
“Point-free” Put-based Bidirectional
Programming

Hugo Pacheco

National Institute of Informatics, Tokyo, Japan

HasLab Seminar

Braga - April 3rd, 2013

Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

S T

S T

BXs and Lenses

• lenses are one of the most popular BX frameworks

S

S V

V

get

put

Framework

data S⇒V = Lens {get : S → V
, put : S → V → S }

Lens laws

• PutGet law

put must translate
view updates exactly.
get defined for
updated sources.

s'

s

v'
put

get

s ′ = put s v ′ ⇒ v ′ = get s ′

• GetPut law

put must preserve
empty view updates.
put defined for
empty view updates.

s v

get

put

v = get s ⇒ s = put s v

Lens programming

• BX applications vary on the bidirectionalization approach

• common trait: write get and derive put automatically

• easy and maintainable

• get-based domain-specific lens languages:
• put total (– expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

• put partial (– updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery
Partial Evaluation and Program Manipulation, 2007.

Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008.

Motivation - Ambiguous put

• unavoidable ambiguity: it is well-known that there are many
possible well-behaved puts for a get

get
4

4

4

height : (Int, Int)→ Int
height (w , h) = h

put1 22

4

-- keep original width
putheight1 : (Int, Int)→ Int → Int
putheight1 (w , h) h′ =

let w ′ = w in (w ′, h′)

put2

2

2 2

-- keep the width/height ratio
putheight2 : (Int, Int)→ Int → Int
putheight2 (w , h) h′ =

let w ′ = h′ ∗ (w / h) in (w ′, h′)

put3
3

2 2

-- default width
putheight3 : (Int, Int)→ Int → Int
putheight3 (w , h) h′ =

let w ′ = if h′ ≡ h then w else 3 in (w ′, h′)

Motivation - An unpractical assumption

• get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

• but the most suitable put does not exist!

• for get = height...
• shall putheight preserve the width? (rectangle)

put1 22

4

• shall putheight update the width? (square)

put2

2

2 2

• each BX approach will provide its own solution! ⇒ boom of
BX approaches over the last 10 years

Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GetPut and PutGet hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

1 (flip put) v is idempotent, i.e., put (put s v) v = put s v

2 put s is injective

Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v ⇔ s = put s v

S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012.

Put-based bidirectional programming

• get-based = maintainability at the cost of expressivness

• write get from S to V

S
f

=⇒ U
g

=⇒ V

• however, writing put : S → V → S is much more difficult than
writing get : S → V

• idea: language of injective put s combinators from V to S

S
f⇐=U

g⇐=V

• put-based = describe the behavior of a BX completely!

Framework

data S⇐V = Putlens {put : S → V → S
, get : S → V }

A point-free put-based bidirectional language

• functional languages: data domain of algebraic data types

• algebraic data types = trees = sums of products

data [A] = [] | A : [A]
data Maybe A = Nothing | Just A

[A]

out
��

Either () (A, [A])

in

OO
Maybe A

out
��

Either () A

in

OO

• we will build a point-free put language that reverses...
H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

... and is inspired in the injective language from...
S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004.

• partial put combinators = no updatability problem

Basic combinators

Identity and Composition

id : V ⇐V
put s v ′ = v ′

∀ f : S⇐U, g : U⇐V . (f ◦< g) : S⇐V
(f ◦< g) s v ′ = (putf s ◦ putg (getf s)) v ′

Filtering and bottom

∀ p : V → Bool . (Φ p : V ⇐V) bot :: S⇐V
(Φ p) s v ′ | p v ′ = v ′ bot s v ′ = ⊥

• partial put: only certain views are permitted

Products - Creating pairs

Add first element to the source

∀ f : (S1,V)→ V → S1. addfst f : (S1,V)⇐V
put (s1, v) v ′ = (s1

′, v ′)
where s1

′ = if v ′ ≡ v then s1 else f (s1, v) v ′

Keep first element in the source

keepfst : (S1,V)⇐V
keepfst = addfst (λ(s1, v) v ′ → s1)

• similar for addrPut, keepsnd

Products - Destroying pairs

Drop first element in the view

∀ f : V → V1. remfst : V ⇐ (V1,V)
put v (v1

′, v ′) | f v ′ ≡ v1
′ = v ′

• partial put: equality test to guarantee injectivity

• for every pair (v1, v), v1 can be reconstructed from f v

• similar for remsnd

Products - Parallel put application

Apply two putlenses to both sides of a pair

∀ f : S1⇐V1, g : S2⇐V2. f ⊗ g : (S1,S2)⇐ (V1,V2)
put (s1, s2) (v1

′, v2
′) = (s1

′, s2
′)

where s1
′ = putf s1 v1

′

s2
′ = putg s2 v2

′

Sums - Creating tags

Inject a tag in the view (user-specified predicate)

∀ p : Either V V → V → Bool . inj p : Either V V ⇐V
put s v ′ | either id id s ≡ v ′ = s

| otherwise = if p s v ′ then Left v ′ else Right v ′

Inject a tag in the view (retrieved from the source)

injS : Either V V ⇐V
injS = inj (λs v ′ → either True False s)

Sums - Destroying tag

Ignore tags in the view

∀ f : S⇐V1, g : S⇐V2. f ∇ g : S⇐Either V1 V2

put s (Left v1) = disjoint f g (putf s v1)
put s (Right v2) = disjoint g f (putg s v2)
disjoint x y s | (isJust (get x s)) ∧ isNothing (get y s) = s

• constraint: the domains of getf and getg must be disjoint to
guarantee injectivity

• extension (“observable” get domains)

data S⇐V = PutLens {put : S → V → S
, get : S → Maybe V }

Sums - Conditionals

Ignore tags in the view (source-based branching)

∀ p : S → Bool , f : S⇐V1, g : S⇐V2. f ∇p g : S⇐Either V1 V2

f ∇p g = (Φ p) ◦ f ∇ (Φ (¬ ◦ p)) ◦ g

dom f s = case getf s of
{Nothing → False; Just → True }

f •∇ g = f ∇dom f g
f ∇• g = f ∇¬◦dom g g

V1

V2

S

S

S

S

f

g

ϕp

ϕ¬p

if-then-else view conditionals

∀ p : S → V → Bool , f : S⇐V , g : S⇐V . ifthenelse p f g : S⇐V
ifthenelse p f g = (f Oφdom f

g) ◦ inj p

∀ p : V → Bool , f : S⇐V , g : S⇐V . ifVthenelse p f g : S⇐V

∀ p : S → Bool , f : S⇐V , g : S⇐V . ifSthenelse p f g : S⇐V

Sums - Disjoint put application

Applies two putlenses to distinct sides of a choice

∀ f : S1⇐V1, g : S2⇐V2. f ⊕ g : Either S1 S2⇐Either V1 V2

put (Just (Left s1)) (Left v1
′) = Left (putf (Just s1) v1

′)
put s (Left v1

′) = Left (putf Nothing v1
′)

put (Just (Right s2)) (Right v2
′) = Right (putg (Just s2) v2

′)
put s (Right v2

′) = Right (putg Nothing v2
′)

• extension (source value creation)

data S⇐V = PutLens {put : Maybe S → V → S
, get : S → Maybe V }

Inject and “uninject” left/right tags

injl : Either V S2⇐V injr : Either V S2⇐V
uninjl : V ⇐Either V S2 uninjr : V ⇐Either V S2

Isomorphisms

Algebraic data types

in[A] : [A]⇐Either () (A, [A]) out[A] : Either () (A, [A])⇐ [A]

nil : [A]⇐ (), cons : [A]⇐ (A, [A]) unnil : ()⇐ [A], uncons : (A, [A])⇐ [A]
nil = in[A] ◦ injl unnil = uninjl ◦ out[A]

cons = in[A] ◦ injr uncons = uninjr ◦ out[A]

Products
swap : (B,A)⇐ (A,B)
assocl : ((A,B),C)⇐ (A, (B,C)) assocr : (A, (B,C))⇐ ((A,B),C)

Sums
coswap : Either B A⇐Either A B
coassocl : Either (Either A B) C⇐Either A (Either B C)
coassocr : Either A (Either B C)⇐Either (Either A B) C

Distributivity

distl : Either (A,C) (B,C)⇐ (Either A B,C)
distr : Either (A,B) (A,C)⇐ (A,Either B C)

A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::= id | Put ◦< Put | Φ p | bot p | Prod | Sum | Cond | Iso | Rec
Prod ::= addfst f | addsnd f -- create pairs

| remfst f | remsnd f -- destroy pairs
| Put ⊗Put -- product

Sum ::= inj p -- create choices
| Put∇Put -- destroy choices
| Put + Put -- sum

Cond ::= ifthenelse | ifVthenelse | ifSthenelse -- conditional put app.
Iso ::= swap | assocl | assocr -- rearrange pairs

| coswap | coassocl | coassocr -- rearrange choices
| distl | distr -- distr. choices over pairs

Rec ::= in | out -- algebraic data types

Example (list embedding)

• put function

embedAt :: Int → [a]→ a→ [a]
embedAt 0 (x : xs) y = y : xs
embedAt i (x : xs) y = x :

embedAt (pred i) xs y

• get function

get : Int → [A]→ A
get 0 (x : xs) = x
get i (x : xs) =

get (pred i) xs

embedAt : Int → [A]⇐A
embedAt i = remsnd (const i) ◦< embedAt′

embedAt′ : (Int, [A])⇐A
embedAt′ = ifSthenelse (λ(i , l)→ i ≡ 0) zero nonzero

where zero = addfst (λs v → 0) ◦< unhead
nonzero = ((+1)⊗ untail) ◦< embedAt

unhead = cons ◦< keepsnd
untail = cons ◦< keepfst

get (embedAt 2) "abcd" = Just ’c’

put (embedAt 2) (Just "abcd") ’x’ = "abxd"

put (embedAt 2) (Just "a") ’x’ = **undefined

Example (DB projection)

• get function

type Person = (Name,City)
name : Person→ Name
city : Person→ City

peopleNames : [Person]→ [Name]
peopleNames = map name

• put-based lens

map : B⇐A→ [B]⇐ [A]
map f = ifVthenelse null (nil ◦< unnil) it

where it = cons ◦< (f ⊗map f) ◦< uncons
peopleNames0 : [Person]⇐ [Name]
peopleNames0 = map (addsnd cityOf)

where cityOf s v = maybe "NewCity" id s

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo Kiel
Sebastian Tokyo
Tim NewCity
Zhenjiang NewCity

get

put

Example (DB projection with environment)

• put-based lens

peopleNames : [Person]⇐E [Name]
peopleNames = withMbS peopleNames′

peopleNames′ : [Person]⇐[Person] [Name]
peopleNames′ = map (addsnd cityOf)

where cityOf people n =
case lookup n people of

Just c → c
Nothing → "NewCity"

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo NewCity
Sebastian Kiel
Tim NewCity
Zhenjiang Tokyo

get

put

• extension (global environment)

data S⇐E V = PutLens {put :Maybe S → V → Reader E S
, get : S → Maybe V }

addsnd : (E → A→ B)→ (A,B)⇐E A

withMbS : (S⇐Maybe S V)→ (S⇐E V)
withMbV : (S⇐Maybe V V)→ (S⇐E V)
withV ′ : (S⇐V V)→ (S⇐E V)

Example (DB projection with state)

• put-based lens

peopleNames1 = initSt (λe v → 0)

peopleNames1
′ : [Person]⇐Int

[Person] [Name]

peopleNames1
′ = map

(updateSt upd (addsnd cityOf))
where cityOf i people n =

case lookup n people of
Just c → c
Nothing → "NewCity" ++ show i

upd i e s = i + 1

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo NewCity0
Sebastian Kiel
Tim NewCity2
Zhenjiang Tokyo

get

put

• extension (state)

data S⇐St
E V = PutLens {put :Maybe S → V → ReaderT E (State St) S

, get : S → Maybe V }

initSt : (E → V → St)→ (S⇐St
E V)→ (S⇐E V)

updateSt : (St → E → S → St)→ (S⇐St
E V)→ (S⇐St

E V)

Conclusions

• a novel point-free put-based BX language

• we propose to shift into a put programming style
• users write well-behaved put
• language provides unique get for free

• put programming is not easier, but rather more powerful

• this shift is manageable
• the combinators encapsulate different put behaviors
• complex put behaviors by composition (and using extensions)

• this shift is necessary
• full control of the backward transformation (user’s intentions)

+ more expressive than existing total get-based languages

+ better updatability than existing partial get-based languages

Future Work

Demos: Haskell++

• http://hackage.haskell.org ⇒ putlenses

• synthesize more efficient put and get functions

• point-free VS point-wise: translate higher-level functional put
programming language to lower-level core language

• languages for other domains (e.g., lenses for relational data)

A. Bohannon, B. C. Pierce, and J. A. Vaughan

Relational lenses: a language for updatable views

Principles of Database Systems, 2006.

http://hackage.haskell.org
putlenses

