
A Combinatorial Language for Put-based
Bidirectional Programming

Hugo Pacheco

National Institute of Informatics, Tokyo, Japan

IPL Meeting

Tokyo - July 2nd, 2013

Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

S T

S T

BXs and Lenses

• lenses are one of the most popular BX frameworks

S

S V

V

get

put

Framework

data s⇒ v = Lens {get :: s → v
, put :: s → v → s }

Lens laws

• PutGet law

put must translate
view updates exactly.

s'

s

v'
put

get

get (put s v ′) = v ′

• GetPut law

put must preserve
empty view updates.

s v

get

put

put s (get s) = s

Partial lens laws

• PutGet law

put must translate
view updates exactly.
get defined for
updated sources.

s'

s

v'
put

get

s ′ ∈ put s v ′ ⇒ v ′ = get s ′

• GetPut law

put must preserve
empty view updates.
put defined for
empty view updates.

s v

get

put

v ∈ get s ⇒ s = put s v

Get-based lens programming

• BX applications vary on the bidirectionalization approach

• write a single program that denotes both transformations

• bidirectionalization: write get in
a familiar (unidirectional)
programming language and
derive a suitable put through
particular techniques

• bidirectional programming
languages: programs can be
interpreted both as a get
function and a put function

S V
get

VS
put

derive

S V

S V

get

put

Get-based lens programming

• common trait: write get and derive put automatically

• easy and maintainable

• but requires a careful tradeoff: expressiveness vs updatability

• get-based domain-specific lens languages:
• put total (– expressiveness)

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt

Combinators for bidirectional tree transformations: A linguistic approach to the view-update problem
ACM Transactions on Programming Languages and Systems, 2007.

H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

• put partial (– updatability)

D. Liu, Z. Hu, and M. Takeichi

Bidirectional interpretation of XQuery
Partial Evaluation and Program Manipulation, 2007.

Z. Hu, S.-C. Mu, and M. Takeichi

A programmable editor for developing structured documents based on bidirectional transformations
Higher Order and Symbolic Computation, 2008.

Motivation - Ambiguous put

• unavoidable ambiguity: it is well-known that there are many
possible well-behaved puts for a get

get
4

4

4

height : (Int, Int)→ Int
height (w , h) = h

put1 22

4

-- keep original width
putheight1 : (Int, Int)→ Int → Int
putheight1 (w , h) h′ =

let w ′ = w in (w ′, h′)

put2

2

2 2

-- keep the width/height ratio
putheight2 : (Int, Int)→ Int → Int
putheight2 (w , h) h′ =

let w ′ = h′ ∗ (w / h) in (w ′, h′)

put3
3

2 2

-- default width
putheight3 : (Int, Int)→ Int → Int
putheight3 (w , h) h′ =

let w ′ = if h′ ≡ h then w else 3 in (w ′, h′)

Motivation - An unpractical assumption

• get-based programming has an implicit assumption that

it is sufficient to derive a suitable put that can be
combined with get to form a well-behaved lens.

• but the most suitable put does not exist!

• for get = height...
• shall putheight preserve the width? (rectangle)

put1 22

4

• shall putheight update the width? (square)

put2

2

2 2

• each BX approach will provide its own (typically conservative)
solution! ⇒ boom of BX approaches over the last 10 years

Motivation - A promising result

Lemma

Given a put function, there exists at most one get function such
that GetPut and PutGet hold.

Theorem (Uniqueness of get for well-behaved (partial) put)

Assume a put function such that:

1 (flip put) v is idempotent, i.e., put (put s v) v = put s v

2 put s is injective

Then (a) there is exactly one get function such that the resulting
lens is well-behaved and (b) get s = v ⇔ s = put s v

S. Fischer, Z. Hu and H. Pacheco

“Putback” is the Essence of Bidirectional Programming
GRACE-TR 2012-08, GRACE Center, National Institute of Informatics, December 2012.

Put-based bidirectional programming

• get-based = maintainability at the cost of expressiveness or
updatability

• write a get program from S to V

S
f

=⇒ U
g

=⇒ V

• however, writing put : S → V → S is much more difficult than
writing get : S → V

• idea: language of injective “put s” combinators from V to S

S
f⇐=U

g⇐=V

• put-based = fully describe a BX!

Framework

data s⇐ v = Putlens {put :: Maybe s → v → s
, get :: s → v }

A point-free put-based bidirectional language

• functional languages: data domain of algebraic data types

• algebraic data types = trees = sums of products

data [a] = [] | a : [a]
data Maybe a = Nothing | Just a

[A]

out
��

1+ A × [A]

in

OO
Maybe A

out ��
1+ A

in

OO

• we will build a point-free put language that reverses...
H. Pacheco and A. Cunha

Generic Point-free Lenses
Mathematics of Program Construction, 2010.

... and is inspired in the injective language from...
S.-C. Mu, Z. Hu, and M. Takeichi

An injective language for reversible computation
Mathematics of Program Construction, 2004.

... but is far more expressive!

Monads

• elegant formalism to introduce computational effects in
functional languages

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b
fail :: m a

return x >>= f = f x

m >>= return = m

(m >>= f)>>= g = m >>= (λx → f x >>= g)

fail >>= (λx → m) = fail

• imperative-style do notation

do x ← mx
y ← my
return (f x y)

Common monads

• identity monad (Simple function application)

instance Monad Identity where ...

runIdentity :: Identity a→ a

• reader monad (Read values from a shared environment)

instance Monad (Reader r) where ...

ask :: Reader r r
withReader :: (r → r ′)→ Reader r ′ a→ Reader r a
runReader :: Reader r a→ r → a

• state monad (Read/write values from/to a shared state)

instance Monad (State s) where ...

getState :: State s s
putState :: s → State s ()
runState :: State s a→ s → (a, s)

Monadic put-based framework

• we augment put functions with an arbitrary monad

• users can instantiate the monad with suitable computational
effects in order to refine put behavior

• forward get functions remain purely functional

• does not affect well-behavedness

Framework

data s⇐m v = Putlens {put :: Maybe s → v → m s
, get :: s → v }

s ′ ∈ put s v ′ ⇒ get s ′ = v ′ PutGet⇐

v ∈ get s ⇒ return s = put s v GetPut⇐

Monadic put-based framework

• we augment put functions with an arbitrary monad

• users can instantiate the monad with suitable computational
effects in order to refine put behavior

• forward get functions remain purely functional

• does not affect well-behavedness

Framework

data s⇐m v = Putlens {put :: Maybe s → v → m s
, get :: s → v }

s ′ ∈ put s v ′ ⇒ get s ′ = v ′ PutGet⇐

(((((((((((((((((

v ∈ get s ⇒ return s = put s v GetPut⇐

Monadic put-based framework

• we augment put functions with an arbitrary monad
• users can instantiate the monad with suitable computational

effects in order to refine put behavior
• forward get functions remain purely functional
• does not affect well-behavedness

Framework

data s⇐m v = Putlens {put :: Maybe s → v → m s
, get :: s → v }

s ′ ∈ put s v ′ ⇒ get s ′ = v ′ PutGet⇐

v ∈ get s ∧ m = put s v ⇒ assert (≡ s) m = m GetPut⇐

assert :: Monad m⇒ (a→ Bool)→ m a→ m a

Basic combinators

Identity and Composition

id ∈ V ⇐µ V

id :: v⇐m v
id s v ′ = return v ′

f ∈ S⇐µ U g ∈ U⇐µ V

f ◦< g ∈ S⇐µ V

(◦<) :: (s⇐m u)→ (u⇐m v)→ (s⇐m v)
(f ◦< g) Nothing v ′ = do u′ ← g Nothing v ′

f Nothing u′

(f ◦< g) (Just s) v ′ = do u′ ← g (Just (get f s)) v ′

f (Just s) u′

• implementation is well-behaved but partial

• semantic set-theoretic types: well-typed lenses are total

Basic combinators

Filtering and bottom

Φ V1 ∈ (V1⇐µ V1)

Φ :: (v → Bool)→ (v⇐m v)
Φ p s v ′ = if p v ′ then return v ′

else fail

bot ∈
(∅⇐µ ∅)

bot :: s⇐m v
bot s v ′ = fail

• partial put: only certain views are permitted

Monadic combinators

Effectful put computations

f ∈ Maybe S → V → µ 1 g ∈ S⇐µ V

effect f g ∈ S⇐µ V

effect :: (Maybe s → v → m ())→ (s⇐m v)→ (s⇐m v)
effect f g s v ′ = do f s v ′

g s v ′

• run some monadic computation before executing a putlens

• does not affect well-behavedness

Products - Creating pairs

Add first element to the source

P ⊆ S1 × V f ∈ Maybe P → V → µ S1

f (Just (s1, v)) v = return s1

addfst f ∈ P⇐µ V

addfst :: (Maybe (s1, v)→ v → m s1)→ ((s1, v)⇐m v)
addfst f = checkGetPut put ′ where

put ′ s v ′ = do s1
′ ← f s v ′

return (s1
′, v ′)

• dynamic: repair source creation function to satisfy GetPut

• static: possible dependency between view and source values

Products - Creating pairs

Keep first element in the source

f ∈ V → µ S1

keepfstOr f ∈ S1 × V ⇐µ V

keepfstOr :: (v → m s1)→ ((s1, v)⇐m v)
keepfstOr f = addfst f ′ where f ′ Nothing v ′ = f v ′

f ′ (Just (s1, v)) v ′ = return s1

keepfst = keepfstOr (λs v ′ → fail)

Copy the view element

copy ∈ {(v1, v2) | v1 ∈ V ∧ v2 ∈ V ∧ v1 = v2}⇐µ V

copy :: (v , v)⇐m v
copy = addfst (λs v ′ → return v ′)

Products - Destroying pairs

Drop first element in the view

f ∈ V → V1

remfst f ∈ V ⇐µ {(v1, v) | v1 ∈ V1 ∧ v ∈ V ∧ v1 = f v }
remfst :: (v → v1)→ (v⇐m (v1, v))
remfst f s (v1

′, v ′) = if f v ′ ≡ v1
′ then return v ′

else fail

• partial put: equality test to guarantee injectivity

• for every pair (v1, v), v1 can be reconstructed from f v

Products - Parallel put application

Apply two putlenses to both sides of a pair

f ∈ S1⇐µ V1 g ∈ S2⇐µ V2

f ⊗ g ∈ S1 × S2⇐µ V1 × V2

(⊗) :: (s1⇐m v1)→ (s2⇐m v2)→ ((s1, s2)⇐m (v1, v2))
(f ⊗ g) Nothing (v1

′, v2
′) = do

s1
′ ← f Nothing v1

′

s2
′ ← g Nothing v2

′

return (s1
′, s2
′)

(f ⊗ g) (Just (s1, s2)) (v1
′, v2

′) = do
s1
′ ← f (Just s1) v1

′

s2
′ ← g (Just s2) v2

′

return (s1
′, s2
′)

Sums - Creating tags

Inject a tag in the view (user-specified predicate)

p ∈ Maybe (V1 + V2)→ V1 ∪ V2 → µ Bool
p (Just (Left v)) v = return True

p (Just (Right v)) v = return False

inj p ∈ V1 + V2⇐µ V1 ∪ V2

inj p :: (Maybe (Either v v)→ v → m Bool)
→ (Either v v⇐m v)

inj p = checkGetPut put ′ where
put ′ s v ′ = do b ← p s v ′

if b then return (Left v ′)
else return (Right v ′)

Sums - Creating tags

Inject a tag in the view (retrieved from the source)

p ∈ V → µ Bool

injsOr ∈ V + V ⇐µ V

injsOr :: (v → m Bool)→ (Either v v⇐m v)
injsOr p = inj p′

where p′ Nothing v ′ = p v ′

p′ (Just (Left s)) v ′ = return True
p′ (Just (Right s)) v ′ = return False

Inject left/right tags

injl ∈ V + ∅⇐µ V

injl :: Either v v2⇐m v

injr ∈ ∅+ V ⇐µ V

injr :: Either v1 v⇐m v

Sums - Destroying tags

Ignore tags in the view

f ∈ S1⇐µ V1 g ∈ S2⇐µ V2 S1 ∩ S2 = ∅
f ∇ g ∈ S1 ∪ S2⇐µ V1 + V2

(∇) :: (s⇐m v1)→ (s⇐m v2)→ (s⇐m Either v1 v2)
(f ∇ g) s (Just (Left v1

′)) = assert (disjoint f g) (f v1
′)

(f ∇ g) s (Just (Right v2
′)) = assert (disjoint g f) (g v2

′)

disjoint x y s = isJust (get x s) ∧ isNothing (get y s)

• constraint: the domains of getf and getg must be disjoint to
guarantee injectivity (we get through the same path as we
have put)

• extension (“observable” get domains)

data s⇐m v = PutLens {put : Maybe s → v → m s
, get : s → Maybe v }

Sums - Destroying tag

Ignore tags in the view (source-based branching)

S1 ⊆ S f ∈ S1⇐µ V1 g ∈ S \ S1⇐µ V2

f ∇S1 g ∈ S⇐µ V1 + V2

∇· :: (s → Bool)→ (s⇐m v1)→ (s⇐m v2)→ (s⇐m Either v1 v2)
f ∇p g = (Φ p ◦< f)∇ (Φ (not ◦ p) ◦< g)

f •∇ g (S1 = dom (get f))
f ∇• g (S1 = not ◦ dom (get g))

V1

V2

S1

S\S1

S1

S\S1

f

g

ϕp

ϕ¬p

“Uninject” left/right tags

uninjl ∈ V ⇐µ V + ∅
uninjl :: v⇐m Either v v2

uninjr ∈ V ⇐µ ∅+ V

uninjr :: v⇐m Either v1 v

Sums - Conditionals

if-then-else view conditional

V1 ⊆ V f ∈ S1⇐µ V1 g ∈ S \ S1⇐µ V \ V1

ifVthenelse V1 f g ∈ S⇐µ V

ifVthenelse :: (v → Bool)→ (s⇐m v)
→ (s⇐m v)→ (s⇐m v)

S1

S\S1

f

g

V1

V\V1

if-then-else source conditional

S1 ⊆ S f ∈ S1⇐µ V g ∈ S \ S1⇐µ V

ifSthenelse S1 f g ∈ S⇐µ V

ifSthenelse :: (s → Bool)→ (s⇐m v)
→ (s⇐m v)→ (s⇐m v)

S1

S\S1

f

g

V

Sums - Disjoint put application

Applies two putlenses to distinct sides of a sum

f ∈ S1⇐µ V1 g ∈ S2⇐µ V2

f ⊕ g ∈ S1 + S2⇐µ V1 + V2

(⊕) :: (s1⇐m v1)→ (s2⇐m v2)→ (Either s1 s2⇐m Either v1 v2)
(f ⊕ g) (Just (Left s1)) (Left v1

′) = do
{s1
′ ← f (Just s1) v1

′; return (Left s1
′)}

(f ⊕ g) s (Left v1
′) = do

{s1
′ ← f Nothing v1

′; return (Left s1
′)}

(f ⊕ g) (Just (Right s2)) (Right v2
′) = do

{s2
′ ← f (Just s2) v2

′; return (Right s2
′)}

(f ⊕ g) s (Right v2
′) = do

{s2
′ ← f Nothing v2

′; return (Right s2
′)}

Isomorphisms

Algebraic data types

in[A] ∈ [A]⇐µ 1+ A × [A] out[A] ∈ 1+ A × [A]⇐µ [A]

nil ∈ [A]⇐µ 1 unnil ∈ 1⇐µ [A]
cons ∈ [A]⇐µ A × [A] uncons ∈ A × [A]⇐µ [A]

Products
swap ∈ B × A⇐µ A × B
assocl ∈ (A × B) × C⇐µ A × (B × C)
assocr ∈ A × (B × C)⇐µ (A × B) × C

Sums
coswap ∈ B + A⇐µ A+ B
coassocl ∈ (A+ B) + C⇐µ A+ (B + C)
coassocr ∈ A+ (B + C)⇐µ (A+ B) + C

Distributivity

distl ∈ ((A × C) + (B × C)⇐µ (A+ B) × C
distr ∈ (A × B) + (A × C)⇐µ A × (B + C)

A point-free put-based bidirectional language (Summary)

Language of point-free putlens combinators

Put ::= id | Put ◦<Put -- basic combinators
| Φ p | bot p -- partial combinators
| effect f Put -- monadic effects
| Prod | Sum | Cond | Iso | Rec

Prod ::= addfst f | addsnd f | keepfstOr | keepsndOr | copy -- create pairs
| remfst f | remsnd f -- destroy pairs
| Put ⊗Put -- product

Sum ::= inj p | injsOr | injl | injr -- create sums
| Put∇Put | Put ∇p Put | Put •∇Put | Put •∇Put -- destroy sums
| uninjl | uninjr -- destroy sums
| Put + Put -- sum

Cond ::= ifthenelse | ifVthenelse | ifSthenelse -- conditional put app.
Iso ::= swap | assocl | assocr -- rearrange pairs

| coswap | coassocl | coassocr -- rearrange sums
| distl | distr -- distr. sums over pairs

Rec ::= in | out -- algebraic data types

Example (list embedding)

• put function

embedAt :: Int → [a]→ a→ [a]
embedAt 0 (x : xs) y = y : xs
embedAt i (x : xs) y = x :

embedAt (i − 1) xs y

• get function

elementAt : Int → [a]→ a
elementAt 0 (x : xs) = x
elementAt i (x : xs) =

elementAt (i − 1) xs

embedAt :: Int → ([a]⇐Identity a)
embedAt 0 = unhead
embedAt n = untail ◦< embedAt (n − 1)

unhead = cons ◦< keepsnd
untail = cons ◦< keepfst

get (embedAt 2) "abcd" = Just ’c’

put (embedAt 2) (Just "abcd") ’x’ = Identity "abxd"

put (embedAt 2) (Just "a") ’x’ = **undefined

Example (list embedding V2)

• put function

embedAt :: Int → [a]→ a→ [a]
embedAt 0 (x : xs) y = y : xs
embedAt i (x : xs) y = x :

embedAt (i − 1) xs y

• get function

elementAt :: Int → [a]→ a
elementAt 0 (x : xs) = x
elementAt i (x : xs) =

elementAt (i − 1) xs

embedAt′ :: Int → ([a]⇐Identity a)
embedAt′ 0 = unhead′

embedAt′ n = untail′ ◦< embedAt′ (n − 1)

unhead′ = cons ◦< keepsndOr (λv → return [])
untail′ = cons ◦< keepfstOr (λ(v : vs)→ return v)

get (embedAt’ 2) "a" = Nothing

put (embedAt’ 2) (Just "a") ’x’ = Identity "axx"

Example (DB projection)

• get function

type Person = (Name,City)
name :: Person→ Name
city :: Person→ City

peopleNames :: [Person]→ [Name]
peopleNames = map name

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo Kiel
Sebastian Tokyo
Tim NewCity
Zhenjiang NewCity

get

put

• put-based lens

map :: (b⇐m a)→ ([b]⇐m [a])
map f = ifVthenelse null (nil ◦< unnil) (cons ◦< (f ⊗map f) ◦< uncons)
peopleNames :: [Person]⇐Identity [Name]
peopleNames = map (addsnd cityOf)

where cityOf (Just s) v = return s
cityOf Nothing v = return "NewCity"

Example (DB projection with environment)

• put-based lens

peopleNames : [Person]⇐Reader [Person] [Name]
peopleNames = map (addsnd cityOf)

where cityOf s n = do people ← ask
case lookup n people of

Just c → return c
Nothing → return "NewCity"

runReaderPut :: (s⇐Reader s v)→ (s → v → s)
runReaderPut put s v = runReader (put (Just s) v) s

Sebastian Kiel
Zhenjiang Tokyo

 Sebastian
 Zhenjiang

 Hugo
 Sebastian
 Tim
 Zhenjiang

Hugo NewCity
Sebastian Kiel
Tim NewCity
Zhenjiang Tokyo

get

runReaderPut put

Example (tree relabelling with state)

• get function

data Tree a = Tip a | Bin (Tree a) (Tree a)

mapTree :: (a→ b)→ (Tree a→ Tree b)
mapTree f (Tip x) = x
mapTree f (Bin l r) = Bin

(mapTree f) (mapTree g)

dropLabels :: Tree (Symbol , a) a
dropLabels = mapTree snd

• put-based lens

mapTree :: (b⇐m a)→ (Tree b⇐m Tree a)
mapTree f = in ◦< (f ⊕mapTree f ⊗mapTree f) ◦< out

freshLabels :: Tree (Symbol , a)⇐State Symbol a
freshLabels = mapTree (addfst freshLabel) where

freshLabel s v → do {s ← State.get; State.put (s + 1); return s }
runStatePut :: s⇐State st v → st → (s → v → s)
runStatePut put st s v = let (s′, st′) = runState (put (Just s) v) st in s′

(0,'b')

(5,'a')

(7,'c') 'b'

'a'

'c'

(1,'x')

(2,'y') (3,'z')

'x'

'y' 'z'

get

runStatePut put 1

More monads...

• exception (Handle failures)

class Monad m⇒ MonadException m where
catch :: m a→ m a→ m a

instance MonadException Maybe where ...

catch fail m = m

catch m fail = m

Inject a tag in the view (using catch)

f ∈ S1⇐µ V1 g ∈ S2⇐µ V2

injException f g ∈ S1 + S2⇐µ V1 ∪ V2

injException :: MonadException m⇒ (s1⇐m v)→ (s1⇐m v)
→ (Either s1 s2⇐m v)

injException f g Nothing v ′ =
liftM Left (put f Nothing v ′) ‘catch‘ liftM Right (put g Nothing v ′)

injException f g (Just (Left s1)) v ′ =
liftM Left (put f (Just s1) v ′) ‘catch‘ liftM Right (put g Nothing v ′)

injException f g (Just (Right s2)) v ′ =
liftM Right (put g (Just s2) v ′) ‘catch‘ liftM Left (put f Nothing v ′)

Example (unwords with exception)

• get function

unwords :: [String]→ String
unwords [] = ""

unwords ws = foldr1 (λw s → w ++ ’ ’ : s) ws

foldr1 :: (a→ a→ a)→ [a]→ a
foldr1 f [x] = x
foldr1 f (x : xs) = f x (foldr1 f xs)

• put-based lens

words :: [String]⇐Maybe String
words = (nil •∇ id) ◦< injException (ignore "") (unfoldr1 (appendWithSep " "))

unfoldr1 :: MonadException m⇒ ((a, a)⇐m a)→ ([a]⇐m a)
unfoldr1 f = (cons∇• wrap) ◦< injException ((id⊗ unfoldr1 f) ◦< f) id

appendWithSep :: Monad m⇒ String → ((String , String)⇐m String)
ignore :: Monad m⇒ e⇐m v

get words ["a","b","c"] = Just "a b c"

put words Nothing "hu go " = Just ["hu","","go",""]

Conclusions

• a novel point-free put-based BX language (flexible, expressive)

• we propose to shift into a put programming style
• programmers write well-behaved put
• language provides unique get for free

• put programming is more powerful than get programming,
not easier, but not necessarily more complex

• this shift is manageable
• the combinators offer different default put behaviors
• more complex put behaviors using monadic effects

• this shift is necessary
• programmers can fully control/specify BXs (predictability)
• more expressive than existing get-based languages (user’s

intentions)

Future Work

Demos: Haskell++

• http://hackage.haskell.org ⇒ putlenses

• type checking & type inference

• better static guarantees and programmability

• fully expressive putlens language ←→ less expressive
higher-level put-based DSL (BiFlux in the works...)

• synthesize more efficient put and get functions

• languages for other domains (e.g., lenses for relational data)

A. Bohannon, B. C. Pierce, and J. A. Vaughan

Relational lenses: a language for updatable views

Principles of Database Systems, 2006.

http://hackage.haskell.org
putlenses

