
Generic Point-free Lenses

Hugo Pacheco Alcino Cunha

DI-CCTC, Universidade do Minho

Mathematics of Program Construction (MPC’10)

Quebec - June 22nd 2010

Motivation

Unidirectional transformations

Data transformations abound in software engineering

S T

Ideally, unidirectional transformations would suffice

Bidirectional transformations (classical approach)

In real MDSE scenarios, we need to run a transformation
backwards

S T

S T

Manual semantics

Expensive, error-prone and a maintenance problem

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 2 / 17

Bidirectional languages

Bidirectional transformations (better approach)

Derive both from the same specification

S T

Clean semantics

Compositional

S T U

Bidirectional languages exist for...2LT (Two-level Transformation)

A B C

a1 b1 c1

a2 b2 c2

A B D

a1 b1 d1

a2 b2 d2

<xml>
 <a>hello
 <a>world
 <a>foo
</xml>

id a

0 hello

1 world

2 hello

<a>

 b b

a

2.5 4

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 3 / 17

A point-free design

An application domain

data Maybe a = Nothing | Just a
data [a] = [] | a : [a]

A syntax for combinators

id : A→ A
◦ : (B → C)→ (A→ B)→ (A→ C)
π1 : A × B → A
× : (A→ C)→ (B → D)→ (A × B → C × D)

A set of calculation/simplification laws

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-Assoc

π1 ◦ (f 4 g) = f ∧ π2 ◦ (f 4 g) = g ×-Cancel

(f × g) ◦ (h4 i) = f ◦ h4 g ◦ i ×-Absor

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 4 / 17

What we have just seen

Refinements

to : A→ C
from : C → A

from ◦ to = id Ref

A C

to

from

�

Abstractions

to : C → A
from : A→ C

to ◦ from = id Abs

C A

to

from

�

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 5 / 17

Projection as an abstraction

Add/Drop element

addRb : A 6 A × B

A

id4 b
''

6 A × B

π1

ee

π1
b : A × B > A

A × B

π1

%%> A

id4 b

gg

fromaddR ◦ toaddR = toπ1 ◦ fromπ1 = π1 ◦ (id4 b) = id

Updating the abstract value

(a1, b1)
toπ1 // a1

update

�� �O
�O
�O
�O

(a2, b) a2
fromπ1

oo

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 6 / 17

A “small” step into lenses

Stateful abstractions

get : C → A
create : A→ C
put : A × C → C

get

create

put

C A�

Properties for well-behaved lenses

CreateGet

C

get

##
> A

create

dd

get ◦ create = id

PutGet

C

get

%%> A

A × C
π1

KK

put

SS

get ◦ put = π1

GetPut

A × C

put

%%> C

get4 id

gg

put ◦ (get4 id) = id

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 7 / 17

Projection as a lens

Drop element

π1
b : A × B Q A

get : A × B → A
get = π1
create : A→ A × B
create = id4 b

A × (A × B)

put=id ×π2

��
A × B

Properties

get ◦ put = π1 ◦ (id ×π2) = π1

put ◦ (get4 id) = (id ×π2) ◦ (π14 id) = π14π2 = id

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 8 / 17

Composition as a lens

Lens composition

∀f : B Q A, g : C Q B. f ◦ g : C Q A

get = getf ◦ getg create = createg ◦ createf
getf ° getg

C A

createg ° createf

� BB �

put = putg ◦ (putf ◦ (id × getg)4π2) : A × C → C
getg

putg

C �

putf

BB A�

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 9 / 17

More non-recursive lens combinators

Grammar for combinators

Lens ::= id | Lens ◦ Lens | !c | Prod | Sum | Iso | Dist
Prod ::= π1

b | π2a | Lens × Lens
Sum ::= Lens •∇ Lens | Lens ∇• Lens | Lens + Lens

| i1∇ Lens | Lens∇ i2
Iso ::= assocl | assocr | coassocl | coassocr

| swap | coswap | distl | distr

· •∇ ·, · ∇• · : (A Q C)→ (B Q C)→ (A + B) Q C

Notable exceptions

NonLens ::= i1 : A→ A + B | i2 : B → A + B
| · : 1→ B
| ·4 · : (A→ B)→ (A→ C)→ (A→ B × C)

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 10 / 17

How about recursion?

Some recursive lenses

length : [A] Q N
get [] = 0
get (x : xs) = (get xs) + 1

plus : N × N Q N
get (0,m) = m
get (n + 1,m) = get (n,m + 1)

create is rather easy to define

A well-behaved definition of put is more difficult to obtain

Question

Can we provide these definitions for free? Yes

Hint

Both length and plus are easy to define using point-free folds
and unfolds

Good: lensify recursion patterns + reuse combinators

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 11 / 17

Cata or fold as a lens

Catamorphism lens

∀f : F A Q A. ([f])F : µF Q A

get : µF → A
get = ([getf])F
create : A→ µF
create = bd(createf)ceF
put : A × µF → µF
put = bd(h)ceF
h : A × µF → F (A × µF)

A × µF
id × outF ��

A × F µF

id ×F get ��
4π2

||

A × F A
putf ��

F A × F µF

fzipF create
��

F (A × µF)

Functor zipping preserves abstract values

fzipF : (A × C)→ F A × F C → F (A × C)

F π1 ◦ fzipF f = π1 Fzip-Cancel

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 12 / 17

Cata or fold as a lens (termination)

Properties

get([f]) ◦ create([f]) = id ⇔ ([getf]) ◦ bd(createf)ce = id
get([f]) ◦ put([f]) = π1 ⇔ ([getf]) ◦ bd(h)ce = π1
put([f]) ◦ (get([f])4 id) = id ⇔...

Recursive anamorphisms

µF F µF
inFoo

A

[bd(h)ce]F
OO

h
// F A

F [bd(h)ce]F
OO

Anamorphisms can generate infinite values

The composition of a cata after an ana (hylo) is not always
well-defined and is difficult to reason about

([g]) ◦ bd(h)ce v id ⇐ g ◦ h = id

Need anamorphisms that always terminate

h well-founded/F-reductive/recursive ⇒ [bd(h)ce] recursive ana

Safe composition in Set (recursive hylo uniqueness)

([g]) ◦ [bd(h)ce] = f ⇔ g ◦ F f ◦ h = f

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 13 / 17

An (extremely) well-behaved case

Length

length is definable as a catamorphism:

lengtha = ([inN ◦ (id +π2
a)])LA : [A] Q N

We need to prove that create length and put length are recursive

However, length is also definable as an anamorphism:

lengtha = [bd((id +π2
a) ◦ outLA)ce]N : [A] Q N

Natural lens

A recursive function f : µF → µG is a well-behaved lens if
there exists a natural transformation η : F →̇ G such that:

f = ([inG ◦ η])F = [bd(η ◦ outF)ce]G
Good: η is a natural lens ⇒ termination is guaranteed

Mapping is another example of a natural lens:

map f = ([inLB ◦ (id + f × id)]) = [bd((id + f × id) ◦ outLA)ce]

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 14 / 17

(Almost) general recursive lenses

Plus

plus is definable as a recursive hylomorphism:

plus : N × N Q N
plus = ([in ◦ (out∇ i2)])N⊕ Id

◦ [bd((π2 + id) ◦ distl ◦ (out × id))ce]N⊕ Id

N × N
distl◦(outN × id)//

plus

��

(1 × N) + (N × N)
π2 + id // N + (N × N)

(N⊕ Id) plus
��

N N + N
id ∇ succ

oo

Given that the co-algebras are recursive, a well-behaved lens
for plus is automatically derived

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 15 / 17

Conclusions

Pros & Cons

+ Construct a bidirectional functional language from standard
point-free combinators

+ Support for recursive lenses by using recursion patterns

+ Identify precise termination conditions for bidirectional folds
and unfolds

– We cannot discard termination proofs for many recursive
lenses

– Not all point-free combinators are well-behaved lenses

Demo: Haskell++

http://hackage.haskell.org ⇒ pointless-lenses

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 16 / 17

http://hackage.haskell.org
pointless-lenses

Future work

A point-free lens calculus ⇒ bidirectional program calculation

lift the point-free laws to lenses:

π1 ◦ (f × g) = f ◦ π1 ×-Cancel

f ◦ ([g])F = ([h])F ⇐ f ◦ g = h ◦ F f Cata-Fusion

optimization of complex bidirectional transformations

Introduce support for data invariants

some transformations involve structures of a particular shape
can sort : [A]→ [A] be made into a well-behaved lens?

Provide a better treatment of termination

terminating anamorphisms ⇐ well-founded coalgebras
link with existing static termination checkers

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 17 / 17

	Introduction
	Lenses
	Recursive lenses
	Conclusion

