + 1LT [CV07]
√

× × ×
XML SQL [BCPV07] ×

√
× ×

XPTO [CV06, FP07]
√

× n.c.a
√

a Not considered

Table 1.1: Previous research on two-level transformations.

The first implementation of type-safe two-level data transformation is reported in [COV06] (that we
fatherly called of 2LT Core), and defines how to develop a rewrite system in Haskell that couples type-

1

2 CHAPTER 1. INTRODUCTION

level transformations with well-formed value transformations. It also provides a set of transformations
for mapping of recursive hierarchical structures into relational data and subsequent migration of values.

After, the coupled transformation of type and values have been generalized for other data artifacts,
namely point-free functions that consume or produce such type [CV07]. The transformation of those
functions is accomplished by combining them with the value transformers bounded within the two-level
transformation. Besides, value transformers also have to be specified as point-free expressions.

Additionally, this article considers the implementation of a one-level rewrite system simplifying for
point-free expressions.

The third branch of the “2LT bundle“ was proposed in a paper describing the work on equipping the
core rewrite system with front-ends for transformation of XML schemas into SQL databases [BCPV07].
An example of data migration is suggested and special emphasis is placed on the creation and manipulation
of SQL references.

Then, the research focused in one-level transformations, with the development of point-free laws for
structure-shy to structure-sensitive program transformation [CV06], along with the creation of XML and
XPath front-ends for specialization of XPath queries into Haskell point-free functions [FP07].

The main objective of this internship is to discover the current problems and relevant extensions to
the 2LT project, towards the development of a unified solution for generic program transformation.

Concerning the major flaws in the previous systems (attempt to Table 1.1), most effort was put on
implementing 2LT with partiality and on reasoning about point-free expressions over recursive types.

Allied to the serendipity of great discoveries, the remainder of this report will be engrossed with our
experiences on exploring the 2LT design space.

1.2 Structure of the Document

Chapter 2 presents in highly detail previous work on 2LT. It starts by defining concepts and continues
with an explanation on the representation of types and functions, highlighting the different types of
functions.

In 2LT, the backward transformer is a possibly partial function and, therefore, may not be defined for
all the concrete domain. Chapter 3 addresses this issue and provides an elegant solution to avoid runtime
errors for undefinable transformations: the maybe monad.

In Chapter 4, we explore possible extensions to the existing 1LT rewrite system in order to support
rewriting of expressions over fix-point recursive types. Most of the theory backs up on work from Cunha
[Cun05] on point-free program calculation. Three approaches are discussed for an Haskell implementation.
However, these suffer from some flaws on the representation of functions over types and functors, surpassed
by the implementation of a generic rewrite system with native support for type and functor equality.
Chapter 5 presents all the design and implementation decisions in the development of this rewrite system.

An actually very “sexy“ theme on data transformation and model interoperability are view-update
bidirectional transformations (lenses). In Chapter 6, we compare lenses with two-level transformations
and converge the differences into a new rewrite system for view-update bidirectional transformations.

Finally, Chapter 7 begins with an overall review of the main contributions of this internship. The
report ends with an enumeration of the open issues, must-do improvements, and possible ideas for future
work.

Chapter 2

Data Transformations

Data transformations usually encompass conversion from a source data format into a different format.
Transforming a data type determines coupled transformations of the data instances conforming to that
type, if consistency is to be achieved.

In previous work, we have addressed two-level transformations for pairing type-level transformations
of data formats with value-level transformations of data instances corresponding to such formats[COV06,
BCPV07].

A type-level transformation is coupled with value-level functions to and from, where the representation
to is injective and total and the abstraction from is surjective and simple, such that:

from ◦ to v idA

A

to

''
6 B

from

gg

The ordering of the continuous functions from A to B is determined by the antisymmetric relation:

f v g ⇔ (f x v g x ,∀x ∈ A)

This fact expresses that f is an approximation of g , or in other words, f is less or equally well defined
than g if and only if, for every value x in A, f x is less or equally well-defined than g x .

A variety of scenarios can be found for 2LTs. For example, if due to maintenance or re-factoring
requirements an XML database schema is adapted, it induces a transformation for XML documents.
Like-wise, the evolution of a language’s grammar implies an automated conversion of deprecated source
code into the new syntax. Both cases are instances of format evolution by transformation and contribute
to format and document reengineering[LL01].

Similarly, coupled transformations are also involved in data mappings [LM06], where distinct data
models, generally of different programming paradigms, need to be mapped onto each other for persis-
tence or interoperability reasons. A common example is the mapping between XML tree-structured
schemas into SQL relational schemas.

More challenging coupled transformations involve the transformation not only of data instances cor-
responding to a source data format, but also of other software artifacts, such as programs that consume
or produce it[CV07].

Recalling the XML database schema example, the adaptation process would be coupled with the
update of XPath queries and programs that generate the database file. New database programs are

3

4 CHAPTER 2. DATA TRANSFORMATIONS

calculated by composition with the value-level transformers from the two-level transformation. For sim-
plification purposes, both programs and data transformers will be represented as point-free expressions.

The complex conversion functions derived after combining transformations can be subjected to sub-
sequent simplification using laws for point-free program calculation. This introduces a new concept that
we name one-level transformations, for simplification of expressions into semantically equivalent expres-
sions. The simplification by rewriting of point-free functions is performed through the application of rich
a set of algebraic laws for point-free program calculation, strongly based on mathematical equational
reasoning[Cun05]. Transformation of point-free programs may follow different approaches for different
purposes. In the context of XPath expressions, classified as structure-shy queries, we provide laws for
specialization of their generic properties into structure-sensitive point-free functional programs, and vice
versa[CV06, FP07].

Structure-shy programs are defined generically for different data types, and only specify specific be-
haviors for a few relevant subtypes. Despite more understandable, concise and reusable, they are less
efficient than structure-sensitive programs, that are optimized for structure specific details.

Type-safe rewrite systems have been developed to define and compose data transformations in the
functional language Haskell. This chapter is dedicated to explain the representation of types and functions
over types that enable the implementation of these rewrite systems.

2.1 Representation of Types

To ensure type-safety in our rewrite systems, a universal type representation of types does not suffice.
Both types and values are transformed at the term-level and share the same type context. To achieve
this, we will need type-safe representations at the value level, which can be provided by using generalized
algebraic data types (GADTs), a powerful generalization of Haskell data types [PWW04]. For all param-
eterized data Type a, an inhabitant of the following parameterized data type Type a is a representation
of type a [HLO06].

data Type a where
One :: Type ()
Int :: Type Int
Bool :: Type Bool
String :: Type String
List :: Type a → Type [a]
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Func :: Type a → Type b → Type (a → b)
...

Notice that, in this declaration, the type a that parameterizes Type a is restricted differently in
the result of each constructor. This makes the difference between a GADT and a common Haskell 98
parameterized datatype, where the parameters in the result type must always be unrestricted in all
constructors. For a Type a definition, the parameter a of each constructor is restricted exactly to the
type that the constructor represents, although different constructors can share the same parameter a.

Given a ground type a, it is possible to use the Haskell type system to infer its representation. We
can define a class with all representable types.

class Typeable a where
typeof :: Type a

Most instances of this class are trivially defined. For example, for integers and functions we have

instance Typeable Int where
typeof = Int

2.1. REPRESENTATION OF TYPES 5

name

actor

played

year title role award

directorreviewtitleyear

 movie

box_office

country valuedate

imdb

* *

**

?

*

*

Figure 2.1: A movie database schema, inspired by IMDb (http://www.imdb.com/).

instance (Typeable a,Typeable b)⇒ Typeable (a → b) where
typeof = Func typeof typeof

We may define a dynamic type ∗ that hides a type representation inside its definition[LJ05], declared
as

data ∗ where ∗ :: Type a → a → ∗

For the type, we also have an equivalent type representation

data Type a where
...
∗ :: Type a → Type ∗

Type ∗ works as a wrapper and allows the definition of generic functions that can receive arguments
of any type. The real type is encapsulated inside ∗ and may be recovered at any time, namely it can be
used to guide the definition of a generic function.

Consider the generic function f such that

f :: Type a → a → String
f Int 1 = "nat1"
f Char ’a’ = "ascii97"

We can apply any generic function f to a dynamically typed value

applyAny f = λ(∗ t v)→ f t v

2.1.1 User-defined datatypes

Type allows the definition of basic types, lists, products, sums and functions. In order to represent
user-defined datatypes, we define:

data Type a where
Data :: String → (a ↔ b)→ Type b → Type a

New data types can now be easily defined using the Data constructor.
You can notice that Data requires a value of type a ↔ b, where Type b is the encapsulated type and

Type a the resulting type for the newly defined datatype. Data works as a wrapper for a type (similar to

http://www.imdb.com/

6 CHAPTER 2. DATA TRANSFORMATIONS

newtype Imdb = Imdb {unImdb :: ([Movie], [Actor])}
newtype Movie = Movie{unMovie :: (Title, (Year , ([Review], (Director , [BoxOffice]))))}
newtype Actor = Actor {unActor :: (Name, [Played])}
...

Here, we represent XML element tags from the schema’s type definition from Figure 6.1 with Haskell
data types. Each newtype defines an XML node, with it’s own markup tag. For each node, a function
is provided for untagging values of it’s type.

Figure 2.2: Haskell datatypes for the schema of Figure 6.1.

an XML node tag), where ↔ is an embedding-projection pair that converts values from the user-defined
type into values of the isomorphic type. The type b is expected to be the sum-of-products representation
of the user-defined type a.

Consider the XML schema of Figure 6.1 and the Haskell datatype that represent it on Figure 2.2.
The type representation for the IMDb data-type can be defined as follows.

instance Typeable Imdb where
typeof = Data "imdb" (unImdb ↔ Imdb) typeof

Here, Typeable instances are assumed for Movie and Actor . The instance for Imdb is defined on top
of instances for it’s subtypes.

2.2 Representation of Functions

Analogously to types, we need to represent functions in the same type-safe manner. For this purpose,
we resort again to a GADT, allowing function’s type-checking for free: impossible or incorrect compo-
sitions of functions are checked against Haskell’s native type system and rejected. Constructors can be
defined for different approaches like point-free, strategic or XPath combinators. Such constructors are
explained in [CV06].

Here are some examples of point-free combinators:

data Type a where
...
PF :: Type a → Type (PF a)

data PF f where
id :: PF (a → a)
(.) :: Type b → PF (b → c)→ PF (a → b)→ PF (a → c)
π1 :: PF ((a, b)→ a)
π2 :: PF ((a, b)→ b)
(4) :: PF (a → b)→ PF (a → c)→ PF (a → (b, c))
mplus :: Monoid a → PF ((a, a)→ a)
outa :: PF (a → b)
mkAny :: PF (a → ∗)
fun :: String → (a → b)→ PF (a → b)
wrap :: PF (a → [a])
...

In the 1LT rewrite system, the specialization of XPath structure-shy queries into point-free functions
is encoded via an intermediate transformation into type-unifying generic functions.

Generic combinators as we employ them were introduced with the so-called ‘Scrap-your-Boilerplate‘
approach to generic functional programming[LP03].

There are two classes of generic combinators:

2.2. REPRESENTATION OF FUNCTIONS 7

• type-unifying (queries), are defined as generic functions that return a result for a specific type1;

type Q r = ∀a . Type a → a → r

• and type-preserving (traversals), that are generic functions that preserve the type of the input2.

data T where T :: (∀a ◦ Type a → a → a)→ T

We now present the definition for essential generic combinators3:

data Type a where
...
TP :: Type T
TU :: Type a → Type (Q a)

data PF f where
...
apTa :: Type a → PF T → PF (a → a) -- application
mkTa :: Type a → PF (a → a)→ PF T -- creation
nop :: PF T -- identity
B :: PF T → PF T → PF T -- sequence
gmapT :: PF T → PF T -- map over children
everywhere :: PF T → PF T -- map to every node
apQa :: Type a → PF (Q r)→ PF (a → r) -- application
mkQa :: Monoid r → Type a → PF (a → r)→ PF (Q r) -- creation
∅ :: Monoid r → PF (Q r) -- empty result
union :: Monoid r → PF (Q r)→ PF (Q r)→ PF (Q r) -- union of results
gmapQ :: Monoid r → PF (Q r)→ PF (Q r) -- fold over children
everything :: Monoid r → PF (Q r)→ PF (Q r) -- fold over every node

TP and TU are the type-preserving and type-unifying representations. Func and PF provide type
representations for functions and point-free functions, respectively. Func is the previously defined context
for functions. The general point-free type context is PF .

A nice example of a generic function over point-free expressions is the eval function of PF expressions:

eval :: Type a → PF a → a
eval (PF (Func (Prod a b) a)) π1 = fst
eval TP (everywhere t) = t B gmapT (everywhere t)
eval (TU a) (everything m t) = union m t (gmapQ m (everything m t))
...

Also, generic equality for type representations is achieved with teq :

-- Data type to express type-equality
data Equal a b where

Eq :: Equal a a
-- Type equality generic function

teq :: Type a → Type b → Maybe (Eq a b)
teq One One = Just Eq
teq (List a) (List b) = do

Eq ← teq a b
return Eq

1The result r is assumed to be a monoid, with a zero element and associative plus operator.
2Traversals need to be encoded as a data, because T encapsulates the return type a
3In our model, a child type corresponds to descending once in the tree-like structure of a type.

8 CHAPTER 2. DATA TRANSFORMATIONS

...
teq = Nothing

-- Boolean type equality
teqb :: Type a → Type b → Bool
teqb a b = if (isJust (teq a b)) then True else False

XPath combinators are implemented as strategic type-unifying combinators. They were initially
defined in terms of strategic combinators by Lämmel [Läm06].

data PF f where
...
self :: PF (Q [∗])
child :: PF (Q [∗])
desc :: PF (Q [∗])
descself :: PF (Q [∗])
name :: String → PF (Q [∗])
/ :: PF (Q [∗])→ PF (Q r)→ PF (Q r)

In XPath, combinators enjoy a very relaxed typing. Selection functions are implemented as aggrega-
tion functions for sets of types, but there is no distinction in grouping properties for values of different
types. For instance, we may group the results of expressions with different types:

/imdb,1

Additionally, XPath selectors provide an element name based algebra. Thus, selecting a name may
involve the selection of different types with the same name.

Hence, sets of values don’t have a type distinction, and are represented in our system as [∗].

2.2.1 Rewriting Examples

We will now present some examples of expression rewriting with our point-free calculator.
Consider two XPath queries //director and //movie, that collect all non-root elements with names

director and movie, respectively, from an XML document.
First, we convert these expressions into our XPath representation:

descself / child / name "director"
descself / child / name "movie"

Using the one-level rewrite system for point-free program calculation, the second step is to partially
evaluate these structure-shy XPath expressions for the XML schema of Figure 6.1.

The results are two structure-sensitive point-free functions.4. The first function collects all directors
inside movies that are themselves under the root element imdb:

let movies = π1 ◦ outImdb
director = π1 ◦ π2 ◦ π2 ◦ π2 ◦ outMovie

in list (mkAny ◦ director) ◦movies

Analogously, the second function selects all movies inside the root element imdb:

let movies = π1 ◦ outImdb
in list mkAny ◦movies

Remember the need to encapsulate al element results inside the dynamic wrapper ∗, performed by
list mkAny

4We have spitted expressions into different type selectors for improving user readability.

2.3. REPRESENTATION OF TWO-LEVEL TRANSFORMATIONS 9

2.3 Representation of Two-level Transformations

Based on the presented representations for types and functions, we can encode a 2LT as a pair of
point-free functions that are each other inverse:

data Trans a b = Trans{to :: a → b, from :: b → a}

A view encompasses that a type a can be represented by a type b, as witnessed by the value-level
functions that convert between these types:

data View a where
View :: Trans a b → Type b → View (Type a)

Inside the view, the target type does not escape and is existentially quantified. A transformation rule
is defined as the generalization of a view for any input type5:

type Rule = ∀a . Type a → Maybe (View (Type a))

Consider an example two-level transformation that adds information to a data model by creating a
pair in the target model:

A

id 4 v

))
6 A×B
π1

gg

The value-level transformations can be encoded as

add π2 trans = Trans (id 4 v) π1

, and generalized into a rule a combinator that receives the type and value of the added information:

add π2 :: Type b → b → rule
add π2 b v a = return (View add π2 trans (Prod a b))

2.3.1 Generic Combinators

The 2LT rewrite system relies on smaller type-changing two-level transformation steps that can be
combined into powerful rewrite systems, using a set of type-transforming strategic combinators [COV06,
BCPV07]. They are similar to the generic combinators presented in Section 2.2 for ordinary functions,
except that they simultaneously fuse the type-level steps and the value-level steps. As we will see, the
joint effect of two-level strategy combinators is to combine the view introduced locally by individual steps
into a single view around the root of the representation of the target type.

Let us begin by supplying combinators for identity, sequential composition and list composition of
pairs of value-level functions:

-- Pair of identity value-level tranformations
id trans :: Trans a a
id trans = Trans id id

-- Sequential composition of value-level transformations
comp trans :: Trans a b → Trans b c → Trans a c
comp trans f g = Trans (from f ◦ from g) (to g ◦ to f)

5The Haskell Maybe native type designates monads partiality (data Maybe a = Nothing | Just a). In our representation,
Maybe A ∼= A + 1.

10 CHAPTER 2. DATA TRANSFORMATIONS

list trans :: Trans a b → Trans [a] [b]
list trans r = Trans (List .map (to r)) (List .map (from r))

Using these combinators for pairs of value-level functions, we can define new two-level combinators:

-- Unit for sequential composition
nop :: Rule
nop t = return (View id trans t)

-- Sequential composition.
(B) :: Rule → Rule → Rule
(f B g) a = do (View r b)← f a

(View s c)← g b
return (View (comp trans r s) c)
-- Repeat until failure, zero or more times

many :: Rule → Rule
many r = (r B many r) ||| nop

Note that rule application may fail, since it is partial, what implies the combinator to fail accordingly.
Since Rule has a monadic codomain, it is easy to encode sequentiation.

The either combinator extends the monadic sum into our model. For two rules r1 and r2 , it always
applies r1 , and tries to apply r2 if r1 fails:

(|||) :: Rule → Rule → Rule
(r1 ||| r2) c = r1 c ‘mplus‘ r2 c

Well-known generic combinators have also been implemented, such as one (applies a rule to one of
the children of the a type) and all (applies a rule to all of the children of the same generic type). Despite
extensive, their definition is very straightforward. For example, for products, one applies a rule to any
of the children of the products, when all applies the same rule to all of the product’s children.

Example cases for one combinator are:

one :: Rule → Rule
one r Int = r Int
one r (List a) = do

View s b ← r a
return (View list trans (List b))

...

More challenging combinators are the ones that descend onto the functorial structure of type represen-
tations, such as once (applies a rule once, at arbitrary depth) and everywhere (applies a rule everywhere).

Based on the definition of one, we can define once:

once r :: Rule → Rule
once r = r ||| one (once r)

For more detailed information on strategic combinators for two-level transformations, please refer to
the previous papers [COV06, CV07, BCPV07].

Chapter 3

Two-Level Transformations with
Partiality

In the refinement theory, the abstraction relation in a two-level transformation must be surjective and
simple, where a simple relation is a possibly partial function.

Although partiality is admitted in the backward value transformation, it is not enforced in the function
declaration, what makes valid type refinements to be inconsistent for some values inside it’s domain.

A typical example is the addalt refinement1:

A

i1
))

6 A+B

id ∇ ⊥

gg

It can be easily shown that this pair of functions establishes a valid refinement:
from ◦ to

⇔ { definitions of to and from }
(id ∇ ⊥) ◦ i1

⇔ {+-Cancel, nat-Id }
id

Despite being a valid refinement, the abstraction function from is only well-defined for the range of
to, defined as the set

{to (x) : x ∈ A}

For that reason, from is partial for values of the added alternative and may generate runtime errors
for undefined cases.

Moreover, throwing of runtime errors aborts the execution of the backward transformation, and com-
promises the possibility of successful termination. An example will be presented after defining explicit
partiality.

3.1 Adding Explicit Partiality

In order to address this issue, we can add explicit partiality to the backward value transformation
(from :: B → A + 1). The fundamental of refinements can now be stated as

from ◦ to v i1

1⊥ is the undefined value for any type. ⊥ defines the constant function that always returns ⊥.

11

12 CHAPTER 3. TWO-LEVEL TRANSFORMATIONS WITH PARTIALITY

A+ 1

to

''
6 B

from

ii

The “partialization“ of a refinement consists in adding a fail alternative to its backward function from,
converting it into a total function. For the cases when the original from function is undefined, the new
total function returns the added alternative.

Again, for the addalt refinement:

A+ 1

i1
**

6 A+B

id + 1

jj

from ◦ to

= { definitions of to and from }
(id + 1) ◦ i1

= {+-Cancel, nat-Id, +-Def }
i1

Straightaway, we emphasize the benefits of explicit partiality in the sequentiation of transformations.
Assume the application of addalt inside a list:

[A]

list i1

((
6 [B]

list (id ∇ ⊥)

hh

As long as the non-partialized version of addalt is considered, in case the backward function of addalt
(id ∇ ⊥) fails, list (id ∇ ⊥) will fail accordingly. However, if we consider addalt as a partial refinement,
the 2LT from [A] to [B] becomes:

[A] + 1

list i1

((
6 [B]

g

jj

Here, explicit partiality in addalt allows the backward transformation g to safely recover from the
error state, since the partiality of id ∇ ⊥ is absorbed as the nil value for lists2. Intuitively, this could not
have been achieved if the abstraction function of addalt had previously failed to execute.

The extra sum implied by partiality in the backward direction will increase the complexity of combining
type transformers. It will frequently require the use of associativity , commutativity and distributivity
isomorphisms of sums and products [Cun05].

Remember the composition diagram of refinements,

A

to

''
6 B

to′

''

from

gg 6 C

from′

gg

2The definition of g is provided furtherly, when studying the partialization of generic combinators for lists.

3.1. ADDING EXPLICIT PARTIALITY 13

You can see how the complexity of the backward transformation increases in the partialized version3:

A+ 1

id
++

∼= A+ (1 + 1)

id
++

id+(id ∇ id)

jj
∼= (A+ 1) + 1

to

**

coassocr

kk
6 B + 1

to′

''

from+id

kk
6 C

from′

ii

3.1.1 Generic Combinators

The implemented generic combinators for two-level transformations include top-level combinators
that apply an argument rule to the root element of a type (such as composition) and highly recursive
combinators that descend onto the functorial structure of type representations.

Two standard non-recursive combinators are one (applies argument rule to one of the child types)
and all (applies argument rule to all child types), that apply transformations to child elements of a type.
They are defined generically for any type, but their implementation is specific for each type pattern.

In order to prove that the partialization of these combinators still generates valid refinements, we will
need to prove the refinement properties for each of their patterns.

Consider the proof for lists (this proof is valid for both one and all , since the type representation of
[A] has a single child type A).

Assuming that

A+ 1

to′

''
6 B

from′

ii

is a valid refinement r , then

[A] + 1

to

((
6 [B]

from

jj

is also a valid refinement one r if

from ◦ to v i1

The backward function from of refinement one r can be encoded by mapping from ′ over [B], resulting
a list of partialized A elements. + 1 optionality can be removed from inner list elements by representing
them as empty lists (generated by nil), imposing the type lifting of [A] to [[A]], furtherly canceled by
concat . The full definition is as follows:

[B]
list from′

// [A+ 1]
list (wrap ∇ nil) // [[A]] concat // [A]

i1 // [A] + 1

Following this definition, we can derive the proof for list refinements:

3coassocr names the right associative property of sums.

14 CHAPTER 3. TWO-LEVEL TRANSFORMATIONS WITH PARTIALITY

from ◦ to
= {definition of to and from }

(i1 ◦ concat ◦ list (wrap ∇ nil)) ◦ list from ′ ◦ list to′

= { list-Fusion; from ′ ◦ to′ = i1 }
i1 ◦ concat ◦ list (wrap ∇ nil) ◦ list i1

= { list-Fusion; ∇-Cancel }
i1 ◦ concat ◦ list wrap

= { concat-Cancel; nat-Id }
i1

Proofs for other supported types are available in Annex B.

3.1.2 Haskell implementation

A partial two-level transformation between two types is encoded in Haskell as4

data Trans a b = Trans{to :: PF (a → b), from :: PF (b → Either a One)}

For instance, the value transformations for the addalt refinement are encoded as:

addalt trans = Trans i1 (id + 1)

The enconding of views and rules remain the same. Thus, the rule generalization of addalt can be
defined as:

addalt :: Type b → Rule
addalt b a = Just (View addalt trans (Either a b))

3.2 Coupled Transformation of XPath queries

When migrating a data type, it is common to have some other computational artifacts, such as
generators and queries, that need to remain consistent after the evolution. Moreover, the computation of
these artifacts results in new artifacts bound to the evolved type.

Consider the following diagram for partialized coupled transformations, where p is a data producer
that generates values of type A, and q is a query that consumes values of type A:

X

p

��

p′

$$H
H

H
H

H
H

A+ 1
to &&

q

��

6 A′

from
gg

q′

zzv
v

v
v

v
v

Y

Assuming that Y is a monoid, we can derive equivalent functions for A′:

p′ = to ◦ p
q ′ = (q ∇ zero) ◦ from

4Note that we are using the point-free representation for value-transformation functions. This will be of most importance
for the simplification of these functions.

3.2. COUPLED TRANSFORMATION OF XPATH QUERIES 15

In both possible scenarios, after the transformation is calculated, we can use the 1LT rewrite system
to simplify the composed point-free expressions, removing all possible references to the intermediate type
A.

Consequently, it is of great importance to find function rewriting laws capable of canceling the usage
of sums and products combinators introduced by the partialization of the transformation.

Examples are the canceling rules for sums left associativity (coassocl) and left injections (i1):

• To associate to the left the left injection of some type is equivalent to injecting that type twice to
the left

coassocl ◦ i1 = i1 ◦ i1

A

i1
��

A

i1

��
A+ (B + C)

coassocl

��

= A+B

i1

��
(A+B) + C (A+B) + C

• To associate to the left the result of left injecting the right element of a sum is equivalent to left
injecting the result of the sum.

coassocl ◦ (f + g ◦ i1) = i1 ◦ (f + g)

A+B

f +(g◦i1)
��

A+B

f +g

��
C + (D + E)

coassocl

��

= C +D

i1

��
(C +D) + E (C +D) + E

More rules may be found in Annex A.

3.2.1 XPath Examples

We will now study a coupled transformation of a schema and a data selector expressed in XPath. For
such a scenario, we will:

• refine the schema given a two-level transformation;

• use our one-level rewrite system to specialize the XPath query into a structure-sensitive point-free
expression conforming to the schema;

• compose the specialized point-free expression with the point-free abstraction function from the
refinement;

• use the one-level rewrite system to simplify the resulting point-free expression and remove references
to the original schema.

16 CHAPTER 3. TWO-LEVEL TRANSFORMATIONS WITH PARTIALITY

name

actor

played

year title role awarddirector

reviewtitleyear

 show

box_office

country valuedate

imdb

* *

*

*

?

*

*

 series

 season

 year episode

 guestdiretor

movie

*

 name

*

?

+

Figure 3.1: An evolution of the original movie database example (Figure 6.1).

Suppose the following transformation for the Imdb schema example presented in Chapter 2 (Figure
6.1): change the type named movie to show, define movie as the product of director and box offices and
add an alternative series to movie. The resulting schema is represented in Figure 3.1.

Since we represent schema elements as Haskell native types, new definitions must be encoded for each
resulting data type that differs or does not exist in the original format.

For this specific transformation, the structure of movie and imdb change, and thus require new types5:

newtype Eimdb′1 = Eimdb′1 {unEimdb′1 :: ([Eshow], [Eactor])}
newtype Emovie ′1 = Emovie ′1{unEmovie ′1 :: (Edirector , [Ebox office])}

Also, new Typeable instances must be implemented:

instance Typeable Eimdb′1 where
typeof = Data "imdb" (unEimdb′1 ↔ Eimdb′1) typeof

instance Typeable Emovie ′1 where
typeof = Data "movie" (unEmovie ′1 ↔ Emovie ′1) typeof

Now, we can define the type evolution, remembering that we need to decapsulate the types before
applying a transformation6:

addseries :: Rule
addseries = atData "imdb" (unData B once (atData "movie" (unData B once (when isMovie

(dataMovie ′1 B addalt series)) B dataShow)) B dataImdb′1)
where
isMovie :: Type a → Bool
isMovie = teqb (typeof :: Type (Edirector , [Ebox office]))
series = typeof :: Type Eseries

The atData combinator applies an argument rule according to the name of the root type:

5Note that the new declarations, although distinct, will maintain the same type name.
6teqb is the boolean function for type equality. when is a two-level combinator that applies a given transformation only

if the boolean predicate succeeds.

3.2. COUPLED TRANSFORMATION OF XPATH QUERIES 17

atData :: String → Rule → Rule
atData s r x@(Data n) | n ≡ s = r x
atData s r = Nothing

unData provides data type decapsulation:

unData :: Rule
unData x@(Data n t) = Just (View (Trans outa (i1 ◦ ina)) t)
unData = Nothing

By the other side, dataShow , dataMovie ′1 and dataImdb′1 are default encapsulators for their respec-
tive types. Default encapsulators succeed only when applied to the particular structure of the types they
encapsulate, what is assured by teq type equality. Assume the definition of dataImdb′1 as an example:

dataImdb′1 :: Rule
dataImdb′1 a = do

Eq ← teq a (typeof :: ([Eshow], [Eactor]))
let imdb = typeof :: Type Eimdb′1
return (View (Trans ina (i1 ◦ outa)) imdb)

Collect all directors

Remember the specialization of the XPath expression //director from 2.2.1:

let movies = π1 ◦ outImdb
director = π1 ◦ π2 ◦ π2 ◦ π2 ◦ outMovie

in list (mkAny ◦ director) ◦movies

Composed with the abstraction function of the evolution and after simplification with 1LT, the query
that collects all directors becomes:

let shows = π1 ◦ outImdb′1
movieorseries = π2 ◦ π2 ◦ π2 ◦ outShow
director = π1 ◦ outMovie′1

in concat ◦ list ((wrap ◦mkDyn ◦ director ∇ nil) ◦movieorseries) ◦movies

Remark that the new structure-sensitive expression has no partiality, despite from being partial. This
can be explained by evidencing that both director and movie elements, on which the original query
depends, remained unchanged after the evolution.

Consequently, the resulting expression is independent from the original schema, in the sense that it
needs no knowledge on the structure of original elements to query the evolved schema.

Nevertheless, this property also means that the result of applying the query to the evolved type is
equivalent to composing the original query with the abstraction function.

Collect all movies

Recapitulate the specialization of the XPath expression //movie from 2.2.1:

let movies = π1 ◦ outImdb
in list mkAny ◦movies

Composed with the abstraction function of the evolution, the query that collects all movies becomes:

let shows = π1 ◦ outImdb′1
year = π1 ◦ outShow
title = π1 ◦ π2 ◦ outShow

18 CHAPTER 3. TWO-LEVEL TRANSFORMATIONS WITH PARTIALITY

reviews = π1 ◦ π2 ◦ π2 ◦ outShow
movieorseries = π2 ◦ π2 ◦ π2 ◦ outShow
directororbox offices = outMovie′1

originalmovie = inMovie
in concat ◦ list ((wrap ◦mkAny ◦ originalmovie ∇ nil) ◦ distr ◦ (year 4 (i1 ∇ i2 ◦ 1) ◦ distr ◦ (title 4

(i1 ∇ i2 ◦ 1) ◦ distr ◦ (reviews 4 (i1 ◦ directororbox offices ∇ i2 ◦ 1) ◦moviesorseries)))) ◦ shows

This time, the transformed expression is far more complex, since the distributivity combinator distr
could not be cancelled. It happens because, in order to return a movie element of the original type Movie,
the added alternative series cannot exist, otherwise a value of type Movie fails to be created.

Applying the XPath expression over the evolved schema, a much simplier function results from the
specialization:

let shows = π1 ◦ outImdb′1
movieorseries = π2 ◦ π2 ◦ π2 ◦ outShow

in concat ◦ list ((wrap ◦mkAny ∇ nil) ◦movieorseries) ◦ shows

This expression does not depend on the original schema and is straightforward in the selection of
XML elements with name movie, but of type Movie ′1 .

3.3 Relaxing type-safety

The representation of data types as type-safe GADTs enables type-safety in two-level transformations.
However, it represents more difficulty in writing simple transformation rules, since transforming the
structure of a datatype requires converting it into a new type constrained by the transformed structure.
In other words, we need to “open“ the opaque type, apply the desired transformation, and perhaps
encapsulate it again inside a new datatype containing the result of the transformation.

This implies that the user must know a priori the result type for the transformation, since the new
encapsulating data type must be defined in the rewrite code.

Replacing data representations with tags

An alternative is to replace the Data encapsulator as a mere string identifier that carries the name of
the type, as expressed by the following Tag constructor:

data Type a where
...
Tag :: String → Type a → Type a

Now, we can recurse inside type representations when defining generic combinators for two-level
transformations such as one and all , what in pratical terms means that strategies can be applied inside
types without the need to decapsulate them first.

Remark Note that a tag-based type representation can be pretty-printed into an Haskell data type
with the corresponding Typeable instances. However, this indirection costs an extra compilation step.

XPath Examples Revisited

Tag-based representations cannot be derived from haskell types using Typeable class instances, because
they do not hold an embedding-pair projection between the representation and the represented datatype
and, thus, have no notion on the latter.

This forces the user to write type representations by hand, since no Typeable instance can be inferred:

series = List season
season = Prod year (List episode)

3.4. SUMMARY 19

year = Tag "year" Int
episode = Prod name (Either guestdirector One)
name = Tag "name" String
guestdirector = Tag "guestdirector" String

However, the evolution turns out to be much more straightforward, since there is no type encapsula-
tion, at the cost of type-safeness:

addseries :: Rule
addseries = once (changeTag "movie" "show") B once (when isMovie (tag "movie’1" B addalt series))

where
isMovie :: Type a → Bool
isMovie (Prod (Tag "director") (List (Tag "box_office"))) = True
isMovie = False

Considering the previous XPath sample expressions, the resulting point-free expressions are equal,
except for the fact that no type encapsulators/decapsulators (in and out) are required.

As a general conclusion, tag representations do not alter the expression complexity or the dependability
on the source model, in terms of expression simplification, but greatly improve the usability and efficiency
of the transformations used.

As long as we can generate a type-safe representation from a tag-based representation, it it possi-
ble to convert between both representations. However, when pursuing the coupled transformation of
functions, non-type-safe to type-safe translation implies generating type encapsulators/decapsulators for
newly defined types inside related point-free expressions.

3.4 Summary

In this chapter, we have extended the two-level rewrite system in order to add explicit partiality to
abstraction functions in refinements.

We have studied the impact of partiality on coupled transformations in terms of expression complexity
and dependability on the source data model, for two different user-defined data-type representations (2.1).

Dependability on the source model expresses how dependant is the composed expression on the original
format, in order to return values of the type of the elements for which it was originally specialized.

20 CHAPTER 3. TWO-LEVEL TRANSFORMATIONS WITH PARTIALITY

Chapter 4

Type-safe Rewriting with Single
Recursion

Previously, the 1LT rewrite system has been introduced for type-preserving transformation of functions
over non-recursive type representations. In this chapter, we will dig into extending the type representation
to single-recursive types, sustaining the same approach of mapping theoretical concepts into pratical
program implementations.

Functors are used in mathematics for expressing mappings between categories. In functional program-
ming, a functor can be expressed as a type constructor.

Most recursive types can de defined as the fix-point of a polynomial functor. These result from the
following set of functors and combinators:

newtype Id a = Ident {unIdent :: a} deriving Eq
newtype K b a = Const{unConst :: b} deriving Eq
data (g ⊕ h) a = Inl (g a) | Inr (h a) deriving Eq
data (g ⊗ h) a = Pair (g a) (h a) deriving Eq

The identity functor Id encapsulates value instances for recursive sub-terms of that same type. The
constant functor K encapsulates values of a given type; ⊕ and ⊗ are liftings of Haskell’s native sums and
products.

The base functor that captures the signature of a regular data type T is denoted FT . A recursive
data type can be defined as the fix-point of its base functor FT . For each polynomial T, there exists a
base functor FT such that T = µFT , and inverse functions inT :FT T → T and outT :FT T → T [Rey77].

Recursion patterns can be seen as high-order functions that encapsulate typical forms of recursion.
The most famous recursion pattern is iteration, also called catamorphism, where constructors for recursive
datatypes are repeatedly consumed by arbitrary functions:

µF

(|g|)µF
��

outµF // F (µF)

F (|g|)µF
��

A F Ag
oo

Consider the following recursive definitions for Haskell native lists and N0
+ natural numbers, and their

base functors:

data [a] = Nil | Cons a [a]
F[a] = K ()⊕ (K a ⊗ Id)

21

22 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

data Nat = Zero | Succ Nat
FNat = K ()⊕ Id

An example of a catamorphism is the length function that counts the number of elements in a list:

length : [a]→ Nat
length = (|inNat ◦ (id + π2)|)[a]

An anamorphism resembles the dual of iteration and, hence, defines the inverse of a catamorphism -
instead of consuming recursive types, it produces values of those types:

µF F (µF)
inµFoo

µ F
g

//

[(g)]µF

OO

F (µF)

F [(g)]µF

OO

length is a classical example of a function that can be encoded both as a catamorphism from lists or
as an anamorphism to naturals. Consequently, we may define:

length : [a]→ Nat
length = [((id + π2) ◦ out[a])]Nat

More sophisticated recursion patterns are paramorphisms, that supply the gene of a catamorphism
with a recursively computed copy of the input. Note that (id 4 id) duplicates the substructure of the
input:

µF
outµF //

〈|g|〉µF
��

F (µF)
F (id 4 id) // F (µF × µF)

F (〈|g|〉µF × id)

��
R F (R × µF)

g
oo

A standard example of a paramorphism is the factorial function. The recursive definition for the
factorial of a nonzero natural number n is given by multiplying n by the factorial of n − 11:

fact : Nat → Nat
fact = 〈|one ∇ mult ◦ (id × succ)|〉Nat

For more information on recursion pattern and functional laws on them, please refer to [Cun05,
MFP91].

4.1 Rewriting SYB Combinators

The 1LT rewrite system provides a rich set of algebraic laws for transformation of point-free and
generic program combinators (namely for SyB and XPath).

In these laws, “apply to every node“ generic traversals can be unrolled via sequentiation of “apply to
children“ combinators.

1one returns the identity value of multiplication, where mult multiplies two natural numbers.

4.1. REWRITING SYB COMBINATORS 23

Unrolling recursion implies specializing the combinator for a specific type, and consists in applying
an argument transformation at the top and explicitly invoking its recursive definition (that may itself be
unrolled) for all the children.

Consider the following laws for recursion elimination in generic strategies:

apTµF (everywhere f) = apTµF f ◦mapT F µF (everywhere f) every-ApplyT

apQµF (everything m f) = mplus m ◦ (apQµF f × mapQ F m µF (everything r f)) every-ApplyQ

Here, mapT and mapQ instantiate “apply to children“ combinators with application to a concrete
functor and type:

apTµF (gmapT f) = mapT F µF f map-ApplyT

apQµF (gmapQ m f) = mapQ F m µF f map-ApplyQ

Accordingly, they are defined as:

mapT Id a f = apT a f
mapT (K b) a f = apT b f
mapT (f ⊕ g) a h = mapT f a h + mapT g a h
mapT (f ⊗ g) a h = mapT f a h × mapT g a h

 mapT -Def

mapQ Id m a f = apQa f
mapQ (K b) m a f = apQb f
mapQ (f ⊕ g) m a h = mapQ f m a h ∇ mapQ g m a h
mapQ (f ⊗ g) m a h = mplus m ◦ (mapQ f m a h × mapQ g m a h)

 mapQ-Def

However, unrolling laws were formulated for non-recursive data types and are not suitable for recur-
sive type definitions. Recursive references violate the model of tree-structured data and force recursion
elimination laws into infinite loops.

For instance, suppose a type that holds the information of an employee, where the latter has a name
and may supervise another employee. The type and functor representations become

Employee = Name × (Employee + 1)

and

FEmployee = K Name ⊗ (Id ⊗K One)

respectively.
Specialization of a generic traversal for the Employee type generates an infinite recursion tree:

apQEmployee (everything m f)
= { every-ApplyT }

mplus m ◦ (apQEmployee f × mapQ (K Name ⊗ (Id ⊕K One)) m Employee (everything m f))
= {mapQ-Def }

mplus m ◦ (apQEmployee f × mplus m ◦ (apQName (everything f) ×
(apQEmployee (everything f) ∇ (apQOne (everything f)))))

= { ... }
...

4.1.1 Using recursion patterns

To solve this problem, we will encode traversals using recursion patterns.
For the encoding of the everywhere type-preserving combinator we use an anamorphism, that iterates

through the type recursive calls in a topdown approach:

24 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

µF F (µF)
inµFoo

µ F
g

//

apTµF (everywhere f)

OO

apTµF g

��

F (µF)

F [(g)]µF

OO

µF
outµF

// F (µF)

apTF (µF) (gmapTK (everywhere f))

OO

The gene of the anamorphism applies the argument transformation f to the input and “opens“ its
functor definition with outµF . After, it applies everywhere f to all the child types.

It is important to guarantee that everywhere f is not applied to recursive sub-terms because it would
mean to apply f a second time, since it has already been applied to them by apTµF f . This is attained
with the usage of the combinator gmapTK in the place of gmapT : it denotes a small variant of gmapT
that does not apply the argument transformations to recursive calls.

The everything type-unifying combinator is encoded as a paramorphism:

µF
outµF //

apTA (everything m f)

��

F (µF)
F (id 4 id) // F (µF × µF)

F (〈|g|〉µF × id)

��
R F (R × µF)

g
oo

F π1 4 F π2

��
R × R

mplus m

OO

F R × F µF
apQFR (gmapQK (everything m f)) × apQµF f ◦inµF

oo

The gene of the paramorphism starts by splitting the functor definitions for the result type R and input
type µF . It returns the monoid sum of two values. The first value results from applying everything f to all
children of the result type, remembering that gmapQK mimics the behavior of gmapTK for type-unifying
transformations.

Secondly, the second value is originated from applying the transformation f to a functor recursive
representation of the input type. Remark that the functor encapsulator inµF needs to be applied before
the actual transformation.

4.2 Implementation in Haskell

In this section, we will discuss techniques and approaches to implement this extension in Haskell, in
order to support expression rewriting.

Similarly to types and functions, a GADT representation can be created for functor definitions:

data Fctr f where
Id :: Fctr Id
K :: Type a → Fctr (K a)
(⊕) :: Fctr g → Fctr h → Fctr (g ⊕ h)
(⊗) :: Fctr g → Fctr h → Fctr (g ⊗ h)

The fix-point operator µF will be implemented as a functor encapsulator:

newtype µ f = InMu{outMu :: f (µ f)}

4.2. IMPLEMENTATION IN HASKELL 25

Although isomorphic in theory, µF and a datatype with functor f are not the same type in Haskell.
Therefore, we need to define purely syntactic translations from types to their µF representations. The
following diagrams express how catamorphisms and anamorphisms relate to µF :

A
[(outA)]µF//

(|g|)A

��

µF

(|g|)µF
����

��
��

��
��

B

B µF
(| in A|)µFoo

A

[(g)]µF

??����������

[(g)]B

OO

Every non-native data type is represented as a recursive data type, even if it does not recurse, helping
in reducing the number of combinators and rules implied. Following this minimalist approach, we may
redefine the representation type as follows2:

data Type a where
Int :: Type Int
Bool :: Type Bool
Char :: Type Char
String :: Type String
One :: Type ()
Set :: Type a → Type (Set a)
Map :: Type a → Type b → Type (Map a b)
Data :: FunctorOf f a ⇒ String → Fctr f → Type a
ApF :: Fctr f → Type a → Type (f a)

The constructor Data now typifies some type a by taking a functor representation f and standard
conversions between f and some type a. This scheme will be later explained when the FunctorOf class
is presented.

Type Classes

In computer science, a type class is a type system construct that supports ad-hoc polymor-
phism. This is achieved by adding constraints to type variables in parametrically polymorphic
types. Such a constraint typically involves a type class T and a type variable a, and means
that a can only be instantiated to a type whose members support the overloaded operations
associated with T. Thus, type class constraints implement a form of bounded polymorphism.

from Wikipedia

Type classes were initially conceived for implementing overloading arithmetics and properties over
types, such as equality.

Thence, we will recur to type classes for defining properties of type and functor representations.
Recall the Typeable class for deriving type representations from a ground type. We can convey this

concept to functor representations by declaring a Fctrable class that infers a functor representation from
an Haskell functor, and instances for our constructs:

class Fctrable f where
fctrof :: Fctr f

instance Fctrable Id where
fctrof = Id

instance Typeable a ⇒ Fctrable (K a) where
fctrof = K typeof

...

2ApF expresses a type context for functor application.

26 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

Also, when defining an Haskell type for holding name information of another data type

data Name a = Name String
-- Transforms a function from string into a function from Name

applyName :: (String → b)→ Name a → b
applyName f (Name x) = f x

, a Nameable class ensues:

class Nameable a where
nameof :: Name a

Although classes allow the implementation of properties on representations, our real goal is to take
advantage of their ability to constrain multiple type parameters: it turn possible the mediation among
different artifacts and, applied to our specific scenario, it provides the semantics for defining implicit
translations between representations.

The first application example is to define the class FunctorOf that, given a functor f and a type a,
produces two functions ina and outa that fold up f a values into a values, and vice-versa:

class (Functor f ,Fctrable f)⇒ FunctorOf f d | d → f where
in :: f d → d
out :: d → f d

Remark Note that the functional dependency d → f implies that a functor f is unique for each type
d .

The FunctorOf class provides an elegant solution to avoid the use of µF . When recursing over a type,
we may “expose“ its functor structure progressively, once for each recursive call, while µF -based folding
and unfolding encompasses full translation of values, [(outA)]µF and (|inB |)µF .

Recapitulating the length example and maintaining the same encoding for in and out, the anamor-
phism and catamorphism correspond exactly to the theoretical definition without the need to lift opera-
tors:

length cata = (|inNat ◦ (id + π2)|)[a]
length ana = [((id + π2) ◦ out[a])]Nat

The Typeable class backs up on the definition of Data, that consumes a string identifier (corresponding
to the type name) and a functor representation conformant to the constructed type, given a pair of
functions in and out that are each other’s inverse (wrapped within the FunctorOf class). Intuitively, a
generic Typeable instance can be defined for types supporting the FunctorOf and Nameable classes:

instance (Nameable d ,FunctorOf f d)⇒ Typeable d where
typeof = applyName (λn → Data n fctrof) (nameof :: Name d)

This far, we have presented a representation for single-recursive types. The representation of functions
is exploited in the next subsections, according to three different approaches.

4.2.1 Functors Approach

As stated before, all types, even if not recursive, are represented as functors, what is equivalent to say
that type sums and products are lifted to the functors ⊕ and ⊗.

For example, if we previously, had some function f = id ∇ π1, where id :: x → x and π1 :: (a, b)→ a,
its type definition would be f :: Either a (a, b)→ a.

However, according to our recent instructions to represent Haskell products and sums as lifted functors,
we need to redefine the type of f such that f :: ∀x . (K a ⊕ (K a ⊗K b)) x → (K a) x .

4.2. IMPLEMENTATION IN HASKELL 27

Continuing, the lifted version of f can be calculated by lifting its subexpressions3: f = id ∇ π1.
Consequently, the patterns for functions over sums and products also have to use explicit functors:

data PF a where
...
π1 :: PF ((f ⊗ g) a → f a)
π2 :: PF ((f ⊗ g) a → g a)
4 :: PF (a → g b)→ PF (a → h b)→ PF (a → (g ⊗ h) b)
× :: PF (f a → h b)→ PF (g a → i b)→ PF ((f ⊗ g) a → (h ⊗ i) b)
i1 :: PF (f a → (f ⊕ g) a)
i2 :: PF (g a → (f ⊕ g) a)
∇ :: PF (f a → b)→ PF (g a → b)→ PF ((f ⊕ g) a → b)
+ :: PF (f a → h b)→ PF (g a → i b)→ PF ((f ⊕ g) a → (h ⊕ i) b)

After all, it should be possible to maintain the original type definition of f , as long as we want type
and functor interoperability.

For that reason, lifting expressions into functors does not suffice: there must exist combinators capable
of translating types to equivalent functors, and vice-versa:

data PF a where
...
apK :: PF (a → b)→ PF (K a c → K b c)
mkK :: PF (a → K a c)
unK :: PF (K a c → a)
apId :: PF (a → b)→ PF (Id a → Id b)
mKId :: PF (a → Id a)
unId :: PF (Id a → a)

Acknowledge f ′ as an approximation of f that has equal semantics, but follows a functor representa-
tion:

f ′ :: (K a ⊕ (K a ⊗K b)) x → a)

Therefore, conversion of f into f ′ implies “de-sugaring“ of the lifted functor result (K a) x into the
raw type a. To accomplish that, we simply compose unK with f :

f ′ = unK ◦ f

Although our implementation already provides enough expressivity to interchange between types and
functors, functor application is not as general as we would like to.

Consider the definition of a paramorphism, where the type to which the functor is applied needs to
be represented as a functor (the case of sums and products):

〈|g |〉A : (F (B × A)→ B)→ A→ B

Due to this restriction, functor composition is required:

data (g � h) a = Comp (g (h a)) deriving Eq
data Fctr where
...
(�) :: Fctr f → Fctr g → Fctr (f � g)

Some combinators for manipulating composition come trivially:

3Note that id = id

28 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

data PF a where
...
ffmap :: PF (f a → g b)→ PF ((h � f) a → (h � g) b)
fcomp :: PF (a → g b)→ PF (f a → (f � g) b)
compf :: PF (g b → a)→ PF ((f � g) b → f a)

In order to employ functor composition in the paramorhism definition, the product A × B has to be
lifted into a functor (K B ⊗ K A) X , that can be composed with a functor F , returning (F � (K B ⊗
K A)) X . However, B is the recursive substructure passed as argument to the gene of the anamorphism,
and therefore is encoded as Id to signal its difference from the result type A.

The following diagram renders a more detailed explanation of functor composition application in
paramorphisms:

A
outA //

〈|f |〉A
��

F A
fcomp mkId // (F ⊗ Id) A

ffmap (id 4 id) // (F � (Id ⊗ Id)) A

F (〈|f |〉A × id)

��
R (F � (K R ⊗ Id)) A

g
oo

At last, the concrete specification of a paramorphism is of the form:

data PF a where
...
〈|g |〉a :: FunctorOf f a ⇒ PF ((f � (K b ⊗ Id)) a → b)→ PF (a → b)

Employees Example

Consider an example of a recursive datatype for employee hierarchies4:

newtype Employee = Employee {unEmployee :: (Maybe Employee, Job,FirstName,LastName)}
newtype Job = Job {unJob :: String}
newtype FirstName = FirstName{unFirstName :: String}
newtype LastName = LastName {unLastName :: String}

We can write a type-unifying query to collect all employees (values of type Employee):

apQEmployee (everything (mkQEmployee wrap))

The result of specializing this query would be:

〈|mplus ◦ ((mkK ◦ unId ∇ mzero) ◦ π1 ◦ compf unK ◦ π1 4 mkK ◦ wrap ◦ inEmployee ◦ compf
unId ◦ π2) ◦ (ffmap π1 4 ffmap π2)|〉[Employee]

However useful, the extra point-free combinators increase the syntactic complexity of expressions and
force the user to have notion of type and functor conversions: this complexity motivated us to reject this
approach.

4Adapted from the online .NET Framework Developer’s Guide (http://msdn.microsoft.com/library/), for representing
employee hierarchies.

http://msdn.microsoft.com/library/

4.2. IMPLEMENTATION IN HASKELL 29

4.2.2 Combinators Replication Approach

This approach is as simple as duplicating for types and functors all the point-free combinators that
involve sums and products.

We will then re-add the Prod and Either type representations that were removed when defining all
types as recursive:

data Type a where
...
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)

data PF a where
...
π1 :: PF ((a, b)→ a)
π2 :: PF ((a, b)→ b)
4 :: PF (a → b)→ PF (a → c)→ PF (a → (b, c))
× :: PF (a → c)→ PF (b → d)→ PF ((a, b)→ (c, d))
prodf :: PF (f a → c)→ PF (g a → d)→ PF ((f ⊗ g) a → (c, d))
fprod :: PF (a → f c)→ PF (a → g b)→ PF ((a, b)→ (f ⊗ g) c)

Since the number of equivalent combinators increased, this is directly reflected in the number of rule
patterns for such combinators, depending on number of these combinators in the pattern expression.

A good example to highlight this behavior is the ×-Absorption rule, that merges application (×)
and creation (4) for products. All the valid combinations of semantically identical combinators must be
admitted5:

(f × g) ◦ (h 4 i) = f ◦ h 4 g ◦ i
(f × g) ◦ (h 4 i) = f ◦ h 4 g ◦ i
(f ‘prodf ‘ g) ◦ (h 4 i) = f ◦ h 4 g ◦ i
(f ‘fprod ‘ g) ◦ (h 4 i) = f ◦ h 4 g ◦ i

 ×-Absorption

Employees Example

Following similar steps as above, the specialization of the generic query results in:

〈|mplus ◦ ((unId ∇ mzero) ◦ π1 × wrap ◦ inEmployee) ◦ (fmap π1 4 fmap π2)|〉[Employee]

Although similar in semantics, this representation of point-free expressions is much clearer and close to
theory. However, the necessary difference between sums and products expressions on types and functors
implies having duplicate combinators for types and functors, as long as Either a b is not the same Haskell
type as (K a ⊕ K b) x . This extra cost in user’s coding time and number of rewrite laws makes the
approach unsuitable for reasonably-sized projects.

4.2.3 Functor-representation Class Approach

In this last approach, the solution is to define class-driven implicit conversion between values of a
type representation and a functor that lifts that same representation. Such class will be responsible for
the compatibility between types and functors by converting all functors into their equivalent type before
applying an expression.

The class name Rep stands for representation of functors and, for each functor, there is only one type
representation.

class Functor f ⇒ Rep f a b | f a → b where
to :: f a → b

5For some binary function f :: a → b → c, a ‘f ‘ b denotes the infix application of f a b.

30 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

from :: b → f a
apF :: Fctr f → Type a → Type b
mapT :: Fctr f → Type a → PF T → PF (b → b)
mapTK :: Fctr f → Type a → PF T → PF (b → b)
mapQ :: Fctr f → Monoid r → Type r → Type a → PF (GQ r)→ PF (b → r)
mapQK :: Fctr f → Monoid r → Type r → Type a → PF (GQ r)→ PF (b → r)

data Type a where
...
Data :: (FunctorOf f a,Rep f a b)⇒ String → Fctr f → Type a

Apart from the standard converters to and from, the class also declares methods that previously existed
as point-free combinators or Haskell functions, but must now exist inside the class context, because they
return polymorphic representations that change according to the type context (also polymorphic) of the
inputs.

The FunctorOf declares that f , a and b relate to each other, and that only one b exists for a functor
f applied to a type a (functional dependency). Instances allow defining specific behaviors for specific
contexts. For instance, the Id functor applied to some a is identical to that same type a:

instance Rep Id a a where
to (Ident x) = x
from x = Ident x
apF Id a = a
mapT Id a f = apTa f
mapTK Id a f = id
mapQ Id m r a f = apQa a f
mapQK Id m r a f = case teq a r of

Just Eq → id
otherwise → mzero m

If classes were not used, these context-dependant functions could not be defined. For example, if we
try to define apF without parameterizing it for specific instances

apF :: Fctr f → Type a → Type b
apF Id a = a
apF (K b) a = b
...

, the compiler claims that the function’s genericalness cannot be satisfied, as long as the unbounded type
polymorphism is not supported as the result of functions.

Another important note is that the methods in and out from the class FunctorOf now need to be
composed with the from and to methods from class Rep. This happens because point-free expressions
are defined for type representations translated from functor representations. Consider an example for
Haskell native lists:

out[a] :: [a]→ (K ()⊕K a ⊗ Id) [a]
out[a] = ...
to :: (K ()⊕K a ⊗ Id) [a]→ Either One (a, [a])
to = ...
(to ◦ out[a]) :: [a]→ Either One (a, [a])
> out[a] [1, 2, 3] = Inl (Pair (Const 1) (Ident [2, 3]))
> to (Inl (Pair (Const 1) (Ident [2, 3]))) = Right (1, [2, 3])

4.3. SUMMARY 31

Implementation Issues

Type classes not only permit multiple type-parameters[JJM97], and so define relations on types, but
also support functional dependencies[Jon00], that is, the programmer can assert that a given assignment
of some subset of the type parameters uniquely determines the remaining type parameters.

However, multiple-parameter type classes do no allow inference of parameters from another parameters
through lookup on the existing class instances, because Haskell types do not form a closed world: the
programmer might always add new instances for new types.

In our representation, the functors-space is restricted to the small subset of functor representations
we have defined, and there is one and only one Rep instance for each represented functor. Therefore, we
would like the Haskell class system to infere which class instance to use from the functor context, with
the guarantee from the functional dependency that there is only one instance for each functor.

Unfortunately, after all the efforts, we were unable to trick Haskell into doing such inference, and
could not satisfy functions class contexts (in cases when functors are applied to sums or products), under
the compiler error that some instances of class Rep are not deducible from the context.

For the simplest example of paramorphism reflexivity:

data PF a where
...

〈|g |〉fa :: (FunctorOf f a,Rep f (b, a) c)⇒ Fctr f → PF (c → b)→ PF (a → b)
paraReflex :: Type a → Type r → PF (a → r)
paraReflex a@(Data f) r = 〈|(◦) (apF f r) ina (fmap f π1)|〉fa

From the definition of a, we know that FunctorOf f a and ∃ b . Rep f a b. However, the context
∃ c . Rep f (r , a) c cannot be inferred from the encoding of paraReflex .

4.3 Summary

Either of the proposed approaches proved not to be able to remove language-specific features from the
representations or failed to be implemented, due to the difficulty in expressing type and functor equality.

The first approach required many unfriendly functions to put types and functors together in the same
representation. The second required repeated sums and products combinators and duplicated laws for
each of them, greatly increasing the programmers work load and the inefficiency of the solution. By the
other hand, the third approach sounded promising but failed to be implemented successfully in Haskell.

Remark We must not forget that, even if implementable, the type to functor conversions weren’t naive
and, although implicit inside type classes, would still cost significant time in performance.

Concluding, we still haven’t found a good solution for designing one-level rewrite systems with single-
recursion. In the next chapter, we will present our prototype of such a rewrite system, with a proper
language, but implemented in Haskell, supporting native equivalency between types and functors.

32 CHAPTER 4. TYPE-SAFE REWRITING WITH SINGLE RECURSION

Chapter 5

Developing a Rewrite System from
Scratch

5.1 Some notions on Rewrite Systems

A rewrite system is a set of terms, plus rules that specify how one term is replaced with another
term. The ability to combine rules into strategies, that can themselves be combined into other strategies,
defines the modularity of the rewrite system.

In computer science, rewriting can be seen as the computation involved in transforming programs into
another programs. Term rewrite systems have long surpassed their initial mathematical concept and are
[Der05]

[...] an important part of theoretical computer science. They consist of sequences of discrete
transformation steps where one term is replaced with another and have applications in many
areas, from functional programming to automatic theorem proving and computer algebra.

The determinism of a rewrite system is determined by the number of possible substitutions that may
transform a specific term.

Consider a rule for natural numbers such that

x + x → x ∗ 2

A term is the unitary element of a rewrite system. It is identified by a symbol and any number of
arguments. For this expression, terms are +(x , y), ∗(x , y) and 2. x is a variable.

The application of a rule is done in three steps: unification, where the left hand side is checked against
the input expression; substitution, by assigning values from the expression to the pattern variables; and
reduction, the rewriting itself, that replaces references to pattern variables in the right hand side with
their actual values.

Unification can be explained by the following example. Suppose the expression:

x + x

It would unify with

1 + 1

, but never with

1 + 2

The definition of context derives from context-sensitive rewriting, which consists in placing rewriting
restrictions on arguments of terms, forbidding them to be reduced by any rule.

33

34 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

Context-sensitive rewrite systems allow more control over the rules applied without the need to al-
ter the rewrite strategies, and contexts are usually used as an “hack“ to avoid infinite reduction trees.
Although the rewrite system we will develop is not intended to be context-sensitive, this concept is an
important comparison point for some of the features we aim to define. Quoting Lucas on the properties
of context-sensitive rewrite systems [Luc02]:

The termination behavior is not only preserved but usually improved and several methods
have been developed to formally prove it.

One of the most important properties of rewriting is confluence, describing that terms can be rewritten
in more than one way to yield the same results. It is equivalent to say that, for an input expression, the
result must have an unique normal form.

The most well-known rewrite system is Church’s lambda-calculus, a formal system designed to study
recursive functions. It is universal in the sense that any computable function can be represented as a
lambda-expression and evaluated using this formalism.

5.2 Language Definition: properties and features

We chose Haskell as the host language for implementing our generic rewrite system because of features
like monads and GADTs, that ease the representation and composition of functions and, more precisely
for our project, rewrite rules.

The developed language is intended to be a domain-specific language for designing generic term
rewrite systems. In this thesis, we will use it to replace the one-level rewrite system for Haskell point-free
expressions, as an alternative to the embedded language discussed in Chapter 4.

5.2.1 Terms and Type System

Remembering the composition of point-free expressions

(.) :: Type a → PF (b → c)→ PF (a → b)→ PF (a → c)

the language, though independant from Haskell, must inherit the notion of type polymorphism for
strongly-typed languages. Type-awareness requires the implementation of complex type-inference algo-
rithms in the type-checker [WB89, LO94]. For simplification reasons, the prototype version will discard
all the polymorphic information and consider monomorphic types. (.) will then be definable as

(.) :: PF → PF → PF

Remark Note that we are compromising the type-safety of having the type-checker validating the
correctness of expressions for free.

Native Types

In the previous attempt to implement a rewrite system for recursive point-free expressions (Chapter
4), the main issue was in handling type and functor equality.

For that reason, the main feature of the rewrite system is to provide an intuitive representation for
recursive datatypes and native conversion between the types and functors that represent it. Recursive
rules will support automated functor and name inference from a type representation.

We consider three native types: a core representation for types (Type), and representations for type
functors (Fctr) and names (Name). In order to import new type representations, the language“embodies“
the Glasgow Haskell Compiler’s parser for Haskell type declarations.

Because both functor and name representations can be derived from the type representation, we
provide two special combinators @ and ! that derive these representations from a type, respectively.

5.2. LANGUAGE DEFINITION: PROPERTIES AND FEATURES 35

For instance, if t is a type and f an unbounded variable, t@f assigns f with the functor representation
for t .

Conversely, if f is assigned to a specific functor expression, t@f only succeeds if f matches some
functor f ′ that is inferred from t@f ′.

Nevertheless, new types and respective terms may be defined by the user. For the representations of
point-free functions we will, in our demonstration rewrite system for one-level transformations, declare a
new type PF to hold terms such as ◦, the composition of functions presented above.

Associativity

Associativity is a common property of binary operators in rewrite system (remember the algebraic
operators for natural numbers). It means that, within an expression containing two or more of the same
associative operators in a row, the order of operations can change as long as the sequence of the operands
remains unchanged.

Supporting term associativity in the language greatly simplifies the task of the user when defining rule
patterns for associative expressions with n-ary arguments (whilst it increases the complexity of pattern
unification algorithms).

For example, in a non-associative system, for an associative term +, we could have:

a + (b + c)→ d
(a + b) + c → d

If associativity is supported, the same semantics can be represented in one single pattern:

a + b + c → d

In our language, a term can be explicitly declared associative by assigning a specific assoc tag:

+ ::Nat → Nat → Nat < assoc >

However, this feature suffers from some inefficiency issues, discussed as future work (Chapter 7).

5.2.2 Variables and Rules

After terms, we turn to the definition of rules. Rules are the rewriting elements themselves: they
express how to transform a term into another.

They can be seen as monadic functions from term to term: the monad denotes partiality in the
rewriting. The monadic zero states that a rule has failed to be applied for a certain argument.

Monadic binding and pattern support in the do-notation simplify the implementation of rule sequen-
tiation and optionality.

A rule may contain multiple patterns, that are unified consequently until one successfully succeeds.
Each let hand pattern associated with a right hand side expression is called a rule case.

Unlike functional languages, where if a pattern is matched with a term no other pattern is tried even
if it fails to return a result, all patterns are tried until a result is returned. Despite being different from
context-sensitive rewrite systems, where restrictions can be applied in reduction of terms, the monadic
optionality for patterns can be used by explicitly expressing failure behavior for a specific pattern.

A monad also stores function results and side-effect representations, what eases the implementation
of rule tracing algorithms.

Even though every term must have a type, the type of rule is monomorphic, what denotes that a
rule may contain rewrite cases for expression of different types. In other words, the type of rules simply
signals rule definitions, and does not distinguishes a rule on integers from a rule on strings. Rule cases
are no more than the combination of different rules.

Additionally to the obligatory term argument, a rule may also admit argument rules. For instance,
some rule

rule r : term x y → r x

36 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

returns the result of applying the argument rule r to the right hand side of its single case.
Like rewrite systems we have developed before, the current one we are developing also provides SyB-

like generic combinators for combining rules.

5.2.3 Input and Output

Whenever an user wants to rewrite an expression, he may declare a new variable that applies a
specified rule to that expressions

var = rule exp

Nevertheless, if we want to output some expression, it has to be expressed explicitly with a print
command:

print exp
print (rule exp)

This requirement is important in the sense that it guarantees the laziness of rewrite system. As in
any lazy functional language, our language only computes variables whenever they are referred in another
variable or rule or when explicitly required for output.

Haskell integration

In spite of the fact that our generic rewrite system is not an extension to Haskell, its design deeply
concerns rewriting of Haskell programs.

Examples of grand integration are: the parsing of Haskell type declarations into internal type rep-
resentations; the possibility of forwarding properly commented Haskell code to the output; and, most
important, syntactic compatibility of term and variable representations, allowing encoded rewrite sys-
tems to generate completely valid Haskell modules.

5.3 Implementation

Our rewrite system generator has the following major characteristics:

• It is written purely in Haskell, including the parser. This enables the whole implementation to be
based on monads, with clear advantages, as we will furtherly discuss.

• Its design is intended to provide a minimal syntax, generic enough to be independant of the set
of terms being rewritten, but providing special features to safely handle native type and functor
representations.

• It provides a module system similar to Haskell.

• It provides tracing information for applied rules, for each rewritten expression.

5.3.1 An overview of the compiler

The compiler is structured in a similar approach to the Glasgow Haskell Compiler[JHH+93]. Figure
5.2 renders the main functional blocks of the multi-phased compiler:

1. A context-sensitive, infinite look-ahead parser, written in the Parsec combinator language, defines
the lexer. Although combinatorial parsing lacks the excellence in speed of traditional bottom-up
parsing, it provides more expressiveness in the grammar definition and infinite look-aheads allow
the conscious generation of tokens for further seamless LR parsing. In our case, infinite look-ahead
is used wisely and the efficiency of the lexer is not compromised. A very resumed and incomplete
syntax for our language is described in figure 5.1.

5.3. IMPLEMENTATION 37

rhs := moduledecl | import∗ | sort∗ | content ∗
content := hsdecl | term | variable | result | rule | hscode
term := name ’::’ targs
targs := name ! name ’->’ targs
variable := name ’=’ expr
result := ’print’ expr
rule := name name ∗ case ∗
case := ’:’ expr ’->’ expr | ’:’ expr ’->’ ’fail’ | ’:’ name case ∗
expr := name expr∗ | expr ’@’ expr | expr ’!’ expr | case expr
name := any string

The full syntax is available by checking the grammar file in the source modules of our language.

Figure 5.1: Core syntax for our generic rewrite system.

Token information is passed to a standard bottom-up LR(1) parser written in Happy, an Yacc
homologue implemented in Haskell. The produced abstract syntax tree faithfully represents every
construct in our language, but differs from a parse tree by omitting syntax that do not alter the
semantics of the program.

2. The renamer resolves scoping and ambiguous references of term, variable, type or rule names.
Scoping also involves full name creation for referenced names: for a variable x that belongs to
module m, the full path for that variable’s name would be m . x . The definition of a variable y is
also extensible to structures “living“ inside rule r , such that m . r . y .

3. The type checker annotates the program with type information. The type inference algorithm is
much simplified by supporting only monomorphic types.

4. The interpreter executes the input rewrite system and returns only the AST for the code to be
outputted. There is no proper interpretation algorithm as for a normal compiler: variables are
loaded into memory when found (variables with the same name are overridden by default). Variable
references are then substituted, and rules reduced. In this rudimentary algorithm, no compiler/code
optimizations, such as inlining[JM02], are considered, but admitted as future work.

5. The code generator does no more than converting the abstract syntax into Haskell’s internal repre-
sentation and printing it into the standard textual representation. This pass also involves generation
of tracing files with information on the rules applied to rewrite the initial expressions.

5.3.2 Monads

Monads are a concept that derives from category theory, that functional languages have adapted for
forcing non-lazy sequential operations, expressing input/output operations and implement side effects
(statefull functions) without introducing language side effects features [Mog89].

Peyton Jones et al [JHH+93] have already found it very useful to use monads in the implementation
of the Glasgow Haskell Compiler. We will use monads in the encoding of our compiler for similar reasons:

• Monads natively provide sequentiation (that Peyton Jones recalls as plumbing), which makes the
code much easier to read and write;

• Along sequentiation, monadic partiality enables implicit error recovery in the compiler;

• Statefull monad transformations enable the storage of tracing information

• For each (partial) rewrite rule, there can always be defined a monad that mimics its semantics.
Representing rules as monads provides rule sequentiation (�) and optionality (‖) primitives for
free.

38 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

Traces

RHS
source

Parsec / Happy parser

Renamer Abstract Syntax

Type Checker

Typed Abstract
Syntax

Interpreter Expressions
Abstract Syntax

Code Generator

Haskell
source

Abstract Syntax

Figure 5.2: An overview of our compiler.

5.4 Libraries for One-level transformations

As mentioned above, the case study that motivated the development of this rewrite system is the
simplification of point-free expressions for single-recursive datatypes. Terms include the standard point-
free combinators and the SyB and XPath combinators.

Rewrite rules were encoded for classes of expressions, as well as transformation rules between them.
A typical motivating example for this one-level rewrite system is the specialization of XPath expressions
into SyB type-unifying queries and, again, into point-free functions that are simplified with point-free
algebraic laws. The resulting function is conformant to the type against which it was specialized.

In this section, we describe modules for the specification and transformation of point-free expressions.
Finally, we study some examples and compare the results with the XPTO tool [FP07].

5.4.1 Point-free

The representation of terms follows a normal grammar syntax, despite future work contemplates
extending it to a GADT-like representation in order to support polymorphic types in term declaration.

As an example, consider the following module that defines some demo point-free combinators and
rules for catamorphisms:
module PF where

%s o r t s {PF} −− t ype d e c l a r a t i o n

out : : PF
(.) : : PF −> PF −> PF
cata : : Type −> PF −> PF
fmap : : F c t r −> PF −> PF

mzero : : Type −> PF
mplus : : Type −> PF

na t I d : i d . f −> f
: f . i d −> f

5.4. LIBRARIES FOR ONE-LEVEL TRANSFORMATIONS 39

ca ta De f : ca ta t@f g −> g . fmap KDef (fmap f (ca ta t g)) . out t

fmap KDef : fmap (K a) f −> i d
: fmap (f :+: g) h −> fmap KDef (fmap f h) −|− fmap KDef (fmap g h)
: fmap (f : ∗ : g) h −> fmap KDef (fmap f h) >< fmap KDef (fmap g h)

In this small example, you may already notice that t@f is deriving functor f from some type t .
More significantly, cata Def invokes fmap KDef in the right-side expression, and shall only succeed

if fmap KDef also succeeds. This ability to call rewrite rules inside expressions becomes important to
control the application of certain rules, and can be seen as an approximation to context-sensitive rewrite
systems [Luc02].

For this specific case, we only want cata Def to be applied if the type it folds over is not recursive,
otherwise sequential rule application may succeed in infinite unfolding of cata. This is achieved by
guaranteeing that fmap KDef fails for the identity functor (implicitly by the omission of that particular
case).

However, you may question why would a catamorphism be applied to a non-recursive type. Catamor-
phisms define iteration over generic types, independently of their structure (recursive or not). Therefore,
they can be used to implement generic folding operations over generic types, where simplification into
explicit recursive functions is important in the specialization of such generic functions.

This method is largely employed in structure-shy query languages, such as XPath, and will furtherly
be studied at the time we discuss rewriting of structure-shy to structure-sensitive expressions.

Monoid terms mzero and mplus will be useful for grouping multiple values of the same type. This is
the case when the resultant expression is the concatenation of specializing the same expression over two
distinct types. Such an example is in the further definition of mapQ Def for functor products (⊗).

Terms for monoids are parameterized with a type and defined generically for it, in the assumption
that only types that define a monoid may be represented as such.

For example, mplus [a] defines the binary concatenation of expressions over lists of a elements, and
could be specialized into listcat :: PF . Conversely, mplus Int defines the binary sum of expressions over
integers and could be specialized into + :: PF .

5.4.2 Srap Your Boilerplate

For representing SyB combinators, we define new sorts T and Q for type-preserving and type-unifying
terms, respectively.

In the GADT representation, the same expressions were represented as PF T and PF Q . However,
adapting the rewrite system to monomorphic types encompasses lifting some previously polymorphic type
contexts into different types.

Consider the following module for specifying SyB combinators:
module SYB where

import PF

%s o r t s {T,Q}

−− Type−p r e s e r v i n g s t r a t e g y comb ina to r s
apT : : Type −> T −> PF
mkT : : Type −> PF −> T
gmapT : : T −> T
gmapTK : : T −> T
eve rywhe re : : T −> T
nop : : T
seq : : T −> T −> T

mapT : : Fc t r −> Type −> T −> PF
mapTK : : Fc t r −> Type −> T −> PF

−− Type−u n i f y i n g s t r a t e g y comb ina to r s
apQ : : Type −> Q −> PF
mkQ : : Type −> Type −> PF −> Q
gmapQ : : Type −> Q −> Q
gmapQK : : Type −> Q −> Q
ev e r y t h i n g : : Type −> Q −> Q
emptyQ : : Type −> Q

40 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

union : : Type −> Q −> Q −> Q

mapQ : : Fc t r −> Type −> Type −> Q −> PF
mapQK : : Fc t r −> Type −> Type −> Q −> PF

gmapQ apQ : apQ Any (gmapQ r f) −> f a i l
: apQ t@f (gmapQ r g) −> mapQ Def (mapQ f r t g) . out t
: apQ t (gmapQ r g) −> mzero r

mapQ Def : mapQ Id r a f −> apQ a f
: mapQ (K b) r a f −> apQ b f
: mapQ (f :+: g) r a h −> mapQ Def (mapQ f r a h) \/ mapQ Def (mapQ r g a h)
: mapQ (f : ∗ : g) r a h −> mplus r . (mapQ Def (mapQ f r a h) >< mapQ Def (mapQ g r a h))

Now we will study the gmapQ apQ rule. It defines three possible cases.
When the argument type is hidden inside a Any encapsulator, we want to leave the expression un-

touched, since we have defined extra laws that allow the decapsulation of dynamic application. The
reserved word fail denotes rule instant failure. Similarly to localized rule invocation inside expressions,
it can also be seen as an approach to context-sensitive rewrite systems [Luc02].

If the type to which the generic expression is applied is not a basic type and has a functor represen-
tation, then the behavior of gmapQ can be expressed by specializing the parameterization of mapQ with
the argument type and functor. Or, the expression is not applicable and the zero monoid is returned.

Placing a restriction to ensure that the argument type is recursive can be compared with context-
sensitive rewrite systems, in the sense that we are constraining the application of the rule.

5.4.3 Xpath

As before, XPath combinators are encoded as type-unifying generic queries. You may recall their
definition from Chapter 2.

XPath axis indicate navigation direction in the XML tree structure. We now explain the most relevant
axis for simplification:

• self denotes the current node;

• child is the default axis, if none specified, and is equivalent to mapping self over the child nodes of
the current node (child Def);

• desc may be seen as the recursive application of child (des Def) and unifies with any node under
the current node in the XML tree;

• descself is the union of desc and self (descself Def);

• name performs similarly to self , but only succeeds if the current node name unifies with its argument
name;

• (/) defines XPath sequentiation. It simply passes the result of applying an axis to the following
axis. The distributivity of union denotes that applying some axis after the union of two other axis
is the same as performing the union of the two sequentiation those axis (union Dist).

We can easily define combinators for the XPath base syntax and algebra that translates XPath
expressions into generic functions:
module Xpath where

import PF
import SYB

%s o r t s {}

−− XPath comb ina to r s
s e l f : : Q
c h i l d : : Q
desc : : Q
d e s c s e l f : : Q
name : : Name −> Q
(/) : : Q −> Q −> Q

5.4. LIBRARIES FOR ONE-LEVEL TRANSFORMATIONS 41

qcomp : : Q −> PF −> Q
(?) : : Q −> Q −> Q
nonempty : : Q

xpa t h a l g : d e s c s e l f D e f | un i o n D i s t | desc De f | c h i l d D e f

d e s c s e l f D e f : d e s c s e l f −> union [Any] s e l f de sc
un i o n D i s t : union t f g / h −> union t (f / h) (g / h)
de sc De f : desc −> e v e r y t h i n g [Any] c h i l d
c h i l d D e f : c h i l d −> gmapQ [Any] s e l f

5.4.4 Examples

We will now run some examples and compare the results with the XPTO tool [FP07] for non-recursive
XML schemas. The example XPath expressions will be simplified according to the schema of Figure 6.1.

The first example is the XPath expression

self / child / name "movie" / child / name "actor"

that retrieves every actor elements that are direct children of movie elements under the root element. A
demonstration module can be written to express this specialization1:
module Examples . XPath where

import SYB
import PF
import Pre lude
import XPath

%s o r t s {}

newtype Eimdb = Eimdb{unEimdb : : ([Emovie] , [Eac to r]) }
newtype Emovie = Emovie{unEmovie : : (E t i t l e , (Eyear , ([E rev i ew] , (Ed i r e c t o r , [E b o x o f f i c e])))) }
newtype E t i t l e = E t i t l e { u n E t i t l e : : S t r i n g }
newtype Eyear = Eyear { unEyear : : I n t }
newtype Erev i ew = Erev i ew { unErev iew : : S t r i n g }
newtype Ed i r e c t o r = Ed i r e c t o r { unEd i r e c t o r : : S t r i n g }
newtype Ebo x o f f i c e = Ebo x o f f i c e { unEbo x o f f i c e : : (E i t h e r Edate () , (Ecountry , Eva lue)) }
newtype Edate = Edate{unEdate : : S t r i n g }
newtype Ecountry = Ecount ry { unEcountry : : S t r i n g }
newtype Eva lue = Eva lue { unEva lue : : I n t }
newtype Eacto r = Eacto r { unEactor : : (Ename , [Ep layed]) }
newtype Ename = Ename{unEname : : S t r i n g }
newtype Eplayed = Eplayed { unEplayed : : (E t i t l e , (Eyear , (E ro l e , [Eaward]))) }
newtype E ro l e = E ro l e { unEro l e : : S t r i n g }
newtype Eaward = Eaward{unEaward : : (Eaward name , E r e s u l t) }
newtype Eaward name = Eaward name{unEaward name : : S t r i n g }
newtype E r e s u l t = E r e s u l t { unE r e s u l t : : S t r i n g }

xp1 = s e l f / (c h i l d / name Emovie) / (c h i l d / name E t i t l e)
p f1 = op t im i z e xp (apQ Eimdb xp1)
p r i n t pf1

In both our rewrite system and the XPTO tool, the query is reduced to the void path:

pf1 = nil

The second example is similar to the first one, but collects movie titles instead of movie actors:

xp2 = self / child / name "movie" / child / name "title"

The resulting point-free expression directly relates to the original query: for each movie contained
in the first child of the imdb root node (a list of movies), it selects the first child, namely the title and
encapsulates it inside the ∗ dynamic type:

pf2 = list (mkAny Etitle ◦ π1 ◦ out Emovie) ◦ π1 ◦ out Eimdb)

The third query retrieves descendant result elements, considering a list of award elements as the
root node instead of the default root imdb element. Note that an award element only contains a pair

1The Haskell type that represents the schema was generated by the XML Schema interface for the XPTO tool.

42 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

of elements award name and result as childs. This choice is made for efficiency reasons that we later
discuss.

xp3 = descself / name "result"

The specialized point-free expression intuitively maps a selector of result elements (the second child
of award elements) over the input list:

pf3 = list (mkAny Eresult ◦ π2 ◦ out Eaward)

However, remember that the desc axis is transformed into a generic combinator that applies the se-
lector to every descending node (everything). This recursive pattern is encoded by paramorphism over
lists. Since lists are recursive types (remember the functor K () ⊕ K a ⊗ Id), the para Def rule cannot
be applied to the type and it can only be canceled for very specific cases (consult the rules for paramor-
phisms in Annex A). All these transformation for recursivity elimination are much more expensive than
representing lists as non-recursive types, like in the XPTO tool.

Until now, we proved that, following a recursive type representation, we can still obtain the same
results as in a non-recursive approach.

As the fourth example, recall the generic query for retrieving information information on employees
for a recursive type holding information on them, analyzed in Chapter 4:

syb4 = apQEmployee (everything (mkQEmployee wrap))

Through specialization, we get:

pf4 = 〈|mplus ◦ ((id ∇ nil) ◦ π1 × wrap ◦ inEmployee) ◦ (fmap π1 4 fmap π2)|〉[Employee]

Compared with the previous attempts, the result is simpler, since the same product and sum functions
are defined independently of types and functors, and there is no need to use functor encapsulators/de-
capsulators. The resultant point-free expression is finally a perfect mapping of the theoretical concepts,
since the language does not require any extra syntax to represent the same concepts.

5.5 Tracing

As stated in the language architecture, tracing files are generated for each outputted variable, and
provide detailed information of the applied rules and resulting intermediate expressions.

Consider now some simple example for the rewriting of a single point-free expression:
module Examples . PF where

import PF
import Pre lude

%s o r t s {}

p f = i d . i d . i d
r e s = many n a t I d
p r i n t r e s

For this example, one single trace file res.trace is generated, in the same directory where the module
Examples.PF is located:
−− This i s an automat i c g ene r a t ed t r a c e f i l e f o r the v a r i a b l e Examples . PF . r e s .

r e s = i d . i d . i d
= { n a t I d }

i d . i d
= { n a t I d }

i d

5.6. EFFICIENCY 43

5.6 Efficiency

In this section, we discuss the results of comparing the developed rewrite system against the original
Haskell implementation for non-recursive types. The current rewrite system copies the rewrite strategy
from the original implementation, apart from the handling of generic traversals, that recur to recursion
patterns rather than specific specialization for lists.

XPath Expressiona Old Current Root Node
./movie/actor 0.439s 1m19.301s imdb
./movie/title 0.425s 1m19.497s imdb
//result 0.51s 57s [award]
a Abbreviated XPath Syntax

Table 5.1: Benchmarking times for XPath expressions
over a non-recursive schema.

Functors Approach Combs. Replication Approach Current
0.126s 0.050s 1m

Table 5.2: Benchmarking times for a type-unifying expression
over a recursive schema.

Benchmark tests were run for all the examples. For testing, GHC version 6.6 with optimization flag
-O2 has been used.

By analysis of the results (Tables 5.1 and 5.2), it is possible to conclude that rewriting of the same
expressions in our language is much slower than in the Haskell implementation.

We can enumerate two probable causes for such inefficiency:

• as said before, the XPath descendant axis is encoded by a paramorphism, that implies rules for
recursivity elimination. This is enforced by representing XPath sets as recursive lists rather than
native lists, for which specific rules can be derived. This is evidenced in the third example query,
that is straightforward to calculate for a non-recursive type representation, but requires much effort
to achieve the same results through paramorphism canceling.

• as long as we have implemented a generic rewrite system, rule and term declarations are loaded into
internal non type-safe representations. Implementing a specific rewrite system in Haskell enables
type-safe representations that are compiled into the destination program, along with the rewrit-
ing rules. These facts allow us to assume that compiling the whole rewrite system enables more
optimizations that turn rule pattern matching and application at byte-code level to be more ef-
ficient than expressed as Haskell datatypes. This fact can be mostly noticed in the last example
for selection of employees information (Table 5.2), where the specific implementations in Haskell
for this particular example also performs much faster than our implementation and paramorphism
elimination is not employed.

5.7 Summary

In this chapter, we have developed a non-type-safe generic rewrite system for Haskell terms, and
explained the advantages of modeling the previous one-level rewrite system for point-free expressions
with it, instead of implementing a specific rewrite system in Haskell.

44 CHAPTER 5. DEVELOPING A REWRITE SYSTEM FROM SCRATCH

Although it provides a much simpler language for defining and executing generic rewrite systems,
with specific features for mediation between types and functors, the most prominent conclusion is that
efficiency must be improved in order to apply it to real examples.

Chapter 6

Bidirectional Lenses

5 Computing is full of situations where one wants to transform some structure into another form, main-
taining a view that stores forward and backward value-transformations between the data models to yield
interoperability. One way to address such bidirectional transformations is via two-level transformations,
based on calculational data refinement.

Program refinement is the transformation of an abstract format specification into a concrete low-level
program. Another approach to bidirectional data transformation is the well-known view-update problem,
where a concrete model is abstracted into a view, and where value changes made to the destination format
are performed as updates to the original structure, what denotes knowledge on the original values in the
backward value transformation.

In relational theory, a database view is a virtual database representation that addresses a portion of
the data in the original database, structured in a suitable way for a specific purpose. A user interacts
with a view by issuing queries and update requests on views that must be translated into requests on the
underlying database. Although mapping of queries does not present particular problems, when translating
a view update there is, in general, more than one database update that results in exactly the same changes
on the database state as in the original view update. The view-update problem addresses the difficulty
of choosing an unique database update for each view update.

Pierce et al [FGM+05, Pie06], inspired in similar these concepts from classical relational database
theory[BS81] into programming languages, and have implemented a data synchronization tool called
Harmony. Harmony builds on bidirectional transformations with view-update named lenses.

This chapter explains, in pratical terms, the development of a possible implementation in Haskell for
the view-update problem using bidirectional lenses. Special emphasis is placed on the type-safeness and
robustness of lens application. Most of the theory is inherited from Pierce et al previous work.

6.1 A motivating Example

Suppose the following representation for an address book, as a map of names to tuples of phone
numbers and urls1 2:

Name ⇀ Phone × URL

Consider that both Name, Phone and URL are uniquely defined Haskell datatypes that represent
strings. We can fill some values for this structure:

c = {Name Chris 7→ (Phone 888− 9999,URL http : // chris . org)
,Name Pat 7→ (Phone 333− 4444,URL http : // pat . com)}

1Example extracted from [FGM+05]
2A ⇀ B denotes a map from A to B .

45

46 CHAPTER 6. BIDIRECTIONAL LENSES

Now, suppose that for synchronization or simplification purposes we would like to create an abstraction
for this model where each name is directly associated with a phone number:

Name ⇀ Phone

a = {Name Chris 7→ 888− 9999,Name Pat 7→ 333− 4444}

We can then modify the content of the abstract model as desired. For example, we can drop Chris’s
contact and add a new contact for Jo.

a ′ = {Name Jo 7→ 555− 6666,Name Pat 7→ 333− 4444}

According to the view update approach, we might be able to reconstruct an updated concrete model
based on an updated abstract model and the original concrete model.

Applying the backward transformation, we can compute a new concrete model reflecting the changes
on the abstract model.

c′ = {Name Jo 7→ (Phone 555− 6666,URL http : // google . com)
,Name Pat 7→ (Phone 333− 4444,URL http : // pat . com)}

Note that, in this case, we have to “fill in“ default data for Jo’s URL, since URL information is lost
in the abstraction. The default data is injected by a type-parameterized default generator.

The generic lens that computes the transformation described above is written as

map (focus "Phone" defaultURL)

, where

defaultURL (Data "URL" (to ↔ from) String) = from "http://google.com"

We will later explain better the process of defining default values for lenses.

6.2 Bidirectional Lenses Theory

A lens consists of a type transformation coupled with an abstraction relation get :C → A and a statefull
representation relation putback :A × C → C that pushes the abstract view back into the original concrete
model:

C

get

))
3 A× C

putback

hh

Similarly to two-level transformations, compositional creation of lens rewrite systems depends on
some properties that preserve the well-behavedness of single and composed lenses. For a lens to be well-
behaved, their forward and backward transformations must at least satisfy the properties of acceptability
and stability [AC07], respectively.

The forward transformation is acceptable if putback captures all the information in the abstract view:

get ◦ putback v π1

∀c . ∈ C . ∃ a ∈ A . get (putback (a, c)) = a

The backward transformation is stable if it does not drop concrete informations. Abstracting and
immediately putting back a concrete view shall return exactly the same view:

6.2. BIDIRECTIONAL LENSES THEORY 47

putback ◦ (get 4 id) v id
∀c ∈ C . putback (get c, c) = c

Any valid refinement is not a stable lens (unless it is a bijection).
Consider the attempt to encode the refinement add π2 (from Chapter 2, Section 2.3) as a lens:

A

id 4 v
++

3 (A×B)×A
π2

hh

For distinct values a, a ′ ∈ A and b belongs B , suppose that ∀x ∈ A . get (x) = (x , b). Through
stability:

get (putback ((a, b), a ′)) = (a, b)
⇔ { ... }

get (a ′) = (a, b)
⇔ { ... }

(a ′, b) 6= (a, b)

Similarly, a well-behaved lens is not a valid refinement (unless it is a bijection).
Consider a transformation from A × B to A, where we drop the second element of the product. If we

write a two-level transformation such as

A×B

π1

''
6 A

π1
o

ii

we can easily notice that it is not a valid refinement, because π1 is not injective.
Thus, we will write a lens drop π2 to perform the same transformation:

A×B

π1
++

3 A× (A×B)

id × π2

jj

Note that id × π2 prefers the updated abstract value over the original concrete value of A, in order
to guarantee lens acceptability. We can now prove that drop π2 is a well behaved lens:

26666664
get ◦ putback ⊆ π1

⇔ { definition of get and putback
;equality of functions }

π1 ◦ (id × π2) = π1

⇔ {nat-fst; nat-Id }
π1 = π1

266666666664

putback ◦ (get 4 id) ⊆ id
⇔ { definition of get and putback

;equality of functions }
(id × π2) ◦ (π1 4 id) = id

⇔ {×-Absorption; nat-Id }
π1 4 π2 = id

⇔ {×-Reflex }
id ⊆ id

A well-behaved lens can also be expressed in terms of stateless two-level refinements. Oliveira [Oli07]
proved that connectivity of the twin transformations

A× C
putback

��
A

π1
o 00

6 C

get

hh C

get 4 id

))
6 A× C

putback

hh

48 CHAPTER 6. BIDIRECTIONAL LENSES

formulates the equations for acceptability and stability of a lens from C to A.
Recapitulating drop π2, we can define the following pair of two-level transformations3:

A

(id × π2)◦π1
o=π1

o

++
6 A×B
π1

gg A×B

π1 4 id
++

6 A× (A×B)

id × π2

jj

An example of a lens that not always complies to the well-behaved requirements of lenses is the
constant lens const , that transforms any type A into a constant value b ∈ B and ignores the concrete
view in the putback direction:

A

b
**

3 {b} ×A
π2

hh

For the abstract domain {b}, putback is clearly semi-injective. However, if we consider the const
lens for an abstract domain larger than b, it is not a well-behaved lens since the subjectivity (and, thus,
acceptability) of get is violated:

get (putback (b′, a)) = get a = b ∧ b 6= b′

Therefore, in our lens library, const should only be used for the abstract domain equivalent to the
unit type, for that represents the single value 1, otherwise it is unsafe.

This topic will need more research in the near future towards understanding the real implications and
applications of representing lenses as data refinements in the original lenses for trees presented by Pierce
et al.

6.2.1 Handling Partiality

In lens application, cases are considered when no concrete view exists. Therefore, lens functions are
considered partial.

In order to achieve totality, the domain of concrete values C is extended with a“missing“ value element
denoted as Ω, where CΩ is the set unification C

⋃
{Ω}. Ω is particularly of use when defining generic

combinators for lens application, and is by convention only used as the second argument of the putback
function. Thus, we can redefine it into putback : A × CΩ → CΩ .

Intuitively, get (a,Ω) represents creating a new concrete view only from the information in the abstract
view a.

This approach is similar to ours of adding explicit partiality to two-level transformations, transforming
partial backward transformations into entire functions, except for the fact that partiality is propagated
from the original concrete model into a possibly undefined updated concrete model. Like-wise, we could
define the lens backward transformation as putback : A × (C + 1)→ C + 1, in a semantically equivalent
representation.

6.3 Representation of Lenses

After studying the semantic foundations for lens definition, we devote this section to their implemen-
tation in Haskell.

As stated before, lenses are implemented as partial functions, which well-behavedness can be con-
strained to a concrete domain and an abstract codomain. For this reason, lens application outside their

3Although we are not presenting formal proof, these specific transformations obey to the two-level properties of value-
transformers.

6.4. LENS COMBINATORS 49

domain may fail. In our library, we define lenses in a type-safe manner, in the sense that lens definition
can be constrained to specific types and their validation relies on the type-checker.

The basic definition of a lens is:

data Lens c a = Lens{get :: c → a, putback :: a → c → c}

Therefore, domain validation is always performed at the type level. In Haskell, we can only bind
lenses to specific types, but cannot restrict values for such types. For example, we have no way to restrict
the Int native type to the subset of integers greater than 2. This encoding of lenses does not suffice for
conditional lenses, where the codomain is splitted by the conditional predicate. In such cases, lenses will
perform arbitrarily or erroneously for abstract values outside their codomain.

Given a Lens over values of specific types, we may add type-awareness as a View that transforms a
Type c into a Type a.

data View x where
View :: Lens c a → Type a → View (Type c)

At last, we can abstract a View into a generic Rule, partial, that may be applied to any input type
and return any type.

type Rule = ∀c . Type c → Maybe (View (Type c))

6.4 Lens Combinators

6.4.1 Generic Lenses

Here, we describe some basic combinators for lens definition. Generic lenses are the ones that provide
generic behavior over types.

The most straightforward is the identity lens. It copies the concrete view in the get direction and the
abstract view in the putback direction.

It is implemented in our system as

id lns :: Lens c c
id lns = Lens g p

where
g c = c
p (a, c) = a

and easily abstracted into

nop :: Rule
nop = return ◦View id lns

Basic lenses for products are π1 lns and π2 lns, that select the first and second element of a pair,
respectively. In the get direction, π1 lns drops the second element, that is recovered from the concrete
view in the putback direction:

π1 lns :: Lens (a, b) a
π1 lns = Lens g p

where
g (x , y) = y
p (x ′, (x , y)) = (x ′, y)

Opposite behavior is implemented for π2 lns:

50 CHAPTER 6. BIDIRECTIONAL LENSES

π2 lns :: Lens (a, b) b
π2 lns = Lens g p

where
g (x , y) = y
p (y ′, (x , y)) = (x , y ′)

Another simple combinator is const lns, that transforms any view into a constant value. In the get
direction, it always returns the argument value. In the putback direction, the combinator makes no
inference on the abstract model and returns the original concrete value. However, if we later combine
const lns, it will frequently receive undefined concrete values in the putback direction, due to removal of
information in the abstraction direction. Therefore, as stated before, it will only be used for the const () d
case, where the abstract domain is the unit type.

As presented in [FGM+05], we represent undefined values as Ω, and inject the concrete view with a
default view in case it is undefined.

const lns :: a → c → Lens c a
const lns v d = Lens g p

where
g c = v
p (a, c) = if (c ≡ Ω) then d else c

A very important drawback of this combinator is that it’s abstract domain is the single constant value
passed as argument to the combinator. This leaves a great ”hole” in our model, since we cannot safely
constrain the lens to it’s codomain, allowing the combinator not to be well-behaved for values others than
the constant value.

The const generalization is interesting in the sense that we use the class method typeof to derive the
type for the constant value passed as argument.

const :: Typeable a ⇒ a → Default → Rule
const v d t = return (View (const lns v (d t)) typeof)

Default values are represented as generator functions that create a value from a type definition:

type Default = ∀a . Type a → a

Two example default generators are Ω (creates Ω values) and empty (generates empty values, for
example, empty lists).

The lens composition combinator • applies one lens l1 after another lens l2 . In the get direction, it
applies the get function of l1 to the result of applying the get function of l2 to the concrete view. In
the putback direction, it applies the putback functions in reverse order. The putback function for l1 is
supplied with the intermediate concrete value resulting from abstracting the original concrete value for
l2 .

(•) :: Lens a b → Lens c a → Lens c b
(l2 • l1) = Lens g p

where
g c = get l2 (get l1 c)
p (a, c) = putback l1 (putback l2 (a, get l1 c), c)

The ≫ combinator expresses the generic representation of •:

(≫) :: Rule → Rule → Rule
(r1≫r2) c = do

View l1 a1 ← r1 c
View l2 a2 ← r2 a1
return (View (l2 • l1) a2)

More strategic combinators similar to the ones for two-level transformations have been developed.

6.4. LENS COMBINATORS 51

6.4.2 Tree combinators

The tree combinators studied in this section are adaptations of tree combinators from [FGM+05] into
our model. The main difference is on tree structure representation. As an example, consider the following
XML file:

<a>
hello
<c>world</c>

Pierce et al representation is based on a rose tree structure, where all nodes are of the same type. It
represents unordered trees, without repeated values, for simplification purposes. Every tree node has a
tag and there are indirection nodes such as @children for the childs of an element, in a AST-like fashion.

{a=
{@children=
[{b={@children=[{@pcdata={hello}}]}},
{c={@children=[{@pcdata={world}}]}}]}}

Our solution models trees as n-ary products (NProd), and the the child’s type and structure is explicit
in the structure. Tree nodes only exist for tree elements, and no extra nodes are created. For this reason,
trees have the notion of order, and name uniqueness is not enforced by the model. Also, the type
representation is independent from the values:

type = Data "a" (unA <-> A)
(NProd

(Data "b" (unB <-> B) String)
(Data "c" (unC <-> C) String)

)

value = A
(B "hello"
, C "world"
)

Since tree childs are represented as binary products (NProd :: Type a → Type b → Type (a, b)), this
representation adds unnecessary child balancing information. For this reason, we consider differently
balanced trees isomorphic in our model. isomorphic :: Type a → Rule succeeds if the argument type and
the concrete view conform to this level of isomorphism. Also, the one and all combinators recurse over
n-ary trees.

For simplification reasons, we will represent some n-ary tree

NProd (NProd a b) (NProd c d)

as

{| a, b, c, d |}

Nevertheless, all tree lenses described in [FGM+05] were derived for trees with string nodes. We
keep lenses over string trees for demonstration purposes, but generalize their semantics for generic tree-
structured data types.

52 CHAPTER 6. BIDIRECTIONAL LENSES

For this diagram, consider some predicate px : X → Px a function from X to a subset Px ⊆ X . Px
is the codomain of predicate ¬p. The dotted arrows represent splitting due to filtering or concatenating
after matching.

Pc
get l1 // Pa

pa

%%J
J

J

C

pc
::t

t
t

¬pc $$J
J

J A

Pc get l2
// Pa

¬pa

99t
t

t

Figure 6.1: The get direction of xfork .

Hoisting and Plunging

The most basic combinators over trees are hoist and plunge, that remove and add nodes at the top
of trees.

Hoisting removes the top type for trees with a single child, if it matches an input predicate. On our
scenario, hoist :: Filter → Rule can then be applied to Data constructors, where Filter is a predicate over
types:

type Filter = ∀a . Type a → Bool

The string version (hoist :: String → Rule) can be achieved by validating only Data elements with
name s.

Conversely, the plunge :: Type a → Rule lens is used to deepen a tree by adding an edge at the top.
The combinator tries to match the child of the argument type against the current concrete view’s type.
It is also defined only for Data and List type nodes, but on the argument type.

Plunging can easily be specialized into a string-based version, by creating a Data element with the
string name at the top.

Forking

The lens combinator xfork :: Filter → Filter → Rule → Rule → Rule splits a tree into two parts,
according to the names of its immediate children, to which it applies separate lenses. Formally, two
predicates pc and pa and two lenses l1 and l2 are used. In the get direction, pc splits the concrete tree
into two parts, where l1 is applied to the elements conforming to pc and l2 to the leftovers. All the
elements in both resulting the abstract trees must obey to pa and ¬pa, respectively. Conversely, in the
putback direction, l1 must map abstract elements from pa to concrete elements in pc, and l2 from ¬pa
to ¬pc.

In our model, predicates are applied at the type-level, and not along value-transformers, since node
names and relations are parameterized in the type representations. Forking involves two operations:
filtering, that corresponds to select the tree children which names match an argument predicate; and
matching, that denotes structure-preservation after filtering, in the sense that applying a filter does not
alter the type structure.

The fork combinator is a simpler form of xfork , where both predicates are the same:

fork :: Filter → Rule → Rule → Rule
fork p l1 l2 = xfork p p l1 l2

6.4. LENS COMBINATORS 53

The filter ′ combinator recurses over n-ary products by invoking the all generic combinator. If a tree
node matches the argument predicate, it is left unchanged, ohterwise const {||} is applied:

filter ′ :: Filter → Default → Rule
filter ′ p d t@(NProd) = all (filter p d) t
filter ′ p d t = if (p t) then nop t else const {||} d t

{||} represents the empty tree and is encoded in a similar way to the unit type:

data {||} = {||}
data Type a where
...
{||} :: Type {||}

Remark Inasmuch {||} allows one single value {||}, after applying lens const {||} d , the abstract values
are not subject to change and, therefore, the lens is well-behaved without the need to a default value
generator. However, when putting an abstract tree back into a missing concrete value, d provides default
information that does not appear in the abstract tree but is required in the concrete tree.

Consider that, for example tree {| a, b, c |}, we are filtering elements with name a:

filter ′ (≡ a) (const {||} d) {| a, b, c |}

Then, the abstract tree becomes:

{| a, {||}, {||} |}

Using {||} provides a transformation for filtered out elements, enabling the type-safe implementation
of filter . Although replacing removed elements by {||} is necessary, these empty trees they are undesired
in the target abstract tree. Therefore, we have implemented the lens remove {||}s to accomplish removal
of {||} elements:

remove {||} :: Rule
remove {||} (NProd a {||}) = return (View π2 lns {||})
remove {||} (NProd {||} b) = return (View π1 lns {||})
remove {||} t = Nothing
remove {||}s :: Rule
remove {||}s = innermost remove {||}

Now we can redefine filter as the sequentiation of remove {||}s after the filtering operation itself (filter ′):

filter :: Filter → Default → Rule
filter p d = filter ′ p d≫remove {||}s

For the previous example tree, the abstract tree does not have empty trees for filtered out elements
any more:

{| a |}

Done with filtering, matching is encoded by checking if all child elements conform to a filtering
predicate:

match :: Filter → Default → Rule
match p d t = do

View l1 t1 ← filter p d t
Eq ← teq t t1
nop t

54 CHAPTER 6. BIDIRECTIONAL LENSES

For instance,

match (≡ a) {| a, b, c |}

fails because elements b and c do not obey to the predicate (≡ a).

In Harmony [FGM+05], filter is defined as a derived form of fork . This happens because it represents
more than pure filtering, since the abstract view is also filtered. In our model, lenses define strict type
transformations, and the abstract view structure is only subject to change if the argument lenses modify
the type of elements. For such cases, we provide a fork-based implementation of filter:

forkfilter :: Filter → Default → Rule
forkfilter p d = fork p nop (const {||} d)

The prune combinator removes all matches for a specific child name (originally it just removed one,
since the model assumed unique node names). This is defined as an opposite fork to the filter definition:

prune :: Filter → Default → Rule
prune n d = fork tr n (const () d) nop

Consequently, this definition is equivalent to defining a negative filtering:

prune :: Filter → Default → Rule
prune n d = filter (¬ ◦ n) d

In the original definition, since we were pruning a single node, the default value was encapsulated
under the same node name. In our encoding, node names are represented as functions and we cannot
derive node names from predicate functions. Therefore, no operations are performed over the default
value.

We can focus attention on a single child with the focus combinator:

focus :: Filter → Default → Rule
focus n d = filter n d≫hoist n

The hoist non − unique lens is a version of hoist that does not require a child to be unique, but still
with an unique name:

hoist non − unique :: Filter → Filter → Rule
hoist non − unique n p = xfork n p (hoist n) nop

The last forking combinator is the rename combinator that renames all occurrences of a name m to
n. It has no generic version since it performs explicitly over node names.

rename :: String → String → Rule
rename m n = xfork (≡ m) (≡ n) (map (hoist m≫plunge n)) nop

However, this version requires the name n not to exist in the view. Additionally, xfork does not
maintain the order of elements.

All these drawbacks can be solved by implementing a version based on map:

rename :: String → String → Rule
rename m n = map ((hoist m≫plunge n) ||| nop)

Mapping

The map :: Rule → Rule combinator for trees has already been implemented in our solution when
defining the all generic combinator with recursion for n-ary products.

6.5. SUPPORTING SINGLE-RECURSION 55

6.4.3 Conditional combinators

Conditional lens are usually very pratical for the definition of complex lenses, but they are however
tricky: the abstract view needs to be guaranteed to be sent to the same sub-lens on the way down as we
took on the way up.

As stated before, we have no means of formally guaranteeing this requirement in our system, besides
returning runtime errors when the abstract values violate the abstract domain.

There are two types of conditionals: the ones that apply predicates over types (tcond); and the ones
that perform over concrete values (ccond), abstract values (acond), or both (cond).

tcond is the only type-safe conditional combinator and applies one of the argument rules according to
a conditional guard over the concrete type:

tcond :: Filter → Rule → Rule → Rule
tcond f r s = (λt → do {(guard f t); r t}) s

For value conditions, we do not present implementations since we cannot guarantee their type-safety.

6.4.4 XPath and Lenses

Recall the type from figure 6.1 that represents an XML Schema. If we would like to select all years
inside movies, we would write a lens such as

lens :: Lens Imdb Year
lens = list lns Ω (π1 lns • π2 lns •movie lns) • π1 lns • imdb lns

and apply the get function to execute the query over the concrete schema.
Here, list lns defines lens application over lists, and movie lns and imdb lns are default type encap-

sulators similar to the ones in Chapter 3.
After, we could change all the results to 2000

years2000 :: [Year]→ [Year]
years2000 = list (λ(Year)→ Year 2000)

and putback the changes into the original XML tree.
However, the created lens is no more than the result of specializing the XPath query //movie/year

against the schema into a point-free expression.
Therefore, in the former world of data transformation, lenses can also play a role in the latter case

of type data querying, since it is compatible with the evolution through abstraction philosophy of lenses.
Additionally, they can also provide reverse transformations for data selectors.

Another curious fact is that, in some cases, it is useful to express lenses in structure-oriented languages
such as XPath.

6.5 Supporting Single-Recursion

For this section, recall the functor-based representation of types proposed in Chapter 4.
Since our solution provides distinct type and functor representations, there is the need to define a lens

combinators flns that unfolds a functor lens into a type lens, making it applicable to unfolded values of
recursive types.

Consider functors f and g that uniquely identify types a and b, respectively. If we can define some
functor lens Lens (f x) (g x) over an arbitrary type x , then flns unfolds it into the a type lens Lens a b:

flns :: (FunctorOf f a,FunctorOf g b)⇒ ∀x . Lens (f x) (g x)→ Lens a b
flns l = Lens g p

where
g = nu (get l)
p = nu (putback l) ◦ fzip

56 CHAPTER 6. BIDIRECTIONAL LENSES

In the putback direction, updated abstract and original concrete values must be combined into updated
concrete values. This merging of recursive types requires fusing their functor definitions into a new functor,
that can be produced by an anamorphism. Consider fzip the functor zipping task and ffuse the operation
on fzip that calculates the fusion of functors.

However, calculating the fusion of two functors depends on their recursive invocations and requires
great reflection on their properties. The fusion of equivalent functor representations is trivial to define.
For infinite streams of elements of type a and b:

fzip (K a ⊗ Id) (K b ⊗ Id) = (K a ⊗K b)⊗ Id

In a more realistic scenario, functors have different recursive structures. For instance, if we are fusing
an infinite stream s of values of type a with a finite list l of b elements, the result will be a finitely-sized
list with n elements, where n is the the maximum of the sizes of s and l . Also, both s and l may
have less elements than the other, what implies optionality in their fused representation. Considering
P x = K x ⊗K (), we can write:

ffuse (K a ⊗ Id) (K ()⊕ (K b ⊗ Id)) = K ()⊕ ((P a ⊗ P b)⊗ Id)

The incapacity to generically combine functor representations determines our inability
to implement explicitly recursive lenses.

6.6 Summary

At the end of the chapter, we have developed a type-safe Haskell rewrite system for bidirectional
lenses, by adapting the implementation structures from the two-level rewrite system.

Our solution mimics the original implementation from [FGM+05], where no theoretical properties of
lenses are enforced, but we put particular effort in guaranteeing that our lenses are type-safe, in the sense
that they are well-behaved for all their concrete and abstract domains.

The greatest difference is that, similarly to two-level transformations, we define lens transformations
for types and couple it with value migrations. In the original implementation, there is no distinction
between types and values, where value trees contain an implicit type structure.

In the future, we shall consider providing the current lenses as valid compound pairs of two-level
transformations, and developing new lenses based on this concept.

Chapter 7

Conclusions and Future Work

In this report, we have highlighted and presented solutions for some limitations or inabilities related
to the 2LT project.

In particular, we have made the following contributions:

1. We have solved untermination of partial backward transformations in two-level transformations,
and proved that the refinement properties hold for explicitely partial abstraction functions.

2. We have discussed possible extensions to the one-level rewrite system in order to support recursive
types and ended up developing a new generic rewrite system from scratch.

3. We have studied the limitations on two-level transformations and developed a type-safe library
for bidirectional transformations with stateful backward transformations (lenses) for non-recursive
types.

The source code for the implemented prototypes can be found at the subversion repositories 2lt and
rhs under http://Haskell.di.uminho.pt/svn.

7.1 Future Work

Naturally, there are still some interesting pratical and theoretical issues that we would like to overcome
in the future.

Invariants for Two-level Transformations Although explicit partiality ensures more safeness in
two-level transformations, we still lack support for type invariants. Preserving invariants is useful because
they can be important for the definition of the source format. These may assume different contexts,
and two examples are invariants encoded in VDM models or imposed by map primitives (for example,
mapkeys f requires f to be injective).
An invariant can be assumed as a coreflexive function that filters the valid elements of some type A
[Oli04], such that

invA :: A→ A + 1

Considering some partial two-level transformation:

A+ 1

to

''
6 B

from

ii

57

http://Haskell.di.uminho.pt/svn

58 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

an invariant for B values holds if the original invariant holds for A values converted from those B values.
Therefore, it can be calculated through composition of the from abstraction with the original invariant
over A1:

invB :: B → B + 1
invB = (π2 + 1) ◦ distl ◦ (coassocr × id) ◦ ((invA + id) × id) ◦ (from 4 id)

Recursivity for One-level Transformations In spite of the fact that we have failed to find an
intuitive approach to implement a type-safe Haskell representation for functions over fixpoint recursive
types, there are still some “open“ options that may empower new developments.
Our current issue is to natively convert functor representations into corresponding type representations,
in order to enable the usage of equivalent combinators for functions over the two.
The result type for the function apF :: Fctr f → Type a → Type b is dependant on the inputs but can be
derived for each specific case.
If we manage to perform this computation dynamically, generating specific Haskell source code, these
changes may be propagated to the original program by re-compilation or evaluation of such code at
runtime, in a similar form to staged meta-programming.
Existing tools to control the processing of Haskell modules are: ’GHC as a library’, that provides an
API for importing the GHC as module and manipulate compiler actions; and hs-plugins[PSSC04], for
dynamically loading Haskell modules at runtime.

Generic Rewrite System Although it represents just one of this report’s research topics, our pro-
totype for a generic rewrite system is the most complex developed tool and still suffers from various
limitations.
The most significant one is its poor performance, compared with the Haskell implementation.
A possible research direction to solve this problem is to study the usage of template meta-programming
language extensions, such as Template Haskell [SP02]. In order to overcome the limitations of embedding,
meta-programming enables compile-time preprocessing of source programs and provides a framework for
teaching the compiler about domain-specific optimizations [COST]. An example of the advantages of
using TH is described in [Lyn03], where an Haskell program that generates images of the Mandelbrot set
is optimized by unrolling fixed depth recursions at compile-time.
Performance could also be improved if we considered the generation of Haskell source code for rewrite
rules and declarations and further compilation into specific rewrite systems.

Associativity is not supported in the current implementation, because it compromises even more the
efficiency of the rewrite system. It may occur in rule patterns or in the application of the generic
combinators one and all . Suppose an example rule r and an expression e, such that:

r : a ◦ b → c
e = x ◦ y ◦ z

If we are trying to unify e with the pattern of r , two expressions should be considered valid for pattern
matching: r (x ◦ y) ◦ z and x ◦ r (y ◦ z). Generally, if a rule pattern is an associative term with arity n,
it should match any expression for the same term with n or less arguments.
When applying an associative rule inside an associative expressions, one and all mean more than simply
applying the argument rule to each subexpressions.
Therefore, one r will only be guaranteed to succeed if r is applied to every possible partitions that split
e in 1 to n pieces, where n is the arity of e.
For the above example, one r would be applied until success to any of the expressions resulting from
splitting e in one (r (x ◦ y ◦ z)), two (r (x ◦ y) ◦ z and x ◦ r (y ◦ z)) or three (r x ◦ y ◦ z and x ◦ r y ◦ z
and x ◦ y ◦ r z) parts.

1The diagram of the full derivation of invB can be consulted in Annex C.

7.1. FUTURE WORK 59

For all r , the same logic can not be used, since application of r to a term with no parameters always
succeeds and does not allow this “try until success“ algorithm.

Our generic rewrite system receives expressions and rewrite rules and outputs rewritten expressions.
However, what happens inside the “black box“ is not always intuitive, mostly due to laziness and highly
complex rewrite strategies.
Although tracing provides knowledge on the intermediate data structures, it generates great amounts of
information and easily becomes unreadable to human perception.
Actually, we provide traces on textual form, for each resultant expression.
In the future, we intend to provide a GUI for trace visualization, taking in account the visualization
mechanism studied for Pointless Haskell[Cun05]. The visual tool would read traces from a specific file
format and allow the user to navigate through the tracing tree with features to look inside intermediate
expressions (think of XML) and see where exactly are rules being applied. Another interesting feature
would be to derive tracing trees for subexpressions, exposing the evolution of particular structures.

Additionally, features that we consider as future work are:

• Add support for polymorphic types. In the prototype version, only monoporphic types are sup-
ported. This is a great limitation to the type-safety of transformations.

• Add support for two-level transformations. This would imply specific syntax for definition of type
transformations and of value transformers.

• Develop macros for helping the development of language plugins, in the form of interfaces for
different languages. For example, front-ends for XPath and Pointless Haskell are a priority.

• Support expression equality. For instance, monoid instances could be considered equivalent to terms
of specifc types. For lists, mzero [t] ∼= nil and mplus [t] ∼= listcat .

• Provide advanced features for manipulation of internal representations and execution of Haskell
monadic code in the right hand side of rules.

• Add more context-sensitive features, such as prohibiting the application of specific rules inside an
expression.

• Allow different levels of precedence for binary combinators.

Lenses In our research, lenses are a fresh topic and deserve more study to understand their relationship
with two-level transformations, if it is possible to compose both, and the properties that would guarantee
bdirectionality of resultant transformations.
Nevertheless, solving the generic fusion of functors in order to support single recursive type-safe lenses is
a priority.

60 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[AC07] Michal Antkiewicz and Krzysztof Czarnecki. Design space of round-trip engineering. In Ralf
Lämmel, João Saraiva, and Joost Visser, editors, GTTSE 2007 Proceedings, pages 1–12, July
2007.

[BCPV07] Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled schema transfor-
mation and data: Conversion for xml and sql. In PADL 2007, pages 290–304. Springer-Verlag,
LNCS 4085, February 2007.

[BS81] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans. Database
Syst., 6(4):557–575, 1981.

[COST] Krzysztof Czarnecki, John O’Donnell, Jörg Striegnitz, and Walid Taha. Dsl implementation
in metaocaml, template haskell, and c++.

[COV06] A. Cunha, J.N. Oliveira, and J. Visser. Type-safe two-level data transformation. In J. Misra,
T. Nipkow, and E. Sekerinski, editors, Proc. Formal Methods, 14th Int. Symp. Formal Methods
Europe, volume 4085 of LNCS, pages 284–299. Springer, 2006.

[Cun05] Alcino Cunha. Point-free Program Calculation. PhD thesis, Department of Informatics,
University of Minho, 2005.

[CV06] A. Cunha and J. Visser. Transformation of structure-shy programs: Applied to xpath queries
and strategic functions. In ACM SIGPLAN 2007 Workshop on Partial Evaluation and Pro-
gram Manipulation, 2006.

[CV07] Alcino Cunha and Joost Visser. Strongly typed rewriting for coupled software transformation.
Electron. Notes Theor. Comput. Sci., 174(1):17–34, 2007.

[Der05] Nachum Dershowitz. Term rewriting systems by “terese“ (marc bezem, jan willem klop, and
roel de vrijer, eds.), cambridge university press, cambridge tracts in theoretical computer sci-
ence 55, 2003, hard cover: Isbn 0-521-39115-6, xxii+884 pages. Theory Pract. Log. Program.,
5(3):395–399, 2005.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bi-directional tree transformations: a linguistic approach to the view
update problem. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 233–246, New York, NY, USA, 2005. ACM
Press.

[FP07] Flávio Ferreira and Hugo Pacheco. Xpto - an xpath preprocessor with type-aware optimiza-
tion. In CORTA - Compilers, Related Technologies and Applications Workshop. to appear,
February 2007.

[HLO06] R. Hinze, A. Löh, and B.C.d.S. Oliveira. ”Scrap your boilerplate” reloaded. In M. Hagiya and
P. Wadler, editors, Proc. Functional and Logic Programming, 8th Int. Symp., volume 3945 of
LNCS, pages 13–29. Springer, 2006.

61

62 BIBLIOGRAPHY

[JHH+93] Simon L. Peyton Jones, Cordelia V. Hall, Kevin Hammond, Will Partain, and Philip Wadler.
The glasgow haskell compiler: a technical overview. In Proc. UK Joint Framework for Infor-
mation Technology (JFIT) Technical Conference, 93.

[JJM97] S. Jones, M. Jones, and E. Meijer. Type classes: an exploration of the design space, 1997.

[JM02] Simon Peyton Jones and Simon Marlow. Secrets of the glasgow haskell compiler inliner. J.
Funct. Program., 12(5):393–434, 2002.

[Jon00] Mark P. Jones. Type classes with functional dependencies. In ESOP ’00: Proceedings of the
9th European Symposium on Programming Languages and Systems, pages 230–244, London,
UK, 2000. Springer-Verlag.

[Läm06] R. Lämmel. Scrap your boilerplate with XPath-like combinators, 15 July 2006. Draft, 6 pages,
Accepted as short paper at POPL 2007.

[LJ05] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate with class: extensible generic
functions. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international conference
on Functional programming, pages 204–215, New York, NY, USA, 2005. ACM Press.

[LL01] Ralf Lämmel and Wolfgang Lohmann. Format Evolution. In Proc. 7th International Con-
ference on Reverse Engineering for Information Systems (RETIS 2001), volume 155 of
books@ocg.at, pages 113–134. OCG, 2001.

[LM06] R. Lämmel and E. Meijer. Mappings make data processing go ’round — An inter-paradigmatic
mapping tutorial. In Post-proceedings of GTTSE 2005, Generative and Transformation Tech-
niques in Software Engineering, 4–8 July, 2005, Braga, Portugal, Lecture Notes in Computer
Science. Springer-Verlag, 2006. Summer school tutorial, GTTSE 2005, 50 pages, to appear.

[LO94] Konstantin Läfer and Martin Odersky. Polymorphic type inference and abstract data types.
ACM Trans. Program. Lang. Syst., 16(5):1411–1430, 1994.

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern for
generic programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003. Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and Implementation (TLDI 2003).

[Luc02] Salvador Lucas. Context-sensitive rewriting strategies. Inf. Comput., 178(1):294–343, 2002.

[Lyn03] Ian Lynagh. Unrolling and simplifying expressions with template haskell. May 2003.

[MFP91] Erik Meijer, Maarten Fokkinga, and Ross Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes, editor, Proceedings 5th ACM Conf. on
Functional Programming Languages and Computer Architecture, FPCA’91, Cambridge, MA,
USA, 26–30 Aug 1991, volume 523, pages 124–144. Springer-Verlag, Berlin, 1991.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual
Symposium on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE
Press.

[Oli04] J. N. Oliveira. Constrained datatypes, invariants and business rules: a relational approach.
In PUReCafé, DI-UM, 2004.5.20 [talk]. PURe Project (POSI/CHS/44304/2002), 2004.

[Oli07] J.N. Oliveira. Data transformation by calculation. In Ralf Lämmel, João Saraiva, and Joost
Visser, editors, GTTSE 2007 Proceedings, pages 139–198, July 2007.

[Pie06] Benjamin C. Pierce. The weird world of bi-directional programming, March 2006. ETAPS
invited talk.

BIBLIOGRAPHY 63

[PSSC04] André Pang, Don Stewart, Sean Seefried, and Manuel M. T. Chakravarty. Plugging haskell in.
In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages 10–21,
New York, NY, USA, 2004. ACM Press.

[PWW04] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type inference for generalised
algebraic data types. Technical Report MS-CIS-05-26, Univ. of Pennsylvania, July 2004.

[Rey77] John C. Reynolds. Semantics of the domain of flow diagrams. J. ACM, 24(3):484–503, 1977.

[SP02] Tim Sheard and Simon Peyton Jones. Template metaprogramming for Haskell. In Manuel
M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages 1–16. ACM Press,
October 2002.

[WB89] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In POPL ’89:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76, New York, NY, USA, 1989. ACM Press.

64 BIBLIOGRAPHY

Appendix A

Point-free laws

We now present some point-free laws required during the implementation of our 1LT rewrite system:

outX ◦ inX = id data-Cancel
list f ◦ concat ◦ list g = concat ◦ list (list f ◦ g) concat-Fusion

concat ◦ wrap = id
concat ◦ list wrap = id

}
concat-Cancel

list f ◦ (g ∇ h) = (list f ◦ g) ∇ (list f ◦ h) list-Either

list f ◦ wrap ◦ g = wrap ◦ f ◦ g
list f ◦mzero r = mzero r

}
list-Cancel

(geq ◦ (f 4 g) ◦ h ? a : b) ◦ c = a ◦ x , if (h ◦ x ≡ g)
(geq ◦ (f 4 g) ◦ h ? a : b) ◦ c = a ◦ x , if (h ◦ x ≡ f)

}
cond -Cancel

π1 ◦ assocl = id × π1

π2 ◦ assocl = π2 ◦ π2

}
assocl -Cancel

π1 ◦ assocr = π1 ◦ π1

π2 ◦ assocr = π2 × id

}
assocr -Cancel

coassocl ◦ i1 = i1 ◦ i1
cossocl ◦ i2 = i2 + id
coassocl ◦ i1 ◦ i2 = i2 ◦ i1
coassocl ◦ i2 ◦ i2 = i2
coassocl ◦ (f + g ◦ i1) = i1 ◦ (f + g)
coassocl ◦ (f + g ◦ i2) = (i1 ◦ f) + g

coassocl -Cancel

coassocr ◦ i2 = i2 ◦ i2
cossocr ◦ i1 = id + i1
coassocr ◦ i1 ◦ i1 = i1
coassocr ◦ i2 ◦ i1 = i1 ◦ i2
coassocr ◦ (f ◦ i1 + g) = g + (i2 ◦ f)
coassocr ◦ (f ◦ i2 + g) = i2 ◦ (f + g)

coassocr -Cancel

π1 ◦ swap = π2

π2 ◦ swap = π1

}
swap-Cancel

swap ◦ swap = id
swap ◦ (f × g) = (g × f) ◦ swap

}
swap-Reflex

coswap ◦ i1 = i2
coswap ◦ i2 = i1

}
coswap-Cancel

65

66 APPENDIX A. POINT-FREE LAWS

coswap ◦ coswap = id
coswap ◦ (f + g) = (g + f) ◦ coswap

}
coswap-Reflex

distl ◦ ((i1 ◦ f) 4 g) = i1 ◦ (f 4 g)
distl ◦ ((i1 ◦ f) × g) = i1 ◦ (f × g)
distl ◦ ((i2 ◦ f) 4 g) = i2 ◦ (f 4 g)
distl ◦ ((i2 ◦ f) × g) = i2 ◦ (f × g)

 distl -lCancel

((f ◦ π1) ∇ (g ◦ π1)) ◦ distl = (f ∇ g) ◦ π1

((f ◦ π1) + (g ◦ π1)) ◦ distl = (f + g) ◦ π1

}
distl -rCancel

distr ◦ (f 4 (i1 ◦ g)) = i1 ◦ (f 4 g)
distr ◦ (f × (i1 ◦ g)) = i1 ◦ (f × g)
distr ◦ (f 4 (i2 ◦ g)) = i2 ◦ (f 4 g)
distr ◦ (f × (i2 ◦ g)) = i2 ◦ (f × g)

 distr -lCancel

((f ◦ π2) ∇ (g ◦ π2)) ◦ distr = (f ∇ g) ◦ π2

((f ◦ π2) + (g ◦ π2)) ◦ distr = (f + g) ◦ π2

}
distr -rCancel

distl ◦ undistl = id
undistl ◦ distl = id

}
distl -Reflex

distr ◦ undistr = id
undistr ◦ distr = id

}
distr -Reflex

((f ◦ π1) ∇ (g ◦mzero r)) ◦ distl = (f ∇ (g ◦mzero r)) ◦ π1

((f ◦mzero r) ∇ (g ◦ π1)) ◦ distl = ((f ◦mzero r) ∇ g) ◦ π1

}
distl -rCancel

((f ◦ π2) ∇ (g ◦mzero r)) ◦ distr = (f ∇ (g ◦mzero r)) ◦ π2

((f ◦mzero r) ∇ (g ◦ π2)) ◦ distr = ((f ◦mzero r) ∇ g) ◦ π2

}
distr -rCancel

f ◦ 〈|mzero r ∇ g ◦ π1|〉µF = 〈|f ◦mzero r ∇ f ◦ g ◦ π1|〉µF
list f ◦ 〈|mzero r ∇ mplus r ◦ (g × π1)|〉µF = 〈|mzero r ∇ mplus r ◦ (list f ◦ g × π1)|〉µF
concat ◦ 〈|mzero r ∇ mplus r ◦ (g × π1)|〉µF = 〈|mzero r ∇ mplus r ◦ (concat ◦ g × π1)|〉µF

 para-nilFusion

f ◦ (|mzero r ∇ g ◦ π1|)µF = 〈|f ◦mzero r ∇ f ◦ g ◦ π1|〉µF
list f ◦ (|mzero r ∇ mplus r ◦ (g × id)|)µF = (|mzero r ∇ mplus r ◦ (list f ◦ g × id)|)µF
concat ◦ (|mzero r ∇ mplus r ◦ (g × id)|)µF = (|mzero r ∇ mplus r ◦ (concat ◦ g × id)|)µF

 cata-nilFusion

〈|mzero r ∇ f ◦ (id × π1)|〉µF = (|mzero r ∇ f |)µF para-nilCata

〈|mzero r ∇ mplus r ◦ (wrap ◦ f × π1)|〉µF = list f para-listCancel

(|mzero r ∇ mplus r ◦ (wrap ◦ f × id)|)µF = list f cata-listCancel

forall f , g : f , g injective . mapkeys f ◦mapkeys g = mapkeys (f ◦ g) mapkeys-Absorption

map f ◦map g = map (f ◦ g) map-Absorption

mapkeys f ◦map g = map g ◦mapkeys f map-Reflex

mapkeys f ◦ empty = empty
map f ◦ empty = empty

}
map-Cancel

uncojoin ◦map i1 = id 4 (empty ◦ 1)
uncojoin ◦map i2 = (empty ◦ 1) 4 id

}
uncojoin-Cancel

unpeither ◦mapkeys i1 = id 4 (empty ◦ 1)
unpeither ◦mapkeys i2 = (empty ◦ 1) 4 id

}
unpeither -Cancel

67

peither ◦ ((empty ◦ g) 4 f) = mapkeys i1 ◦ f
peither ◦ (f 4 (empty ◦ g)) = mapkeys i1 ◦ f
unpeither ◦ empty = empty 4 empty
uncojoin ◦ empty = empty 4 empty
cojoin ◦ ((empty ◦ g) 4 f) = map i2
cojoin ◦ (f 4 (empty ◦ g)) = map i1

empty-Absorption

68 APPENDIX A. POINT-FREE LAWS

Appendix B

Proofs for partialized refinements

In order to prove that a rule is a refinement we need to, for each pattern, calculate the value-level
abstraction function from and guarantee that

from ◦ to v i1

Refinement properties will be proven for one and all .

B.1 One

B.1.1 Left Either

Assuming that A+ 1

to′

''
6 B

from′

ii
, then (A+ C) + 1

to
**

6 B + C

from

kk

B + C

from′ + id

��
(A+ 1) + C

coassocr

��
A+ (1 + C)

id + coswap

��
A+ (C + 1)

coassocl

��
(A+ C) + 1

266666666666666664

from ◦ to
= { definition of to and from }

coassocl ◦ (id + coswap) ◦ coassocr ◦ (from ′ + id) ◦ (to′ + id)
= {+-Absorption; from ′ ◦ to′ = i1 }

coassocl ◦ (id + coswap) ◦ coassocr ◦ (i1 + id)
= { coassocr -Cancel; +-Absorption }

coassocl ◦ (id ◦ id + coswap ◦ i2)
= {nat-Id; coswap-Cancel; coassocl-Cancel }

i1 ◦ (id + d)
= {+-functor -Id; nat-Id }

i1

B.1.2 Right Either

Assuming that A+ 1

to′

''
6 B

from′

ii
, then (C +A) + 1

to
**

6 C +B

from

kk

69

70 APPENDIX B. PROOFS FOR PARTIALIZED REFINEMENTS

C +B

id + from′

��
C + (A+ 1)

coassocl

��
(C +A) + 1

26666666666664

from ◦ to
= { definition of to and from }

coassocl ◦ (id + from ′) ◦ (id + to′)
= {+-Absorption; from ′ ◦ to′ = i1; nat-Id }

coassocl ◦ (id + i1)
= {nat-Id; coswap-Cancel; coassocl-Cancel }

i1 ◦ (id + id)
= {+-functor -Id; nat-Id }

i1

B.1.3 Left Product

Assuming that A+ 1

to′

''
6 B

from′

ii
, then (A× C) + 1

to
**

6 B × C
from

kk

B × C

from′ × id

��
(A+ 1)× C

distl

��
(A× C) + (1× C)

id + π1

��
(A× C) + 1

26666666666664

from ◦ to
= { definition of to and from }

(id + π1) ◦ distl ◦ (from ′ × id) ◦ (to′ × id)
= {×-Absorption; from ′ ◦ to′ = i1; nat-Id }

(id + π1) ◦ distl ◦ (i1 × id)
= { distl-lCancel; nat-Id; ×-functor -Id }

(id + π1) ◦ i1
= {+-Cancel }

i1

B.1.4 Right Product

Assuming that A+ 1

to′

''
6 B

from′

ii
, then (C ×A) + 1

to
**

6 C ×B
from

kk

C ×B

id × from′

��
C × (A+ 1)

distr

��
(C ×A) + (C × 1)

id + π2

��
(C ×A) + 1

26666666666664

from ◦ to
= { definition of to and from }

(id + π2) ◦ distr ◦ (id × from ′) ◦ (id × to′)
= {×-Absorption; from ′ ◦ to′ = i1; nat-Id }

(id + π2) ◦ distr ◦ (id × i1)
= { distr -lCancel; nat-Id; ×-functor -Id }

(id + π2) ◦ i1
= {+-Cancel }

i1

B.1.5 Map keys

Assuming that A+ 1

to′

''
6 B

from′

ii
and from ′ is injective,

B.1. ONE 71

, then (A ⇀ C) + 1

to
**

6 B ⇀ C

from

kk

B ⇀ C

mapkeys from′

��
(A+ 1) ⇀ C

unpeither

��
(A ⇀ C)× (1 ⇀ C)

(geq◦(id 4 (empty◦1))◦π2)?i1◦π1:i2◦1
��

(A ⇀ C) + 1

from ◦ to
= { definition of to and from }

((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ unpeither ◦mapkeys from ′ ◦mapkeys to′

= { to′, from ′ injective ⇒ mapkeys-Absorption; from ′ ◦ to′ = i1 }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ unpeither ◦mapkeys i1

= { unpeither -Cancel }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id 4 (empty ◦ 1))

= { cond -Cancel }
i1 ◦ π1 ◦ (id 4 (empty ◦ 1))

= {×-Cancel; nat-Id }
i1

B.1.6 Map values

Assuming that A+ 1

to′

''
6 B

from′

ii
, then (C ⇀ A) + 1

to
**

6 C ⇀ B

from

kk

C ⇀ B

map from′

��
C ⇀ (A+ 1)

uncojoin

��
(C ⇀ A)× (C ⇀ 1)

(geq◦(id 4 (empty◦1))◦π2)?i1◦π1:i2◦1
��

(C ⇀ A) + 1

72 APPENDIX B. PROOFS FOR PARTIALIZED REFINEMENTS

from ◦ to
= { definition of to and from }

((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ uncojoin ◦map from ′ ◦map to′

= {map-Absorption; from ′ ◦ to′ = i1 }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ uncojoin ◦map i1

= { uncojoin-Cancel }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id 4 (empty ◦ 1))

= { cond -Cancel }
i1 ◦ π1 ◦ (id 4 (empty ◦ 1))

= {×-Cancel; nat-Id }
i1

B.2 All

B.2.1 Either

Assuming that A+ 1

to′

''
6 B

from′

ii
and C + 1

to′′

''
6 D

from′′

ii

, then (A+B) + 1

to
**

6 C +D

from

kk

C +D

from′ + from′′

��
(A+ 1) + (B + 1)

coassocl

��
((A+ 1) +B) + 1

(coswap + id) + id

��
((1 +A) +B) + 1

coassocr + id

��
(1 + (A+B)) + 1

coswap + id

��
((A+B) + 1) + 1

coassocr

��
(A+B) + (1 + 1)

id + (id ∇ id)

��
(A+B) + 1

B.2. ALL 73

from ◦ to
= { definition of to and from }

(id + (id ∇ id)) ◦ coassocr ◦ (coswap + id) ◦ (coassocr + id) ◦ ((coswap + id) + id)
◦coassocl ◦ (from ′ + from ′′) ◦ (to′ + to′′)

= {+-Absorption; from ′ ◦ to′ = i1 }
(id + (id ∇ id)) ◦ coassocr ◦ (coswap + id) ◦ (coassocr + id) ◦ ((coswap + id) + id)
◦coassocl ◦ (i1 + i1)

= { coassocl -Cancel }
(id + (id ∇ id)) ◦ coassocr ◦ (coswap + id) ◦ (coassocr + id) ◦ ((coswap + id) + id)
◦i1 ◦ (i1 + id)

= {+-Cancel; +-Absorption }
(id + (id ∇ id)) ◦ coassocr ◦ (coswap + id) ◦ (coassocr + id) ◦ i1 ◦ ((coswap ◦ i1) + id)

= {+-Absorption; +-Cancel }
(id + (id ∇ id)) ◦ coassocr ◦ i1 ◦ coswap ◦ coassocr ◦ (i2 + id)

= { coassocr -Cancel }
(id + (id ∇ id)) ◦ (id + i1) ◦ coswap ◦ i2 ◦ (id + id)

= {+-Fusion; nat-Id; +-Cancel; coswap-Cancel }
i1

B.2.2 Product

Assuming that A+ 1

to′

''
6 B

from′

ii
and C + 1

to′′

''
6 D

from′′

ii

, then (A×B) + 1

to
**

6 C ×D
from

kk

C ×D

from′ × from′′

��
(A+ 1)× (B + 1)

distl

��
(A× (B + 1)) + (1× (B + 1))

distr + π1

��
((A×B) + (A× 1)) + 1

coassocr

��
(A×B) + ((A× 1) + 1)

id + (π2 ∇ id)

��
(A×B) + 1

74 APPENDIX B. PROOFS FOR PARTIALIZED REFINEMENTS

from ◦ to
= { definition of to and from }

(id + (π2 ∇ id)) ◦ coassocr ◦ (distr + π1) ◦ distl ◦ (from ′ × from ′′) ◦ (to′ × to′′)
= {+-Absorption; from ′ ◦ to′ = i1 }

(id + (π2 ∇ id)) ◦ coassocr ◦ (distr + π1) ◦ distl ◦ (i1 × i1)
= { distl -lCancel; +-Cancel }

(id + (π2 ∇ id)) ◦ coassocr ◦ i1 ◦ distr ◦ (id × i1)
= { coassocr -Cancel; distr -lCancel }

(id + (π2 ∇ id)) ◦ (id + i1) ◦ i1 ◦ (id × id)
= {×-functor -Id; +-Absorption; nat-Id; +-Cancel }

(id + π2) ◦ i1
= {+-Cancel }

i1

B.2.3 Map

Assuming that A+ 1

to′

''
6 B

from′

ii
and C + 1

to′′

''
6 D

from′′

ii

and from ′ is injective, then (A ⇀ B) + 1

to
**

6 C ⇀ D

from

kk

C ⇀ D

mapkeys from′

��
(A+ 1) ⇀ D

map from′′

��
(A+ 1) ⇀ (B + 1)

unpeither

��
(A ⇀ B + 1)× (1 ⇀ B + 1)

uncojoin × id

��
((A ⇀ B)× (A ⇀ 1))× (1 ⇀ B + 1)

assocr

��
(A ⇀ B)× ((A ⇀ 1)× (1 ⇀ B + 1))

id × (map i2 × id)

��
(A ⇀ B)× ((A ⇀ B + 1)× (1 ⇀ B + 1))

id × peither

��
(A ⇀ B)× (A+ 1 ⇀ B + 1)

(geq◦(id 4 (empty◦1))◦π2)?i1◦π1:i2◦1
��

(A ⇀ B) + 1

B.2. ALL 75

from ◦ to
= { definition of to and from }

((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ assocr◦
(uncojoin × id) ◦ unpeither ◦map from ′′ ◦mapkeys from ′ ◦map to′′ ◦mapkeys to′

= {map-Reflex; from ′ ◦ to′ = i1; from ′, to′ injective ⇒ mapkeys-Absorption; map-Absorption }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ assocr◦
(uncojoin × id) ◦ unpeither ◦mapkeys i1 ◦map i1

= { unpeither -Cancel }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × ((geq ◦ (id 4
(empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ assocr ◦ (uncojoin ×
id) ◦ (id 4 (empty ◦ 1)) ◦map i1

= {×-Absorption }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ assocr◦
(uncojoin 4 (empty ◦ 1)) ◦map i1

= { uncojoin-Cancel; ×-Fusion }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ assocr◦
((id 4 (empty ◦ 1)) 4 (empty ◦ 1))

= { assocr -Def }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id × peither) ◦ (id × (map i2 × id)) ◦ (id 4
((empty ◦ 1) 4 (emty ◦ 1)))

= {×-Absorption; nat-Id }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id 4 (peither ◦ ((map i2 ◦ empty ◦ 1) 4
(empty ◦ 1))))

= { empty-Absorption }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id 4 (mapkeys i1 ◦map i2 ◦ empty ◦ 1))

= {map-Cancel }
((geq ◦ (id 4 (empty ◦ 1)) ◦ π2) ? i1 ◦ π1 : i2 ◦ 1) ◦ (id 4 (empty ◦ 1))

= { cond -Cancel }
i1 ◦ π1 ◦ (id 4 (empty ◦ 1))

= {×-Cancel; nat-Id }
i1

76 APPENDIX B. PROOFS FOR PARTIALIZED REFINEMENTS

Appendix C

Invariants for Partial Two-level
Transformations

Considering a partial two-level transformation from A to B , where to :: A→ B and from :: B → A + 1,
and some invariant invA :: A→ A + 1, then an invariant invB :: B → B + 1 can be calculated by:

B

from 4 id

��
(A+ 1)×B

(invA+id) × id

��
((A+ 1) + 1)×B

coassocr × id

��
(A+ (1 + 1))×B

distl

��
(A×B) + ((1 + 1)×B)

π2 + 1

��
B + 1

77

	List of Images
	List of Tables
	Glossary
	Introduction
	Internship Objectives
	Structure of the Document

	Data Transformations
	Representation of Types
	User-defined datatypes

	Representation of Functions
	Rewriting Examples

	Representation of Two-level Transformations
	Generic Combinators

	Two-Level Transformations with Partiality
	Adding Explicit Partiality
	Generic Combinators
	Haskell implementation

	Coupled Transformation of XPath queries
	XPath Examples

	Relaxing type-safety
	Summary

	Type-safe Rewriting with Single Recursion
	Rewriting SYB Combinators
	Using recursion patterns

	Implementation in Haskell
	Functors Approach
	Combinators Replication Approach
	Functor-representation Class Approach

	Summary

	Developing a Rewrite System from Scratch
	Some notions on Rewrite Systems
	Language Definition: properties and features
	Terms and Type System
	Variables and Rules
	Input and Output

	Implementation
	An overview of the compiler
	Monads

	Libraries for One-level transformations
	Point-free
	Srap Your Boilerplate
	Xpath
	Examples

	Tracing
	Efficiency
	Summary

	Bidirectional Lenses
	A motivating Example
	Bidirectional Lenses Theory
	Handling Partiality

	Representation of Lenses
	Lens Combinators
	Generic Lenses
	Tree combinators
	Conditional combinators
	XPath and Lenses

	Supporting Single-Recursion
	Summary

	Conclusions and Future Work
	Future Work

	Point-free laws
	Proofs for partialized refinements
	One
	Left Either
	Right Either
	Left Product
	Right Product
	Map keys
	Map values

	All
	Either
	Product
	Map

	Invariants for Partial Two-level Transformations

