Bidirectional Data Transformation by Calculation

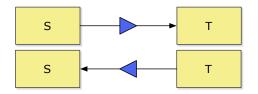
Hugo Pacheco

HASLab INESC TEC & Universidade do Minho, Braga, Portugal

> September 17th 2012 Braga

Data Transformations

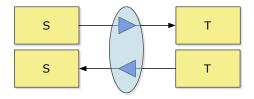
- data transformations abound in software engineering
- essential to convert data between different formats


• in real model-driven software engineering scenarios, we often need to run a transformation in both directions

Contributions

Concluding Remarks

(Ad hoc) Bidirectional Transformations


Manual design: two separate transformations

- expensive
- error-prone
- a maintenance problem

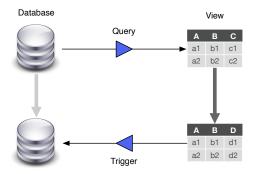
Contributions

Concluding Remarks

Bidirectional Languages

Combinatorial design: the same specification denotes both

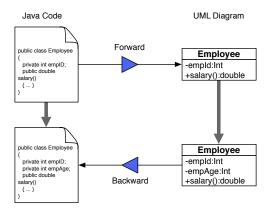
- nice syntax
- clean semantics
- compositional


Motivation

Contributions

Concluding Remarks

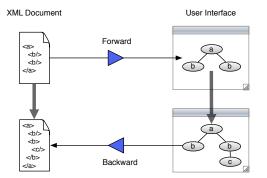
Bidirectional Languages exist for ...


...databases...

Contributions

Bidirectional Languages exist for ...

...model-driven software engineering...


Motivation

Contributions

Concluding Remarks

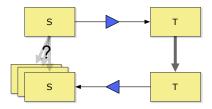
Bidirectional Languages exist for ...

...user interfaces...


...etc

combinatorial approaches build complex transformations by composition

• composition \Rightarrow cluttering \Rightarrow inefficiency


Question

• how to optimize bidirectional transformations?

• for non-bijective transformations, an update may have many corresponding updates

Question

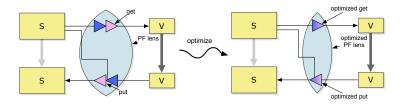
• how to allow users to choose a suitable update?

Contributions

Motivation - Genericity

- bidirectional transformations are typically built to match a specific structure, via multiple steps
- for the same high-level transformation, different low-level transformations must be built to handle different structures

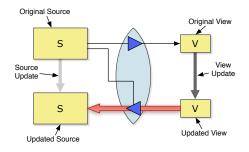
- impractical to write complex transformations
- does not support evolution


State of the Art

- vast number of approaches for various purposes
- hard to classify and compare different approaches:
 - understand their advantages and limitations
 - assess progress on the field
- we propose a taxonomy for the classification of bidirectional approaches
 - Scheme: Framework, Update representation
 - Properties: Round-tripping, Consistency, Totality
 - Deployment: Data domain, Typing, Specification, Language, Bidirectionalization approach
- we survey up to 40 existing approaches

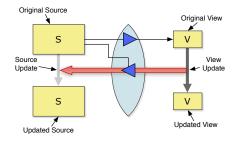
Contributions

Efficiency \Rightarrow Point-free Lenses


- Foster et al. proposed the bidirectional framework of lenses
- we define a language of point-free bidirectional lenses

- Data domain: algebraic data types (e.g. lists, trees)
- Language: categorical functional programming combinators with no variables
- Algebraic laws: allow to prove properties & to optimize lenses

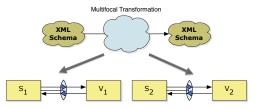
Configurability \Rightarrow Point-free Delta Lenses


State-based framework: put takes the modified view state

- no information about the actual update
- put has to "guess" the intended change of the update

Configurability \Rightarrow Point-free Delta Lenses

Operation-based framework: *put* takes some knowledge about the view update

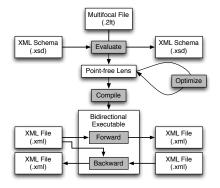

- Diskin et al. proposed a conceptual framework of delta lenses
- we define a language of point-free delta lenses
- users can control the choice of a translated source update by giving a precise description of the view update

Motivatio

Contributions

Genericity \Rightarrow The *Multifocal* Framework

- Foster et al. developed the Focal tree transformation language
- we propose the *Multifocal* XML transformation language



- Two-level: from a generic schema-level transformation we get instance-level XML document transformations
- Strategic: concise specification style (e.g. traversals)
- Bidirectional: underlying instance-level transformations as lenses

Contributions

Genericity \Rightarrow The *Multifocal* Framework

• we implement the *Multifocal* framework

• three stages:

• evaluate: XML Schema \Rightarrow XML Schema + lens

- **2** optimize (optional): lens \Rightarrow optimized lens
- **(optimized)** lens \Rightarrow executable

- A detailed picture of the state of the art: taxonomy + survey
- A point-free lens language
 - Hugo Pacheco and Alcino Cunha Generic Point-free Lenses MPC 2010.

Point-free lens library

http://hackage.haskell.org/package/pointless-lenses

- An algebraic theory of point-free lenses

Hugo Pacheco and Alcino Cunha

Calculating with lenses: optimising bidirectional transformations *PEPM 2011*.

Point-free rewriting library

http://hackage.haskell.org/package/pointless-rewrite

Motivatior

Contributions

Concluding Remarks

Summary

- A point-free delta lens language
 - Hugo Pacheco, Alcino Cunha and Zhenjiang Hu Delta Lenses over Inductive Types BX 2012.
- The Multifocal language and framework
 - Hugo Pacheco and Alcino Cunha Multifocal: A Strategic Bidirectional Transformation Language for XML Schemas
 - Alcino Cunha and Hugo Pacheco Algebraic Specialization of Generic Functions for Recursive Types *Electronic Notes in Theoretical Computer Science*, 2011.

Multifocal system

http://hackage.haskell.org/package/multifocal

Strategic two-level lens library

http://hackage.haskell.org/package/pointless-21t

Future Work

Multifocal Framework

- more expressiveness (language features, bidirectional schemes)
- more usability (XML integration, empirical study)

• Open BX Challenges

- \bullet unpredictability \Rightarrow new bidirectional properties
 - minimal update translation properties \Rightarrow predictability
- new operation-based approaches
 - generation of minimal updates
 - deterministic bidirectional programming
- explore the design space
 - novel frameworks
 - more classification features
 - more complete, precise and self-contained survey