A Combinatorial Language for Put-based
Bidirectional Programming

Hugo Pacheco

National Institute of Informatics, Tokyo, Japan

IPL Meeting

Tokyo - July 2nd, 2013

Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

s —Pp—— T
s —¢— T

BXs and Lenses

e lenses are one of the most popular BX frameworks

get

s —}'/—> v

Framework

data s=v = Lens {get::s — v
,put:is —v—s}

Lens laws

e PUTGET law e GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.

get (put sv') =V put s (gets) =s

Partial lens laws

e PUTGET law e GETPUT law
put must translate put must preserve
view updates exactly. empty view updates.
get defined for put defined for
updated sources. empty view updates.

get

]

put

s’ € putsv' = v =gets v € gets=s=putsv

Get-based lens programming

e BX applications vary on the bidirectionalization approach

e write a single program that denotes both transformations

e bidirectionalization: write get in get
a familiar (unidirectional)
programming language and
derive a suitable put through
particular techniques s

put

e bidirectional programming
languages: programs can be s v
interpreted both as a get
function and a put function

Get-based lens programming

common trait: write get and derive put automatically
easy and maintainable

but requires a careful tradeoff: expressiveness vs updatability
get-based domain-specific lens languages:
e put total (— expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

e put partial (— updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery

Partial Evaluation and Program Manipulation, 2007.
Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008.

Motivation - Ambiguous put

e unavoidable ambiguity: it is well-known that there are many
possible well-behaved puts for a get

4

L]

get

puty

puty

puts
-—

height : (Int, Int) — Int
height (w, h) = h

-- keep original width
putheight, : (Int, Int) — Int — Int
putheight; (w, h) b’ =

let w' = win (w/,)

-- keep the width/height ratio
putheighty : (Int, Int) — Int — Int
putheighty (w, h) i =

let w' = h" x(w/h)in(w',h)

-- default width
putheights : (Int, Int) — Int — Int
putheights (w, h) b =

let w’ = if i = hthen w else 3 in (w/, h')

Motivation - An unpractical assumption

e get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

e but the most suitable put does not exist!
o for get = height...
o shall putheign: preserve the width? (rectangle)

4

puty
L] =

e shall putheigh: update the width? (square)

2

2 puty o
-—

e each BX approach will provide its own (typically conservative)
solution! = boom of BX approaches over the last 10 years

Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GETPUT and PUTGET hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

@ (flip put) v is idempotent, i.e., put (put s v) v = putsv

® put s is injective
Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v < s = put sv

@ S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012

Put-based bidirectional programming

e get-based = maintainability at the cost of expressiveness or
updatability

e write a get program from S to V
sLutv
e however, writing put: S — V — S is much more difficult than
writing get : S — V
e idea: language of injective “put s” combinators from V to S
suLy

e put-based = fully describe a BX!

Framework

data s < v = Putlens { put :: Maybe s - v — s
,get s > v}

A point-free put-based bidirectional language

e functional languages: data domain of algebraic data types

e algebraic data types = trees = sums of products

data [a] =[]] a:[a] [A] Maybe A
data Maybe a = Nothing | Just a oume outM‘m
1+A x [A] 1+A

e we will build a point-free put language that reverses...

@ H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

. and is inspired in the injective language from...
@ S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004

... but is far more expressive!

Monads

e elegant formalism to introduce computational effects in
functional languages

class Monad m where
return::a — ma
(>=) sma—(a—mb)—mb
fail ::ma
return x >=1f =f x
m >= return = m
(m>=f)>=g=m>=(M—fx>=g)
fail >= (Ax — m) = fail
e imperative-style do notation
do x < mx
y < my
return (f x y)

Common monads

e identity monad (Simple function application)

instance Monad Identity where ...

runldentity :: Identity a — a
e reader monad (Read values from a shared environment)

instance Monad (Reader r) where ...

ask :: Reader r r
withReader :: (r — r') — Reader r' a — Reader r a
runReader :: Reader r a — r — a

e state monad (Read/write values from/to a shared state)

instance Monad (State s) where ...

getState :: State s s
putState :: s — State s ()
runState :: State s a — s — (a, s)

Monadic put-based framework

e we augment put functions with an arbitrary monad

e users can instantiate the monad with suitable computational
effects in order to refine put behavior

forward get functions remain purely functional

does not affect well-behavedness

Framework
data s <, v = Putlens { put :: Maybe s - v — ms

,gets — v}

s € putsv = gets =V PUTGET
v € gets = returns = putsv GETPUT.

Monadic put-based framework

e we augment put functions with an arbitrary monad

e users can instantiate the monad with suitable computational
effects in order to refine put behavior

forward get functions remain purely functional

does not affect well-behavedness

Framework

data s <, v = Putlens { put :: Maybe s - v — ms
,getis — v}

s € putsv = gets =V PUTGET <

v € gets ns = putsv GETPUT .

Monadic put-based framework

e we augment put functions with an arbitrary monad

e users can instantiate the monad with suitable computational
effects in order to refine put behavior

forward get functions remain purely functional

does not affect well-behavedness

Framework

data s <, v = Putlens { put :: Maybe s - v — ms
,get:is — v}

s € putsv = gets =V PUTGET .~
v € gets AN\m=putsv = assert (=s)m=m GETPUT.

assert :: Monad m = (a — Bool) - ma— m a

Basic combinators

Identity and Composition

id € V&,V
id:ven,v
id s v/ = return v/

feSe,U ge UV
focg € S«,V

(o<)ii(s<mu) = (u<snv) = (s<nv)

(f o< g) Nothing v' = do u' < g Nothing v’
f Nothing u'

(fo<g) (Just s) v/ =do v < g (Just (get f s)) v/
f (Just s)

e implementation is well-behaved but partial
e semantic set-theoretic types: well-typed lenses are total

Basic combinators

Filtering and bottom

() V1 € (V1<:M Vl)
¢ :: (v — Bool) = (v<pv)
® ps v =if pv then return v/
else fail

bot €
(0 <=.0)
bot::s<,,v
bot s v/ = fail

e partial put: only certain views are permitted

Monadic combinators

Effectful put computations

f € MaybeS—V =l ge S,V
effectfg € S«,V
effect:: (Maybe s v —m()) = (s<mv) = (s<mv)

effectfgsv/ =dofsVv
gsv

e run some monadic computation before executing a putlens

e does not affect well-behavedness

Products - Creating pairs

Add first element to the source

PCSixV f e MabeP—V—uS
f (Just (s1,v)) v = return s
addfst f € P<,V
addfst :: (Maybe (s1,v) = v — ms;) — ((s1,v) <m V)
addfst f = checkGetPut put’ where
put' sv =dos’ «+ fsVv
return (s, v')

e dynamic: repair source creation function to satisfy GETPUT

e static: possible dependency between view and source values

Products - Creating pairs

Keep first element in the source

feV-ous
keepfstOr f € S5; x V&,V
keepfstOr :: (v — m s1) — ((s1,v) <m V)
keepfstOr f = addfst ' where ' Nothing v/ = f v/
" (Just (s1,v)) v/ = return s;

keepfst = keepfstOr (As v/ — fail)

Copy the view element

copy € {(vi,w)|vi € VAwn € VAv=wn}<s,V

copy i (v,v)<=mvVv
copy = addfst (As v/ — return v')

Products - Destroying pairs

Drop first element in the view

feV— Vi
remfst f € V<, {(vi,v)|vi € ViAv e VAvy=Ffv}
remfst :: (v — vi) — (v <, (v1,v))
remfst £ s (vi/,v') =if f v/ = v;’ then return v/
else fail

e partial put: equality test to guarantee injectivity

e for every pair (v1,v), v1 can be reconstructed from f v

Products - Parallel put application

Apply two putlenses to both sides of a pair

feSeVi ge S
feg € 51 X 52<=“V1 x Vs
(®) i (51 “<m V1) — (52 “<m V2) — ((51,52) “<m (Vl, V2))
(f ® g) Nothing (v, v2') = do
s1’ < f Nothing vy’
sy’ < g Nothing v5’
return (s, s,')
(f®g) (Just (517 52)) (Vll, V2,) —do
s/« f (JUSt 51) v/
' < g (Just s3) v’
return (s1', ')

Sums - Creating tags

Inject a tag in the view (user-specified predicate)

p € Maybe (Vi + Vo) - V4 U Vo — 1 Bool
p (Just (Left v)) v = return True
p (Just (Right v)) v = return False
injp € V1—|—V2<:MV1U Vo
inj p :: (Maybe (Either v v) — v — m Bool)
— (Either v v <=p, v)
inj p = checkGetPut put’ where
put' sv =dob<+ ps v
if b then return (Left V')
else return (Right v')

Sums - Creating tags

Inject a tag in the view (retrieved from the source)

p € V — u Bool
injsOr € V4 V<<,V
injsOr :: (v — m Bool) — (Either v v <=p, v)
injsOr p = inj p/
where p’ Nothing v/ = p v/
p' (Just (Left s)) v/ = return True
p’ (Just (Right s)) v/ = return False

Inject left/right tags

injl € V4+0«<,V injr € 0+ V<,V

injl :: Either v vo <=, v injr :: Either vi v<, v

Sums - Destroying tags

Ignore tags in the view

f e 51<:HV1 g € 52<:HV2 SSNS, =10
fVg € 51U52<:MV1+V2
(V)i(s<mwvi) = (s<mve) — (s <n Either vi v2)
(FVg)s (Just (Left vi")) = assert (disjoint f g) (f vi")
(fVg) s (Just (Right v»')) = assert (disjoint g f) (g v2')
disjoint x y s = isJust (get x s) A isNothing (get y s)

e constraint: the domains of gets and getg must be disjoint to
guarantee injectivity (we get through the same path as we
have put)

e extension (“observable” get domains)

data s <, v = Putlens {put : Maybe s - v — m s
, get : s — Maybe v}

Sums - Destroying tag

Ignore tags in the view (source-based branching)

5:CS f e 51¢#V1 g € 5\51¢#V2
fVs,g e S+ W
V.:: (s = Bool) = (s<mv1) = (s <mw) — (s <m Either vi v2)
fVpg= (P po<f) V(P (notop)o<g)

Vg (51 =dom (getf))
fVoeg (51 = notodom (getg))

“Uninject” left/right tags

uninjl € V<,V +0 uninjr € V<,0+V

uninjl :: v <, Either v v, uninjr :: v <, Either vy v

Sums - Conditionals

if-then-else view conditional

V1§V f651<:HV1 gES\51<:HV\V1 s v,
ifVthenelse Vi f g € S,V

ifVthenelse :: (v — Bool) — (s <, v) 9
= (s<mnv) = (s<nv)

if-then-else source conditional

51CS fe S,V geS\S<,V !
g]

ifSthenelse 5, f g € S«,V

ifSthenelse :: (s — Bool) — (s <, V)
= (s<mv) = (s<mv)

Sums - Disjoint put application

Applies two putlenses to distinct sides of a sum

feSe Vi ge Se,
fog € Si+SH<=, M+ W

(@) (s1=mw) = (52 <=m v2) — (Either sy s, <, Either vi v»)
(F®g) (Just (Left s1)) (Left vi’) = do

{s1" < f (Just s1) vi’; return (Left s;") }
(fFeg)s (Left vi') =do

{s1’ + f Nothing v1’; return (Left s1") }
(f & g) (Just (Right s5)) (Right v»') = do

{2/ « f (Just s2) vo'; return (Right s,") }
(f®g) s (Right v2') = do

{2’ « f Nothing v,'; return (Right s,') }

Isomorphisms

Algebraic data types

ina] € [Al<u14+A X [A] outja) € 14+A X [Al<,[A]
nil € [Al<,l unnil € 1<, [A]
cons € [Al<=LA x [A] uncons € A x [A] <, [A]

Products

swap € B x A<, A x B
assocl € (A x B) x C<,A x (B x Q)
assocr € A x (B x C)<,(A x B) x C

Sums

coswap € B+A<,A+B
coassocl € (A+B)+C<, A+ (B+C)
coassocr € A+ (B+C)<,(A+B)+C

Distributivity

distt € ((A x C)+(B x C)<,(A+B) x C
distr € (A x B)+ (A x C)<,A x (B+ ()

A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::=id | Puto< Put
| ®p|botp
| effect f Put
| Prod | Sum | Cond | Iso | Rec
Prod ::= addfst f | addsnd f | keepfstOr | keepsndOr | copy
| remfst f | remsnd f
| Put® Put
==inj p | injsOr | injl | injr
| PutV Put | Put V, Put | Put &/ Put | Put & Put
| uninjl | uninjr
| Put+ Put
Cond ::= ifthenelse | ifVthenelse | ifSthenelse

Sum

Iso ::=swap | assocl | assocr
| coswap | coassocl | coassocr
| distl | distr

Rec :=in|out

-- basic combinators
-- partial combinators
-- monadic effects

-- create pairs

-- destroy pairs

-- product

-- Create sums

-- destroy sums

-- destroy sums

-- sum

-- conditional put app.
-- rearrange pairs

-- rearrange sums

-- distr. sums over pairs
-- algebraic data types

Example (list embedding)

e put function e get function
embedAt :: Int — [a] — a — [a] elementAt : Int — [a] — a
embedAt 0 (x:xs)y =y :xs elementAt 0 (x : xs) = x
embedAt i (x:xs)y =x: elementAt i (x : xs) =

embedAt (i — 1) xs y elementAt (i — 1) xs

embedAt :: Int — ([a] Sidentity @)
embedAt 0 = unhead
embedAt n = untail o<embedAt (n — 1)

unhead = cons o< keepsnd
untail = cons o< keepfst

get (embedAt 2) "abcd" = Just ’c’
put (embedAt 2) (Just "abcd") ’x’ = Identity "abxd"
put (embedAt 2) (Just "a") ’x’ = **undefined

Example (list embedding V2)

e put function e get function
embedAt :: Int — [a] — a — [a] elementAt :: Int — [a] — a
embedAt 0 (x:xs)y =y :xs elementAt 0 (x : xs) = x
embedAt i (x :xs)y = x: elementAt i (x : xs) =

embedAt (i — 1) xs y elementAt (i — 1) xs

embedAt’ :: Int — ([a] <identity a)
embedAt’ 0 = unhead’
embedAt’ n = untail’ o<embedAt’ (n — 1)

unhead’ = cons o< keepsndOr (Av — return [])
untail’ = cons o< keepfstOr (A(v : vs) — return v)

get (embedAt’ 2) "a" = Nothing
put (embedAt’ 2) (Just "a") ’x’ = Identity "axx"

Example (DB projection)

e get function

. ' ' get)
type Person = (Name, City) Sebastian Kiel Sebastian
name :: Person — Name Zhenjiang Tokyo Zhenjiang

. . 1
city :: Person — City \%
Hugo Kiel ut Hugo
peopleNames :: [Person] — [Name] Sebastian Tokyo P Sebastian
peopleNames = map name Tim NewCity < Tim
Zhenjiang NewCity Zhenjiang

e put-based lens

map :: (b<ma) — ([b]l <m[a])
map f = ifVthenelse null (nil o< unnil) (cons o< (f ® map f) o< uncons)
peopleNames :: [Person] <= gentity [Name]
peopleNames = map (addsnd cityOf)
where cityOf (Just s) v = return s
cityOf Nothing v = return "NewCity"

Example (DB projection with environment)

e put-based lens

peopleNames : [Person] <=geader [Person] [Name]
peopleNames = map (addsnd cityOf)
where cityOf s n = do people < ask
case lookup n people of
Just ¢ — return c
Nothing — return "NewCity"

runReaderPut :: (s <=Reader s V) — (s = v —> s)
runReaderPut put s v = runReader (put (Just s) v) s

Sebastian Kiel get « Sebastian
Zhenjiang Tokyo Zhenjiang
1
1
H NewCi H Y
ugo ewCity ugo
Sebastian Kiel runReaderPut put Sebastian

Tim NewCity Tim
Zhenjiang Tokyo Zhenjiang

Example (tree relabelling with state)

e get function

data Tree a = Tip a| Bin (Tree a) (Tree a)
mapTree :: (a — b) — (Tree a — Tree b)

mapTree f (Tip x) = x
mapTree f (Bin | r) = Bin
(mapTree) (mapTree g)
dropLabels :: Tree (Symbol, a) a
dropLabels = mapTree snd

e put-based lens

mapTree :: (b<m a) — (Tree b<p, Tree a)
mapTree f = ino< (f @ mapTree f ® mapTree f) o<out

freshLabels :: Tree (Symbol, a) <state Symbol @
freshLabels = mapTree (addfst freshLabel) where

get
=
b e
1
1
|
\J
runStatePut put 1
<~ 5!
y o

freshLabel s v — do {s < State.get; State.put (s + 1); return s}

runStatePut 1 s <gate st V — St = (s &> v — 5)

runStatePut put st s v = let (s’, st’) = runState (put (Just s) v) stins’

More monads...

e exception (Handle failures)

class Monad m = MonadException m where
catch::ma—ma—ma

instance MonadException Maybe where ...

catch fail m=m

catch m fail

m

Inject a tag in the view (using catch)

fe S« g € S e
injException f g € S1+ S <, ViU Vs

injException :: MonadException m = (s1 <mVv) — (s1<m V)
— (Either si sp <=m V)

injException f g Nothing v/ =

liftM Left (put f Nothing v') ‘catch’ liftM Right (put g Nothing v')
injException f g (Just (Left s1)) v/ =

liftM Left (put f (Just s1) v') ‘catch’ liftM Right (put g Nothing v')
injException f g (Just (Right sp)) v/ =

liftM Right (put g (Just s3) v') ‘catch’ liftM Left (put f Nothing v')

Example (unwords with exception)

e get function

unwords :: [String] — String
unwords [| =""
unwords ws = foldrl (Aw s — w H’ ’:s) ws

foldrl :: (a —+a—a) — [a] — a
foldrl f [x] =x
foldrl f (x: xs) = f x (foldrl f xs)

e put-based lens

words :: [String | <= maype String
words = (nil & id) o< injException (ignore "") (unfoldrl (appendWithSep " "))

unfoldrl :: MonadException m = ((a,a) <m a) — ([a] <m a)
unfoldrl f = (cons V4 wrap) o< injException ((id ® unfoldrl f) o< f) id

appendWithSep :: Monad m = String — ((String, String) <=p, String)
ignore :: Monad m = e<=, v

get words ["a","b","c"] = Just "a b c"
put words Nothing "hu go " = Just ["hu","","go",""]

Conclusions

a novel point-free put-based BX language (flexible, expressive)
we propose to shift into a put programming style

e programmers write well-behaved put

e language provides unique get for free
put programming is more powerful than get programming,
not easier, but not necessarily more complex
this shift is manageable

e the combinators offer different default put behaviors

e more complex put behaviors using monadic effects
this shift is necessary

e programmers can fully control/specify BXs (predictability)
e more expressive than existing get-based languages (user’s
intentions)

Future Work

Demos: Haskell+-+

e http://hackage.haskell.org = putlenses

type checking & type inference

better static guarantees and programmability

fully expressive putlens language <— less expressive
higher-level put-based DSL (BiFlux in the works...)

synthesize more efficient put and get functions

languages for other domains (e.g., lenses for relational data)

@ A. Bohannon, B. C. Pierce, and J. A. Vaughan
Relational lenses: a language for updatable views
Principles of Database Systems, 2006.

http://hackage.haskell.org
putlenses

