
Writing Bidirectional Model Transformations
as Intentional Updates

Tao Zan
The Graduate University for

Advanced Studies
Tokyo, Japan

zantao@nii.ac.jp

Hugo Pacheco
National Institute of

Informatics
Tokyo, Japan

hpacheco@nii.ac.jp

Zhenjiang Hu
National Institute of

Informatics
Tokyo, Japan

hu@nii.ac.jp

ABSTRACT
Model synchronization plays an important role in model-
driven software development. Bidirectional model transfor-
mation approaches provide techniques for developers to spec-
ify the bidirectional relationship between source and target
models, while keeping related models synchronized for free.
Since models of interest are usually not in a one-to-one
correspondence, this synchronization process is inherently
ambiguous. Nevertheless, existing bidirectional model trans-
formation tools focus mainly on enforcing consistency and
provide developers only limited control over how models are
synchronized, solving the latent ambiguity via default strate-
gies whose behavior is unclear to developers. In this paper,
we propose a novel approach in which developers write update
programs that succinctly describe how a target model can be
used to update a source model, such that the bidirectional
behavior is fully determined. The new approach mitigates
the unpredictability of existing solutions, by enabling a finer
and more transparent control of what a bidirectional trans-
formation does, and suggests a research direction for building
more robust bidirectional model transformation tools.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Specialized application languages

General Terms
Languages, Design

Keywords
Bidirectional transformation, model-driven development, up-
date language, model sychronization

1. INTRODUCTION
The Model-Driven Engineering (MDE) perspective to soft-

ware development focuses on models as the primary develop-
ment artifact. In the same model-driven ecosystem, various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

models may naturally coexist to express different but inter-
related concepts (like different views of the same entity or
entities at different levels of abstraction), and transforming
between these loosely similar models is a typical problem in
MDE. Ideally, such transformations should be bidirectional
(or multi-directional), in the sense that a single artifact spec-
ifies how we can mutually transform between pairs of models
in order to keep them consistent.

Over the last 10 years, a few bidirectional model trans-
formation [5, 2] approaches have been proposed to facilitate
the consistent development of models. The most popular
approaches in MDE are the OMG’s Query/View/Transfor-
mation (QVT) standard [11] —in particular the QVT Re-
lations (QVT-R) language— and Triple Graph Grammars
(TGGs) [13], that prescribe writing a bidirectional trans-
formation as a declarative consistency relation between two
meta-models. Other transformational approaches consider
writing a standard unidirectional transformation as the con-
sistency relation, and deriving a suitable backward transfor-
mation, as followed by SyncATL [15] or GRoundTram [6].

As most interesting examples of bidirectional transforma-
tions are not bijective [14], there may be multiple ways to
transform two models into a consistent state, introducing
ambiguity. Despite of this fact, existing bidirectional model
transformation tools focus mainly on enforcing consistency,
and each considers only one particular strategy (out of a
myriad possible) to translate a non-deterministic specifica-
tion into an actual bidirectional transformation procedure,
of which developers have little or no control.

The lack of a clear (deterministic) semantics has been one
of the major issues hindering the serious practical adoption
of bidirectional transformation tools. Quoting Stevens [14]:

The developer needs full control of what the trans-
formation does. [...] We claim that determinism
is necessary in order to ensure, first, that devel-
opers will find tool behaviour predictable, and
second, that organisations will not be unaccept-
ably “locked in” to the tool they first use.

In this paper, we propose a novel programming by update
approach to define a wide class of bidirectional model trans-
formations that have a flow of information in a particular
direction. In our approach, developers write update pro-
grams that describe how to embed a target model as an
update on a source model. An update in our sense allows to
express the relationship between source and target models
in a simple way, as in the relational approach, combined
with additional actions that supply the missing pieces to
tame the ambiguity in bidirectional behavior. In sharp con-

Figure 1: Class diagrams of the Person and Tokyoite.

trast to existing approaches, our approach supports a more
predictable bidirectional programming style that features a
finer and more transparent control of what a bidirectional
transformation does.

2. A MOTIVATING EXAMPLE
As a very simple example of a typical bidirectional model

transformation, imagine that we have a source set of people,
each person having a name and a city where he/she lives,
and a target set of tokyoites, each consisting of the name of a
person living in Tokyo. The corresponding source and target
meta-models are represented in Figure 1. We can easily write
a QVT-R transformation (though it would be better called a
consistency relation) that specifies the relationship between
people and tokyoites:

transformation p2t (people:People, tokyoites:Tokyoites){
top relation person2tokyoite {
pn : String;
domain people person:Person
{ name = pn, city = ’Tokyo’};

domain tokyoites tokyoite:Tokyoite { name = pn};
}}

This QVT-R bidirectional transformation reads that for each
person living in Tokyo in the source domain there exists a
tokyoite with the same name, and vice-versa.

Even for this simplistic example, the consistency relation
is deterministic in one of the directions (for each set of people
there is exactly one set of tokyoites) but it is not bijective,
since there may be arbitrarily many sets of people related
with the same set of tokyoites, namely all those with the
same people living in Tokyo.

Therefore, the behavior of the concrete bidirectional trans-
formation that is derived from this specification will depend
on the underlying bidirectionalization strategy used by each
particular tool. For instance, the backward transformation
inferred by EMoflon [1] (TGGs) would ignore current source
people and generate a new set of people afresh from a new
set of tokyoites; Echo [10] (QVT-R) would return a non-
deterministic choice between all consistent source sets at
a minimal distance to the current source set under some
distance measure; while SyncATL or GRoundTram would
try to propagate the modifications made to the view set of
tokyoites as inferred replace/insert/delete operations on the
current source set of people1.

Unfortunately, the results provided by existing bidirec-
tional model transformation tools often come as a (unsatis-
factory) surprise to the developer that specifies a bidirectional
transformation. This is because, independently of the tool
that is used, he/she can not clearly understand nor com-
pletely control what the bidirectional transformation does.

1There exist many other bidirectional model transformation
tools, including other implementations of TGGs and QVT-R
and miscellaneous bidirectional programming languages.

3. WRITING INTENTIONAL UPDATES
In this section, we illustrate our novel bidirectional model

transformation approach of writing bidirectional updates on
a source meta-model to reflect the content of a target meta-
model, and exemplify how our language can naturally express
different intentional bidirectional synchronization strategies.

We will assume that models are concretely encoded in XMI,
the standard XML interchange convention for representing
models prescribed by the OMG.

3.1 Multiple update strategies
In our proposed language, we can write the previous QVT-

R bidirectional transformation as the following update. (A
more detailed description of the syntax and semantics of our
language will be given in the next section.)

PROCEDURE p2t($people:People, $tokyoites:Tokyoites) =
UPDATE $person IN $people/Person BY
{
UNMATCHV -> CREATE VALUE

<Person name=’’ city=’Tokyo’ </Person>
}
FOR VIEW $tokyoite IN $tokyoites/Tokyoite
MATCHING BY @name
WHERE @city = ’Tokyo’

The intuition of this update is similar to the QVT-R rela-
tion — for each person in a source domain, match it with
a view tokyoite if the person lives in Tokyo— but there are
a few diverging nuances. The first is that it has particular
direction —update a source using a view— what motivates
the wording “view” instead of “target” and plays a crucial
role in the design of our language. Second, it also reads to
create new persons living in Tokyo for tokyolites that do
not have matching persons. Third, instead of the relational
“for all there exists” semantics, matching conditions have a
more procedural meaning and can be understood as keys
that guide the synchronization of source and view elements.

These three details support the claim that our update
language allows users to intuitively control the behavior of
a bidirectional transformation; the design of our language
guarantees that the forward transformation is deterministic,
and “matching”/“unmatching” conditions solve the ambiguity
for the backward transformation.

To understand more precisely the meaning of our update,
consider two (inconsistent) source and view models:

<xmi:XMI xmlns="People">
<Person name="Hugo" city="Tokyo"/>
<Person name="Sebastian" city="Kiel"/>
<Person name="Zhenjiang" city="Tokyo"/>

</xmi:XMI>

<xmi:XMI xmlns="Tokyoites">
<Tokyoite name="Zhenjiang" />
<Tokyoite name="Tao" />

</xmi:XMI>

that we want to synchronize by reflecting the view informa-
tion as a source update. Applying our update, we get the
following updated source that is consistent with the view.

<xmi:XMI xmlns="People">
<Person name="Sebastian" city="Kiel"/>
<Person name="Zhenjiang" city="Tokyo"/>
<Person name="Tao" city="Tokyo"/>

</xmi:XMI>

This update keeps Sebastian that didn’t live in Tokyo in the
original source, but deletes Hugo that lived in Tokyo in order
to ensure that the updated source is consistent with the view
tokyoites.

Even being reasonable for many situations, this strategy is
not the only possible one; for example, if the user of the view
works for the Tokyo municipal council, deleting people from
the view may actually mean that such person just moved to
another city instead of disappearing from the source database.
We can easily describe this alternative update strategy by
adding an additional unmatching condition to our update:

PROCEDURE p2t’($people:People, $tokyoites:Tokyoites) =
UPDATE $person IN $people/Person BY {
UNMATCHV -> CREATE VALUE

<Person name=’’ city=’Tokyo’ </Person>
| UNMATCHS -> KEEP $person;

REPLACE IN $person/city WITH ’Ithaca’
}
FOR VIEW $tokyoite IN $tokyoites/Tokyoite
MATCHING BY @name
WHERE @city = ’Tokyo’

Running this second update moves people like Hugo to a
new city, in this case Ithaca, producing the updated source:

<xmi:XMI xmlns="People">
<Person name="Hugo" city="Ithaca"/>
<Person name="Sebastian" city="Kiel"/>
<Person name="Zhenjiang" city="Tokyo"/>
<Person name="Tao" city="Tokyo"/>

</xmi:XMI>

3.2 Bidirectional semantics of updates
Despite the emphasis of our approach is on writing updates,

update programs in our proposed language have a bidirec-
tional interpretation. For an update program, we derive an
update function U(s, v′) = s′, that applies an update to a
source s so that the updated source s′ is consistent with a
given view v′, and a query function Q(s) = v, that computes
a consistent view v for a given source s.

For our two sample update programs, the derived query
function will be the same —filter only the people living in
Tokyo as tokyoites— because they only differ for unmatched
source people that lived in Tokyo. Such query is semantically
equivalent to the following XQuery code.

<xmi:XMI xmlns="Tokyoites">
{ for $person in doc("people.xml")/xmi:XMI/Person

where $person/@city = ’Tokyo’
return <Tokyoite name="{$person/@name}"/> }

</xmi:XMI>

To guarantee that a query Q conveys the notion of consis-
tency between sources and views, our language is carefully
designed to ensure that the consistency relation is deter-
ministic, so that modelling it by a function is appropriate.
Moreover, the bidirectional semantics of our language satis-
fies two basilar synchronization properties; that an update
U consistently embeds view information to the source:

U(s, v′) = s′ ⇒ Q(s′) = v′

and that it does not update already consistent sources:

Q(s) = v ⇒ U(s, v) = s

These two properties are commonly found for view up-
dating in the database community and for bidirectional pro-
gramming in the programming languages community [5].

Figure 2: Our update-based bidirectional model
transformation framework.

4. LANGUAGE AND FRAMEWORK
The language that we have presented so far implicitly

assumes a concrete XML-centric representation of models and
meta-models. This is because our design is not particularly
restricted to model-driven bidirectional transformations, but
can be widely used for a variety of data that is nowadays
stored in XML formats. Models can be naturally represented
as XML, especially using XMI, as prescribed for Ecore models
in the Eclipse Modeling Framework (EMF).

Instead of writing a new language from scratch, we at-
tempt to integrate our approach with existing work on XML
database updates. As a good candidate (but not essential
to our approach), we choose to base our design on Flux [4],
a simple but well-structured XML update language. More
precisely, we extend the syntax of Flux, suitable for defining
in-place updates on sources, to accommodate an additional
notion of view. This is done with a new kind of non-in-place
“update-for-view” update that synchronizes two source-view
sequences; such synchronization can be configured by the
developer via a set of matching/unmatching clauses that
describe actions for individual source-view elements. The
syntax of our bidirectional update language, named BiFluX,
is shown in Figure 3: Stmt denotes general statements and
Upd individual updates; Path and Expr are arbitrary XPath
paths and XQuery expressions; and Pat stands for XDuce-
style patterns with variables bounded by regular expression
types [7].

Figure 2 depicts the architecture of our update-based bidi-
rectional model transformation framework. A BiFluX up-
date program is evaluated in two stages. On a first stage,
it is statically compiled against a source and a view meta-
model (represented as DTDs), to produce a bidirectional
executable. The generated executable can then be evaluated
for particular models conforming to the DTDs: either as
a query Q, that computes a consistent view model from a
source model, or as an update U that updates a source model
to be consistent with given a view model.

5. CURRENT STATUS AND IMPACT
In this paper, we have proposed a novel update-based ap-

proach for bidirectional model transformations. Our frame-
work has been fully implemented, and the current prototype

Stmt ::= Upd [WHEREExpr]
| IFExpr THENStmt ELSEStmt
| Stmt ; Stmt
| LETPat := Expr INStmt
| CASEExpr OF {Cases }
| {Stmt }
| PROCEDUREName ′(′ Path, . . . , Path ′)′

Upd ::= INSERT (BEFORE | AFTER)PathPat VALUEExpr
| INSERTAS (FIRST | LAST) INTOPathPat VALUEExpr
| DELETE [FROM]PathPat
| KEEPPath
| CREATEVALUEExpr
| REPLACE [IN]PathPat WITHExpr
| UPDATEPathPat BYStmt
| UPDATEPathPat BYVStmt FORVIEWPathPat [Match]

Cases ::= Pat → Stmt
| Cases ′|′ Cases

VStmt ::= VUpd ′|′ VUpd
| {VUpd }

VUpd ::= MATCH → Stmt
| UNMATCHS → Stmt
| UNMATCHV → Stmt

Match ::= MATCHINGBYPath
| MATCHINGSOURCEBYPath
| VIEWBYPath

PathPat ::= [Pat IN]Path

Figure 3: Concrete syntax of BiFluX.

is available in our website2. The implementation ensures that
BiFluX programs and underlying XML models are correct
against the DTD meta-model specifications, and defines the
bidirectional semantics for compiled programs by translating
them into putlenses [12], a powerful combinator library for
bidirectional programming over general tree data structures.

To assess the expressiveness of our language, we have suc-
cessfully tested it with some trademark bidirectional model
transformation use cases (also available online):

Bookmarks A bidirectional conversion between the popular
Netscape and XBEL bookmark formats [9].

Nested Sections A bidirectional mapping between Wiki
formats with multiple levels of nested headings [3].

Address Books A bidirectional transformation between
address book formats that handles inter-model depen-
dencies and duplicated structure [8].

To the best of our knowledge, we have made the first
proposal for an update-based bidirectional model transfor-
mation framework. The new approach promises practical
impact, in that describing bidirectional transformations as
updates forecasts a nice tradeoff between the elegant declar-
ative style of relational approaches and the urging need for
fine and transparent specification mechanisms that prevent
unpredictable bidirectional behavior. Our success in unifying
diverse bidirectional model transformation use cases in a
single update language is a promising result, that we plan
to explore further in the near future with a more realistic
model-driven development scenario. A deeper integration
with existing model-driven development processes and added
support for graph-like structures are also vital for more se-
rious applications. We believe that this research direction
can help fostering the acceptance and development of more
robust bidirectional model transformation tools.

6. REFERENCES
[1] A. Anjorin, M. Lauder, S. Patzina, and A. Schürr.

eMoflon: Leveraging EMF and Professional CASE
Tools. Informatik, page 281, 2011.

[2] M. Antkiewicz and K. Czarnecki. Design space of
heterogeneous synchronization. In GTTSE 2007,
volume 5235 of LNCS, pages 3–46. Springer, 2008.

2http://www.prg.nii.ac.jp/projects/BiFluX

[3] D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg,
and B. C. Pierce. Matching lenses: alignment and view
update. In ICFP 2010, pages 193–204. ACM, 2010.

[4] J. Cheney. Flux: Functional Updates for XML. In
ICFP 2008, pages 3–14. ACM, 2008.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel,
A. Schürr, and J. Terwilliger. Bidirectional
Transformations: A Cross-Discipline Perspective. In
ICMT 2009, volume 5563 of LNCS, pages 260–283.
Springer, 2009.

[6] S. Hidaka, Z. Hu, H. Kato, and K. Nakano. A
compositional approach to bidirectional model
transformation. In ICSE-Companion 2009, pages
235–238. IEEE, 2009.

[7] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular
expression types for XML. In ICFP 2000, pages 11–22.
ACM, 2000.

[8] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable
editor for developing structured documents based on
bidirectional transformations. Higher-Order and
Symbolic Computation, 21(1-2):89–118, 2008.

[9] S. Kawanaka and H. Hosoya. biXid: a bidirectional
transformation language for XML. In ICFP 2006, pages
201–214. ACM, 2006.

[10] N. Macedo, T. Guimaraes, and A. Cunha. Model
Repair and Transformation with Echo. In ASE 2013.
To appear, 2013.

[11] Object Management Group. Meta Object Facility
(MOF) 2.0 Query/View/Transformation, Version 1.1.
http://www.omg.org/spec/QVT/1.1/PDF/, 2011.

[12] H. Pacheco, Z. Hu, and S. Fischer. Monadic
combinators for “putback” style bidirectional
programming. In PEPM 2014. To appear, 2014.

[13] A. Schürr. Specification of graph translators with triple
graph grammars. In WG 1995, volume 903 of LNCS,
pages 151–163. Springer, 1995.

[14] P. Stevens. Bidirectional model transformations in
QVT: semantic issues and open questions. Software &
Systems Modeling, 9(1):7–20, 2010.

[15] Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and
H. Mei. Towards automatic model synchronization from
model transformations. In ASE 2007, pages 164–173.
ACM, 2007.

http://www.prg.nii.ac.jp/projects/BiFluX

	Introduction
	A Motivating Example
	Writing Intentional Updates
	Multiple update strategies
	Bidirectional semantics of updates

	Language and Framework
	Current Status and Impact
	References

