“Point-free” Put-based Bidirectional
Programming

Hugo Pacheco
National Institute of Informatics, Tokyo, Japan
HasLab Seminar

Braga - April 3rd, 2013



Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

s —Pp—— T
s —¢— T




BXs and Lenses

e lenses are one of the most popular BX frameworks

get

S Y
S \Y

put

Framework

data S=V = Lens {get: S — V
,put:S—V =S}




Lens laws

e PUTGET law e GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.
get defined for put defined for
updated sources. empty view updates.

get

]

put

s'=putsv = v =gets v=gets=s=putsv



Lens programming

BX applications vary on the bidirectionalization approach
common trait: write get and derive put automatically

easy and maintainable
get-based domain-specific lens languages:
e put total (— expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

e put partial (— updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery

Partial Evaluation and Program Manipulation, 2007.
Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008.



Motivation - Ambiguous put

e unavoidable ambiguity: it is well-known that there are many
possible well-behaved puts for a get

4

L]

get

puty

puty

puts
-—

height : (Int, Int) — Int
height (w, h) = h

-- keep original width
putheight, : (Int, Int) — Int — Int
putheight; (w, h) b’ =

let w' = win (w/, )

-- keep the width/height ratio
putheighty : (Int, Int) — Int — Int
putheighty (w, h) i =

let w' = h" x(w/h)in(w',h)

-- default width
putheights : (Int, Int) — Int — Int
putheights (w, h) b =

let w’ = if i = hthen w else 3 in (w/, h')



Motivation - An unpractical assumption

e get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

e but the most suitable put does not exist!
o for get = height...
o shall putheign: preserve the width? (rectangle)

4

puty
L] =

e shall putheigh: update the width? (square)

2

2 puty o
-—

e each BX approach will provide its own solution! = boom of
BX approaches over the last 10 years



Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GETPUT and PUTGET hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

@ (flip put) v is idempotent, i.e., put (put s v) v = putsv

® put s is injective
Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v < s = put sv

@ S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012



Put-based bidirectional programming

e get-based = maintainability at the cost of expressivness
e write get from S to V
sLutyvy
e however, writing put: S — V — S is much more difficult than
writing get : S — V
e idea: language of injective put s combinators from V to S
sLuLy

e put-based = describe the behavior of a BX completely!

Framework

data S <V = Putlens {put:S -V — S
,get:S — V}



A point-free put-based bidirectional language

e functional languages: data domain of algebraic data types

e algebraic data types = trees = sums of products

data [A] =[] | A:[A] [A] Maybe A
data Maybe A = Nothing | Just A tw *H

Either () (A,[A])  Either () A

e we will build a point-free put language that reverses...

@ H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

. and is inspired in the injective language from...

@ S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004

e partial put combinators = no updatability problem



Basic combinators

Identity and Composition

id: V<V
putsv =V
Vi:SeUg:UeV. (foeg): SV
(fo<g) s v/ = (putr s o puts (getr s)) v/

Filtering and bottom

Vp:V—Bool. ($p:V<V) bot:S<V
(Pp)sv |pv =V botsv =L

e partial put: only certain views are permitted



Products - Creating pairs

Add first element to the source

V(S V) = V = Sp.addfst £ (Sp, V)< V
put (s1,v) v = (s1,V')
where s;” = if v/ = v then s; else f (s1,v) v

Keep first element in the source

keepfst: (51, V)<V
keepfst = addfst (A(s1,v) v/ — s1)

/

e similar for addrPut, keepsnd



Products - Destroying pairs

Drop first element in the view

Vi:V— Viremfst: V< (W, V)
put v (vi’,v') | fv =w' =V

e partial put: equality test to guarantee injectivity
e for every pair (vi,v), v1 can be reconstructed from f v

e similar for remsnd



Products - Parallel put application

Apply two putlenses to both sides of a pair

ViS5V, g:95<W.fRg: (51,52)<:(V1, V2)
put (51, 52) (Vll, V2/) = (51/, 52/)
where s, = putr 51 vi’
' = putg v’



Sums - Creating tags

Inject a tag in the view (user-specified predicate)

YV p: Either V'V — V — Bool. inj p: Either V V <V
put s V' | either id id s=v' =s
| otherwise = if p s v/ then Left v’ else Right v’

Inject a tag in the view (retrieved from the source)

injS : Either V V<V
injS = inj (As v/ — either True False s)



Sums - Destroying tag

Ignore tags in the view

VIi:S< Vl,gZS¢V2. ng5<:E/ther Vi Vo

put s (Left v1) = disjoint f g (putr s v1)

put s (Right v») = disjoint g f (putg s v»)

disjoint x y s | (isJust (get x s)) A isNothing (get y s) =s

e constraint: the domains of getr and get; must be disjoint to
guarantee injectivity

e extension (“observable” get domains)

data S<V = Putlens {put:S -V — S
, get : S — Maybe V'}



Sums - Conditionals

Ignore tags in the view (source-based branching)

Vp:S— Bool,f:S<Vi1,8:5S< V. f V, g:5 <« Either Vi V,
fVog=(®p)ofV(P(mop))og
dom f s = case gets s of

{ Nothing — False; Just — — True} [
fovg:fvdomfg -
fvog:fv—‘odomgg

if-then-else view conditionals

Vp:S—V = Bool,f:S<V,g:5«<V.ifthenelsepf g:S<V
ifthenelse p f g = (f Vpyo, &) 0 inj p

Vp:V—Bool,f:S<V,g:5<V.ifVthenelsepf g:S<V
Vp:S— Bool,f:S<V,g:5«< V.ifSthenelse pf g:S<V



Sums - Disjoint put application

Applies two putlenses to distinct sides of a choice

VIi:S < V,g:5 <V, fdg: Either S; S, < Either V; V)
put (Just (Left 1)) (Left vi') = Left (putr (Just s1) vi')
put s (Left vi") = Left (puts Nothing v1")

put (Just (Right s7)) (Right v»') = Right (putg (Just s2) ')
put s (Right v»") = Right (putg Nothing v»")

e extension (source value creation)

data S < V = PutlLens {put: Maybe S —- V — S
, get : S — Maybe V'}

Inject and “uninject” left/right tags

injl : Either V S, <V injr : Either V S, <V
uninjl : V < Either V'S, uninjr: V <= Either V' S,



Isomorphisms

Algebraic data types

inpa) : [A] < Either () (A, [A]) outpay : Either () (A, [A]) < [A]

nil : [A] < (), cons: [A] < (A, [A])  unnil: () < [A], uncons : (A, [A]) < [A]
nil = inf4) o injl unnil = uninjl o out4

cons = inp4] o injr uncons = uninjr o out(y)

Products

swap : (B, A) < (A, B)
assocl : ((A, B), C)<(A,(B,C)) assocr: (A, (B,C))<((A B),C)

Sums

coswap : Either B A< Either A B
coassocl : Either (Either A B) C < Either A (Either B C)
coassocr : Either A (Either B C) < Either (Either A B) C

Distributivity

distl : Either (A, C)
distr : Either (A, B)

(Either A B, C)
(A, Either B C)

I

(B,C)<=
(A, C)<=



A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::=id | Puto<Put | ® p|bot p| Prod | Sum | Cond | Iso | Rec
Prod ::= addfst f | addsnd f -- create pairs

| remfst f | remsnd f -- destroy pairs

| Put® Put -- product
Sum :=injp -- create choices

| PutV Put -- destroy choices

| Put+ Put -- sum
Cond ::= ifthenelse | ifVthenelse | ifSthenelse -- conditional put app.
Iso  ::=swap | assocl | assocr -- rearrange pairs

| coswap | coassocl | coassocr -- rearrange choices

| distl | distr -- distr. choices over pairs

Rec :=in|out - algebraic data types



Example (list embedding)

e put function e get function
embedAt :: Int — [a] — a — [a] get:Int — [A] — A
embedAt 0 (x:xs) y =y :xs get 0 (x:xs) =x
embedAt i (x:xs)y =x: geti(x:xs)=

embedAt (pred i) xs y get (pred i) xs

embedAt : Int — [A] <A
embedAt i = remsnd (const i) o< embedAt’

embedAt’ : (Int,[A]) < A
embedAt’ = ifSthenelse (A\(i,/) — i = 0) zero nonzero
where zero = addfst (As v — 0) o<unhead
nonzero = ((+1) ® untail) o< embedAt
unhead = cons o< keepsnd
untail = cons o< keepfst

get (embedAt 2) "abcd" = Just ’c’
put (embedAt 2) (Just "abcd") ’x’ = "abxd"
put (embedAt 2) (Just "a") ’x’ = **undefined



Example (DB projection)

e get function

type Person = (Name, City)
name : Person — Name
city : Person — City

. : ; get )
peopleNames : [ Person] — [ Name] Sebastian Kiel Sebastian
peopleNames = map name Zhenjiang Tokyo Zhenyang

1
\
Hugo Kiel put Hugo
Sebastian Tokyo Sebastian
e put-based lens Tim NewCity < Tim
Zhenjiang NewCity Zhenjiang

map: B<=A — [B] < [A]

map f = ifVthenelse null (nil o< unnil) it
where it = cons o< (f ® map f) o< uncons

peopleNamesy : [ Person] <= [ Name]

peopleNamesy = map (addsnd cityOf)
where cityOf s v = maybe "NewCity" id s



Example (DB projection with environment)

e put-based lens

get Sebastian

peopleNames : [ Person] <¢ [ Name] %?ba?tian $iil Sebas
peopleNames = withMbS peopleNames’ enjiang Toryo enf'ang
v
peopleNames’ : [ Person] <(person) [Name]  tugo  NewGity out Hugo
peopleNames’ = map (addsnd cityOf) SebastianKiel Sebastian
h itvOFf / _ Tim NewCity Tim
where city! people n = Zhenjiang Tokyo Zhenjiang

case lookup n people of
Just c — ¢
Nothing — "NewCity"

e extension (global environment)

data S<¢ V = PutlLens { put : Maybe S — V — Reader E S
,get: S — Maybe V'}

addsnd: (E — A — B) — (A,B) < A
withMbS - (5 <=Maybe S V) — (S <E V)
withMbV : (S <=pmappe v V) — (S <£ V)
withV'  :(S<v V)= (S<e V)



Example (DB projection with state)

e put-based lens

.. . ) et .

peopleNames; = initSt ()\e Vv — 0) Sebastian Kiel 9 Sebastian
Zhenjiang Tokyo Zhenjiang

1

peopleNames:” : [ Person] <5, [ Name] v

peopleNames;’ = map gugo Il(\le}mcnyo put gugo
. ebastian Kie ebastian

(updateSt .upd (a}ddsnd cityOf)) Tim NewGity2 € Tim
where cityOf i people n = Zhenjiang Tokyo Zhenjiang
case lookup n people of
Just c — ¢

Nothing — "NewCity" H- show i
updies=i+1

e extension (state)
data S <2 V = Putlens { put : Maybe S — V — ReaderT E (State St) S
,get: S — Maybe V'}
initst  (E—=V = 5t) = (S<Z V)= (S<eV)
updateSt : (St = E - S = 5t) = (S<Z V) = (S<Z V)



Conclusions

a novel point-free put-based BX language
we propose to shift into a put programming style
e users write well-behaved put
e language provides unique get for free
put programming is not easier, but rather more powerful
this shift is manageable

e the combinators encapsulate different put behaviors
e complex put behaviors by composition (and using extensions)

this shift is necessary
e full control of the backward transformation (user’s intentions)

more expressive than existing total get-based languages

better updatability than existing partial get-based languages



Future Work

Demos: Haskell--+

e http://hackage.haskell.org = putlenses

e synthesize more efficient put and get functions

e point-free VS point-wise: translate higher-level functional put
programming language to lower-level core language

e languages for other domains (e.g., lenses for relational data)

@ A. Bohannon, B. C. Pierce, and J. A. Vaughan
Relational lenses: a language for updatable views
Principles of Database Systems, 2006.


http://hackage.haskell.org
putlenses

