Generic Point-free Lenses

Hugo Pacheco Alcino Cunha
DI-CCTC, Universidade do Minho
Mathematics of Program Construction (MPC'10)

Quebec - June 22nd 2010

Unidirectional transformations

@ Data transformations abound in software engineering

S — T

@ Ideally, unidirectional transformations would suffice

Bidirectional transformations (classical approach)

@ In real MDSE scenarios, we need to run a transformation
backwards

@ Manual semantics

@ Expensive, error-prone and a maintenance problem

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 2/17

Bidirectional languages

Bidirectional transformations (better approach)

@ Derive both from the same specification
T

s T
@ Clean semantics

o Compositional

<mi> -
id a
<a>hello
[e P, | heloct T Jrelo
al bl ¢l al bl di <asfoocla> [$—0u _—1 world
a2 b2 2 W~ a2 b2 d </xml> 2 |hello

.
V —f— 25 i s

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 3/17

A point-free design

@ An application domain

data Maybe a = Nothing | Just a
data [a] =[] | a:[a]

@ A syntax for combinators
id :A— A
c:(B=-C)—=(A—=B)— (A= ()
m:AXB—A
x: (A->C)—»(B—D)—(AxB—CxD)

@ A set of calculation/simplification laws

fo(goh)=(fog)oh o-AssocC
mo(fAg)=FfAmo(fAg)=g Xx-CANCEL
(Fxg)o(hAi)=FfohAgoi x-ABSOR

y

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 4/17

What we have just seen

to :A—C to
from: C — A A /;\

C

from

fromo to = id REF

Abstractions

to :C—A to
from: A— C C /;\ A

too from =id ABS

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 5/17

Projection as an abstraction
Add/Drop element

addRP A< Ax B mbP:AxB>A
id Ab /E\
A< AxB AxB > A
N~ - ~_
e id A b

fromaddr © t0addr = ton, o fromy, = my o (id A b) = id

@ Updating the abstract value

t
(31,b1)£>31

¢ update

(a2, b) p—

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 6/17

A “small” step into lenses
Stateful abstractions

get

get C— A T

create: A — C c .= = A

put Ax C—C e

Properties for well-behaved lenses

o CREATEGET o PuTrGET e GETPUT
get get put
/\ /\
C ‘\2/ A C Z A A x (,;_2/ C
create \ AxC / get Aid
put U
get o create = id get o put = 3 put o (get A id) = id

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 7/17

Projection as a lens

Drop element

Ml Ax B> A

get AxXB—A A x (A x B)
get =T »
create:A— A x B put=id X
create = id A\ b Ax B

get o put = 1 o (id X) = 71

put o (get Aid) = (id x mp) o (m1 Aid) = w1 Ao = id

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 8/17

Composition as a lens

Vi:BE>A g:C>B. fog:C>A

get = gety o getg create = createg o creater
get;- gety
¢ — = 8 B a

<\/

createg 3 createf

put = putg o (puty o (id x getg) Amp):Ax C— C

(
¢

putg put;

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 9/17

More non-recursive lens combinators

Lens ::=id | Lens o Lens | ! | Prod | Sum | Iso | Dist
Prod ::= m1® | m? | Lens x Lens
Sum = Lens ¥ Lens | Lens N, Lens | Lens + Lens
| i1V Lens| LensV i
Iso = assocl | assocr | coassocl | coassocr
| swap | coswap | distl | distr

NV (AR C) = (B2 C) = (A+B)> C |

Notable exceptions

NonlLens :=ih:A—A+B|h:B—A+B
| -:1—> B
| - A:(A-B)=(A—=-C)—= (A= BxC()

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 10/17

How about recursion?

length : [A] > N plus:N x N> N
get [] =0 get (0, m) =m
get (x:xs) = (get xs) + 1 get (n+1,m) = get (n,m+1)

@ create is rather easy to define

@ A well-behaved definition of put is more difficult to obtain

y

@ Can we provide these definitions for free? Yes I

@ Both length and plus are easy to define using point-free folds
and unfolds

@ Good: lensify recursion patterns + reuse combinators

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 11/17

Cata or fold as a lens
Catamorphism lens

VEFAZA (f)p:pnF=A A x pF
id x out,:\L
get 1 uF — A Ax F uF
get - ([gethF id x F get\L
create : A — uF Ax FA) Am
create = [creater) g put; i
pUtiAX/LF—)MF FAXF/LF
put = [h]F fzipg create\L
h:AXx uF — F (A X uF) F (A x uF)
Functor zipping preserves abstract values

fzipr :(Ax C) > FAXFC—F(Ax ()

F w10 fzipp f =m Fzip-CANCEL

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 12 /17

Cata or fold as a lens (termination)

Properties
gets) o createqs) = id < (getr]) o [creater) = id

get(s) o put(s) = m < (gete) o [h) = m
putgs) © (get([f]) Nid) =id &...

| A

Recursive anamorphisms

@ Anamorphisms can generate infinite values
@ The composition of a cata after an ana (hylo) is not always
well-defined and is difficult to reason about ,UF<in—F F uF
(g)o(h Cid<goh=id On [F 181
o Need anamorphisms that always terminate A—>F A
o h well-founded/F-reductive/recursive = [[h]] recursive ana

@ Safe composition in SET (recursive hylo uniqueness)
(g)eolh)=f«< goFfoh=f

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses

13/17

An (extremely) well-behaved case

@ length is definable as a catamorphism:
length® = (iny o (id +m27)]),, : [A] BN
@ We need to prove that createjength and put eng, are recursive

@ However, length is also definable as an anamorphism:
length® = [(id +m27) o outy,), : [A] = N

V.
NEMTEINENS

@ A recursive function f : uF — uG is a well-behaved lens if
there exists a natural transformation n: F — G such that:
f=(ingon)g = [nooute)¢
@ Good: 7 is a natural lens = termination is guaranteed

@ Mapping is another example of a natural lens:
map f = (iny, o (id + f x id)]) = [(id + f x id) o out;]

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 14 /17

(Almost) general recursive lenses

@ plus is definable as a recursive hylomorphism:
plus : Nx NN
plus = ([in o (out V i2))y & 14
o [[(m2+id) o distl o (out x id)]y e 1

distlo(outy X id) 7o + id

NxN—— (1 xN)+ (N xN)—=N+ (N x N)
plusi (N Id) plusi

N id V succ N+N

@ Given that the co-algebras are recursive, a well-behaved lens
for plus is automatically derived

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses

15 /17

Conclusions

+ Construct a bidirectional functional language from standard
point-free combinators

+ Support for recursive lenses by using recursion patterns

+ Identify precise termination conditions for bidirectional folds
and unfolds

— We cannot discard termination proofs for many recursive
lenses

— Not all point-free combinators are well-behaved lenses

Demo: Haskell++
@ http://hackage.haskell.org = pointless-lenses

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 16 /17

http://hackage.haskell.org
pointless-lenses

@ A point-free lens calculus = bidirectional program calculation
o lift the point-free laws to lenses:

mo(fxg)=fom x-CANCEL
fo(gdp=(n)p<fog=hoFf CATA-FUSION

e optimization of complex bidirectional transformations

@ Introduce support for data invariants

e some transformations involve structures of a particular shape
o can sort : [A] — [A] be made into a well-behaved lens?

@ Provide a better treatment of termination

e terminating anamorphisms < well-founded coalgebras
o link with existing static termination checkers

Hugo Pacheco, Alcino Cunha Generic Point-free Lenses 17 /17

	Introduction
	Lenses
	Recursive lenses
	Conclusion

