
A clear picture of lens laws

—Functional Pearl—

Sebastian Fischer1, Zhenjiang Hu2, and Hugo Pacheco3

1 Christian-Albrechts-Universität, Kiel, Germany
sebf@informatik.uni-kiel.de

2 National Institute of Informatics, Tokyo, Japan
hu@nii.ac.jp

3 Cornell University, Ithaca, NY, USA
hpacheco@cs.cornell.edu

Abstract. A lens is an optical device which refracts light. Properly
adjusted, it can be used to project sharp images of objects onto a screen—
a principle underlying photography as well as human vision. Striving
for clarity, we shift our focus to lenses as abstractions for bidirectional
programming. By means of standard mathematical terminology as well as
intuitive properties of bidirectional programs, we observe different ways to
characterize lenses and show exactly how their laws interact. Like proper
adjustment of optical lenses is essential for taking clear pictures, proper
organization of lens laws is essential for forming a clear picture of different
lens classes. Incidentally, the process of understanding bidirectional lenses
clearly is quite similar to the process of taking a good picture.

By showing that it is exactly the backward computation which defines
lenses of a certain standard class, we provide an unusual perspective, as
contemporary research tends to focus on the forward computation.

1 Scene selection

Select the scene to determine the topic of
what will be seen in your picture.

A lens [3] is a program that can be run forwards and backwards. The forward
computation extracts a view from a source and the backward computation updates
a given source according to a given view producing a new source. Using Haskell
notation [1], a lens consists of a view extraction function get :: Source → View
and a source update function put :: Source → View → Source.

Not every combination of such functions is reasonable. Different algebraic
laws between get and put have been proposed to define a hierarchy of lens classes.
For the sake of clarity, we present all laws in terms of total functions. Some
programmers find it easier to define partial functions for certain problems, and
our results can be adjusted to this setting.

The smallest among the lens classes we investigate is that of bijective lenses
where get and put s are bijective inverse functions of each other for all sources s .

∀ s, s ′ put s (get s ′) = s ′ StrongGetPut

∀ s, v get (put s v) = v PutGet

Bijective lenses require a one-to-one correspondence between the Source and
View types which does not fit the asymmetric types of get and put . In fact, the
source argument of put is not needed for bijective lenses because the put function
builds the new source using only the view and discarding the input source.

In the broader class of very well-behaved lenses, the get function is allowed
to discard information. Very well-behaved lenses satisfy the above PutGet law as
well as the two following laws.

∀ s put s (get s) = s GetPut

∀ s, v , v ′ put (put s v ′) v = put s v PutPut

The GetPut law is a more permissive variant of the StrongGetPut law because it
passes the same source values to get and put , allowing (and requiring) the put
function to reconstruct information discarded by get . The PutPut law requires
that source updates overwrite the effect of previous source updates.

That law is dropped in an even broader class of well-behaved lenses which
satisfy only the PutGet and GetPut laws, requiring that source updates reflect
changes in given views but do not perform any changes if views do not change.

The presented lens classes are closed under lens composition [3], i.e., for any
two lenses in a class there is a composed lens (where the get function is the
composition of the underlying get functions) that is itself in that class.

Example 1. As an example lens consider the following pair of functions.

getFirst (x ,) = x
putFirst (, y) v = (v , y)

Applying putFirst is analogous to changing the width of a picture without
changing its height. We can verify the PutGet and GetPut laws as follows.

getFirst (putFirst (x , y) v)
= { by definition of putFirst }

getFirst (v , y)
= { by definition of getFirst }

v

putFirst (x , y) (getFirst (x , y))
= { by definition of getFirst }

putFirst (x , y) x
= { by definition of putFirst }

(x , y)

Consequently, getFirst and putFirst form a well-behaved lens between an arbitrary
type of pairs and the type of their first components. Specialized to the type
(R+,R+) → R+, the function getFirst also forms a well-behaved lens with a
different put function:

putScaled (x , y) v = (v , v ∗ y / x)

The function putScaled maintains the ratio of the components of the pair, which
is analogous to resizing a picture without distorting it.

Both put functions satisfy the PutPut law because the result of an update
does not depend on previous updates.

Example 1 shows an inherent ambiguity in the definition of (very) well-behaved
lenses based on get alone: the same get function can be combined with different
put functions to form a valid lens. One cannot completely specify the behaviour
of all lenses by only writing forward computations.

We select our scene to show certain laws of asymmetric bidirectional transfor-
mations and soon cast new light on the presented laws using old searchlights.

2 Camera setup

Set up the camera to meet technical
requirements for capturing your picture.

For taking our picture, we remind ourselves of mathematical properties that
we later use to describe implications of the lens laws.

Surjectivity is a property of functions which requires that every element in
the codomain of a function is the image of some element in its domain. More
formally, a function f :: A→ B is surjective if and only if the following property
holds.

∀ b :: B ∃ a :: A f a = b

Surjectivity of f :: A→ B , therefore, requires that A is at least as big as B .

Conversely, injectivity is a property of functions which requires different
arguments to be mapped to different results. More formally, a function f ::A→ B
is injective if and only if the following property holds.

∀ a, a ′ :: A f a = f a ′⇒ a = a ′

Injectivity of f :: A→ B , therefore, requires that B is at least as big as A.

The technical requirements for taking our picture are standard properties of
functions. We hope that describing lens laws based on established mathematical
terminology helps to gain simple intuitions about lenses in different classes.

3 Perspective

Choose a perspective exposing elements of
your picture you want to highlight.

The put functions are essential elements in our picture of lenses. We now
highlight certain necessary conditions which must be satisfied for put functions
in all lens classes discussed in this paper.

The GetPut law requires put to satisfy the following law.

∀ s ∃ v put s v = s SourceStability

Proof. To verify that GetPut implies SourceStability, let s be an arbitrary source
value and v = get s in the following calculation.

put s v
= { by definition of v }

put s (get s)
= { GetPut }

s

SourceStability requires that every source is stable under a certain update. It
implies that put is surjective in the following sense (equivalent to surjectivity of
uncurry put .)

∀ s ∃ s′, v put s ′ v = s PutSurjectivity

SourceStability is stronger than PutSurjectivity. For example, the putShift function
defined below, which places the view in the first component of the source and
moves the old first component to the second, satisfies the latter property but not
the former, because there is no v such that putShift (1, 2) v = (1, 2).

putShift (x ,) v = (v , x)

Consequently, putShift cannot be part of a well-behaved lens.
PutGet also implies a necessary condition on well-behaved put functions.

∀ s, s ′, v , v ′ put s v = put s ′ v ′ ⇒ v = v ′ ViewDetermination

Proof. We can use the PutGet law to conclude ViewDetermination as follows.

put s v = put s ′ v ′

⇒ { by applying get to each side }
get (put s v) = get (put s ′ v ′)

⇒ { PutGet }
v = v ′

ViewDetermination requires that a view used to update a source can be determined
from the result of an update, regardless of the original source. It implies the
following injectivity property of put functions.

∀ s put s is injective PutInjectivity

ViewDetermination is stronger than PutInjectivity. For example, the putSum func-
tion defined below, which adds the source to the view to produce an updated
source, satisfies the latter property but not the former, because putSum 2 3 =
putSum 1 4 and 3 6= 4.

putSum m n = m + n

Consequently, putSum cannot be part of a well-behaved lens.
PutInjectivity confirms our previous intuition about the asymmetry of the

Source and View types of a well-behaved lens: the Source type needs to be at
least as big as the View type. From our examples, we already concluded that
the opposite is not necessary: get may discard information that put is able to
reconstruct based on a given source.

We finally observe yet another necessary condition on put functions that is
implied by the combination of the PutGet and GetPut laws.

∀ s, v put (put s v) v = put s v PutTwice

Proof. put (put s v) v
= { PutGet }

put (put s v) (get (put s v))
= { GetPut }

put s v

PutTwice is weaker than PutPut, because it only requires source updates to be
independent of previous updates that were using the same view. For example, the
putChanges function defined below places the given view in the first component
of the source and counts the number of changes in the second, which is anologous
to counting how often a picture (in the first component) has been resized. It
satisfies PutTwice but not PutPut.

putChanges (x , c) v = (v , if x =I v then c else c + 1)

So, although putChanges forms a well-behaved lens with getFirst it cannot be
part of a very well-behaved one.

The following proposition summarizes the properties of put functions that we
observed in this section.

Proposition 1. Every put function of a well-behaved lens satisfies SourceStabil-
ity, ViewDetermination, PutSurjectivity, PutInjectivity, and PutTwice.

We choose a perspective that highlights the put function by masking the get
function in implications of the standard formulation of lens laws. Our focus will
be justified by the central role of put which we are about to reveal.

4 Composition

Compose picture elements to convey your
message, applying appropriate technique.

We now align our camera to put the described properties into a position
that clarifies their role in our picture. We do not concern ourselves with the
composition of lenses (which is orthogonal to our focus on put functions) but
with the composition of lens laws to characterize well-behaved lenses using the
necessary conditions on put functions presented in Section 3.

The following theorem shows that the put function in a well-behaved lens
determines the corresponding get function and that every put function which
satisfies the properties identified in Section 3 is part of a well-behaved lens.

Theorem 1. Let put :: Source → View → Source be a function that satisfies
SourceStability and ViewDetermination. Then there is a unique get function that
forms a well-behaved lens with put.

Proof. Uniqueness Let get1 , get2 :: Source → View be functions that form a
well-behaved lens with put. Then the following equation holds for all sources s.

get1 s
= { by GetPut law for get2 }

get1 (put s (get2 s))
= { by PutGet law for get1 }

get2 s

Existence Let s be a source value. Due to SourceStability, there is a view v such
that put s v = s. Because of ViewDetermination this view v is unique because
for a view w with put s w = s we have put s v = put s w ⇒ v = w. Hence,
setting get s = v for the v such that put s v = s defines get s uniquely.
To conclude well-behavedness, we observe the GetPut and PutGet laws for this
definition of get. For all sources s, the following equation, i.e., the GetPut
law, follows from the definition of get based on SourceStability.

put s (get s)
= { by definition of get }

put s v { with v such that put s v = s }
= { put s v = s }

s

For all sources s and views v, the following equation, i.e., the PutGet law,
follows from the definition of get and ViewDetermination.

get (put s v)
= { by definition of get }

v ′ { with v ′ such that put (put s v) v ′ = put s v }
= { ViewDetermination }

v

Choosing a perspective that highlights properties of put functions, we observed
that some of them can be composed to characterize well-behaved lenses. We
used equational reasoning as our techique to show that certain properties of put
functions uniquely determine get functions in well-behaved lenses. We neither
delve into the question (raised by the non-constructive way of defining get)
whether there is always a computable get function nor do we reflect on how a
corresponding get function could be derived from put .

5 Post-editing

Apply changes during post-editing to refine
your picture.

In order to increase the contrast in our picture, we investigate the internal
structure of the properties of put functions presented in Section 3. The following
theorem characterizes the conditions of Theorem 1 to provide an alternative way
to specify the sufficient and necessary conditions on put functions in well-behaved
lenses based on standard mathematical terminology.

Theorem 2. For put :: Source → View → Source, the following conjunctions
are equivalent.

1. SourceStability ∧ ViewDetermination
2. PutSurjectivity ∧ PutInjectivity ∧ PutTwice

Proof. 1⇒ 2 Because of Theorem 1, put is part of a well-behaved lens. Hence, it
satisfies all conditions summarized in Proposition 1.

2⇒ 1 First, we conclude SourceStability from PutSurjectivity and PutTwice.

s
= { by PutSurjectivity, choosing s ′ and v with put s ′ v = s }

put s ′ v
= { PutTwice }

put (put s ′ v) v
= { put s ′ v = s }

put s v

Now, we conclude ViewDetermination from PutInjectivity and PutTwice.

put s v = put s ′ v ′

⇒ { by applying PutTwice on each side }
put (put s v) v = put (put s ′ v ′) v ′

⇒ { put s v = put s ′ v ′ }
put (put s v) v = put (put s v) v ′

⇒ { by injectivity of put (put s v) }
v = v ′

Theorem 2 provides an alternative characterization of put functions that are
part of well-behaved lenses. It shows how the PutTwice law closes the gap
between the combination of SourceStability with ViewDetermination and the
weaker combination of PutSurjectivity with PutInjectivity.

By incorporating PutPut into each of the conjunctions describing well-behaved
put functions, we can also characterize very well-behaved lenses based on put .
The difference that makes well-behaved lenses very well-behaved is by definition
already expressed using only the put function.

After post editing, our picture shows how simple mathematical properties of
functions play together to give rise to established laws for asymmetric bidirectional
transformations.

6 Perception

Focus on essentials to let others perceive
the message of your picture.

Our picture provides a novel perspective on bidirectional lenses. While there
may be in general more than one put function that can be combined with a
given get function to form a (very) well-behaved lens, our view on the lens laws
emphasizes that put functions determine corresponding get functions uniquely in
all lens classes discussed in this paper. While the idea of put determining get may
be folklore in the circle of lens specialists, we are the first to put it in focus. Our
contribution, therefore, is to a lesser extent based on directly applicable technical
novelty than it aims to clarify formal properties of lenses in simple terms to gain
insights into an already established theory.

Theorem 1 provides a concise characterization of well-behaved lenses only
based on the put function. Theorem 2 provides an alternative, more elegant,
put-based characterization in terms of standard mathematical terminology. As
far as we know, there has not been a peer-reviewed publication of a put-based
lens characterization.

Foster gives a similar characterization in his PhD thesis [2] based on properties
we present in Section 3. He does not use one of the conjunctions characterized
in Theorem 2 but a redundant and, therefore, less revealing combination. We
believe that the clarification of the role of PutTwice in our Theorem 2 is novel.

The contemporary focus on get functions is incomplete, because a put-based
characterization shows that it is exactly the put function that programmers need
to define in order to specify (very) well-behaved lenses completely. Similar to
how lens combinators allow to express compositions of bidirectional programs in
a single definition, defining put and deriving get would allow to specify primitive
lenses without giving a separate implementation for each direction.

Implementations of lens combinators in Haskell such as the lens4 or the
fclabels5 packages usually require very well-behaved implementations of both

4 http://hackage.haskell.org/package/lens
5 http://hackage.haskell.org/package/fclabels

http://hackage.haskell.org/package/lens
http://hackage.haskell.org/package/fclabels

directions of primitive lenses. Deriving the get function automatically from put
functions would be beneficial especially for supporting more complex synchroniza-
tion strategies, because programmers would have to maintain only one function
(not two corresponding ones) for each strategy. Our observations show that a
put-based approach supports even less restrictive lens combinators that only
require well-behavedness.

Acknowledgements

We appreciate the help of Janis Voigtländer, Jeremy Gibbons, Alcino Cunha,
Nikita Danilenko, Insa Stucke, and José Nuno Oliveira who have looked at drafts
of our picture.

References

1. Bird, R.S.: Introduction to Functional Programming Using Haskell. Prentice-Hall
(1998), http://www.cs.ox.ac.uk/publications/books/functional/

2. Foster, J.: Bidirectional Programming Languages. Ph.D. thesis, University of Penn-
sylvania (December 2009)

3. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems 29(3), 17
(2007)

http://www.cs.ox.ac.uk/publications/books/functional/

	A clear picture of lens laws

