
Universidade do Minho
Escola de Engenharia

Hugo José Pereira Pacheco

Bidirectional Data Transformation by
Calculation

MAPi Doctoral Programme in Computer Science

Supervisor:
Professor Doutor Manuel Alcino Pereira da Cunha
Co-supervisor:
Professor Doutor José Nuno Fonseca de Oliveira

July, 2012

2

Acknowledgments

Some PhD dissertations are the awaited culmination of a long and steep path since
starting as an undergraduate until acquiring a doctorate degree. In my case, I have hardly
ever considered enrolling in a PhD until I found myself doing one and, whenever asked
about why I chose to follow this path, I believe to have (almost) always replied that it
was simply to prove to myself that I was capable to see it to the end: “Congratulations,
Hugo. You’ve made it.”

Still, it is true that I have enjoyed this research and life experience immensely. For
convincing me and giving me the opportunity, I must thank my supervisor Alcino Cunha.
He is one of the responsible individuals for my initiation into the research world, back
to when I was an undergraduate, and has always kept the door open for me. During
these years, he has always had a critical opinion about work and has taught me greatly
how to sharpen my research capabilities. As his first PhD student, I am especially
grateful for the dedication to my project and for all the invaluable time invested in my
supervision. I believe that we have both learned a lot from this experience.

I must also thank José Nuno Oliveira for accepting being my co-supervisor. Since I
first had him as lecturer, I have always admired his seamlessly passionate classes, and
his earnest enthusiasm about research is inspiring for anyone around him. Although less
present, he has always been eager to discuss new ideas and existing problems, and is an
advocate of much of the theory that made the work defended in this thesis possible.

I am also extremely grateful to Zhenjiang Hu for inviting me for a short visit to
Tokyo in the Autumn of 2010. Besides being very enjoyable, the few months spent in
Tokyo have helped me greatly in improving the impact and quality of this work and
have expanded my horizons for the future beyond return.

Not less important, I would like to thank my family, girlfriend and close friends for
the unceasing support through all the periods of my life. And to all the others that have
helped me through this particularly long journey.

iii

iv

Bidirectional Data Transformation by
Calculation

The advent of bidirectional programming, in recent years, has led to the development of
a vast number of approaches from various computer science disciplines. These are often
based on domain-specific languages in which a program can be read both as a forward
and a backward transformation that satisfy some desirable consistency properties.

Despite the high demand and recognized potential of intrinsically bidirectional
languages, they have still not matured to the point of mainstream adoption. This
dissertation contemplates some usually disregarded features of bidirectional transfor-
mation languages that are vital for deployment at a larger scale. The first concerns
efficiency. Most of these languages provide a rich set of primitive combinators that
can be composed to build more sophisticated transformations. Although convenient,
such compositional languages are plagued by inefficiency and their optimization is
mandatory for a serious application. The second relates to configurability. As update
translation is inherently ambiguous, users shall be allowed to control the choice of a
suitable strategy. The third regards genericity. Writing a bidirectional transformation
typically implies describing the concrete steps that convert values in a source schema to
values a target schema, making it impractical to express very complex transformations,
and practical tools shall support concise and generic coding patterns.

We first define a point-free language of bidirectional transformations (called lenses),
characterized by a powerful set of algebraic laws. Then, we tailor it to consider
additional parameters that describe updates, and use them to refine the behavior of
intricate lenses between arbitrary data structures. On top, we propose the Multifocal

framework for the evolution of XML schemas. A Multifocal program describes a
generic schema-level transformation, and has a value-level semantics defined using the
point-free lens language. Its optimization employs the novel algebraic lens calculus.

v

vi

Transformação Bidirecional de Dados
por Cálculo

O advento da programação bidirecional, nos últimos anos, fez surgir inúmeras abor-
dagens em diversas disciplinas de ciências da computação, geralmente baseadas em
linguagens de domínio específico em que um programa representa uma transformação
para a frente ou para trás, satisfazendo certas propriedades de consistência desejáveis.

Apesar do elevado potencial de linguagens intrinsicamente bidirecionais, estas ainda
não amadureceram o suficiente para serem correntemente utilizadas. Esta dissertação
contempla algumas características de linguagens bidirecionais usualmente negligenci-
adas, mas vitais para um desenvolvimento em mais larga escala. A primeira refere-se
à eficiência. A maioria destas linguagens fornece um conjunto rico de combinadores
primitivos que podem ser utilizados para construir transformações mais sofisticadas
que, embora convenientes, são cronicamente ineficientes, exigindo ser otimizadas para
uma aplicação séria. A segunda diz respeito à configurabilidade. Sendo a tradução de
modificações inerentemente ambígua, os utilizadores devem poder controlar a escolha
de uma estratégia adequada. A terceira prende-se com a genericidade. Escrever uma
transformação bidirecional implica tipicamente descrever os passos que convertem um
modelo noutro diferente, enquanto que ferramentas práticas devem suportar padrões
concisos e genéricos de forma a poderem expressar transformações muito complexas.

Primeiro, definimos uma linguagem de transformações bidirecionais (intituladas de
lentes), livre de variáveis, caracterizada por um poderoso conjunto de leis algébricas. De
seguida, adaptamo-la para receber parâmetros que descrevem modificações, e usamo-los
para refinar lentes intrincadas entre estruturas de dados arbitrárias. Por cima, propomos
a plataforma Multifocal para a evolução de modelos XML. Um programa Multifocal

descreve uma transformação genérica de modelos, cuja semântica ao nível dos valores
e consequente otimização é definida em função da linguagem de lentes.

vii

viii

Contents

1 Introduction 1
1.1 Goals and Contributions . 11

1.2 Overview of the Thesis . 14

2 Point-free Programming 15
2.1 Point-free Functional Calculus . 15

2.1.1 Basic Combinators . 15

2.1.2 Recursive Combinators . 23

2.2 Point-free Relational Calculus . 33

2.2.1 Relational Combinators . 33

2.2.2 Properties of Relations . 37

2.2.3 Proving the Termination of Anamorphisms 38

2.3 Summary . 40

3 State of the Art 41
3.1 Taxonomy . 42

3.1.1 Scheme . 42

3.1.2 Properties . 46

3.1.3 Deployment . 53

3.1.4 Exploring the Design Space 58

3.2 Survey . 64

3.2.1 Mapping Frameworks . 64

3.2.2 Lens Frameworks . 68

3.2.3 Maintainer Frameworks . 78

3.2.4 Synchronization Frameworks 82

3.3 Summary . 83

ix

x Contents

4 Generic Point-free Lenses 87
4.1 Point-free Combinators as Lenses 88

4.1.1 Basic Lens Combinators . 89

4.1.2 Products . 91

4.1.3 Sums . 93

4.1.4 Isomorphisms as Lens Combinators 95

4.1.5 Higher-order Lens Combinators 97

4.2 Recursion Patterns as Lenses . 98

4.2.1 Functor Mapping . 98

4.2.2 Catamorphisms . 100

4.2.3 Anamorphisms . 102

4.2.4 Natural Transformations . 106

4.2.5 Hylomorphisms . 108

4.3 Summary . 110

5 Generic Point-free Delta Lenses 111
5.1 Deltas over Polymorphic Inductive Types 117

5.2 Laying Down Delta Lenses . 122

5.3 Combinators for Horizontal Delta Lenses 127

5.3.1 Primitive Combinators . 127

5.3.2 Point-free Combinators . 130

5.4 Recursion Patterns as Horizontal Delta Lenses 135

5.4.1 Identifying and Propagating Shape Updates 135

5.4.2 Higher-order Functor Mapping 137

5.4.3 Catamorphism . 138

5.4.4 Anamorphism . 144

5.5 Summary . 148

6 The Multifocal Framework 151
6.1 A Point-free Lens Library . 152

6.1.1 Basic Lenses . 152

6.1.2 Recursive Lenses . 153

6.1.3 Delta lenses . 156

6.2 A Strategic Lens Library . 157

6.2.1 Representing Types and Expressions 160

Contents xi

6.2.2 Combinators for Two-level Lenses 163
6.3 A Point-free Rewriting Library . 171

6.3.1 Specializing Generic Queries 172
6.3.2 Mechanizing Fusion . 176
6.3.3 Encoding a Point-free Rewrite System 178

6.4 Multifocal: A Strategic Bidirectional Transformation Language for
XML Schemas . 181
6.4.1 Language . 182
6.4.2 Interface . 183
6.4.3 Application Scenarios . 185

6.5 Summary . 189

7 Conclusion 191
7.1 Final Remarks . 193
7.2 Future Work . 195

A Additional Point-free Laws and Proofs 199
A.1 Functional Point-free Laws and Proofs 199
A.2 Relational Point-free Laws and Proofs 204

B Additional Lens Laws and Proofs 211
B.1 State-based Lens Laws . 211
B.2 State-based Lens Proofs . 212

B.2.1 Composition . 212
B.2.2 Catamorphisms . 212
B.2.3 Anamorphisms . 216
B.2.4 Natural Transformations . 221

B.3 Horizontal Delta Lens Proofs . 222
B.3.1 Horizontal Delta Lens . 222
B.3.2 Composition . 223
B.3.3 Mapping . 225
B.3.4 Reshaping . 227
B.3.5 Catamorphisms . 228

Bibliography 233

xii Contents

List of Figures

1.1 Representation of a movie database schema inspired by IMDb (http:
//www.imdb.com). 2

1.2 Different coupled transformation scenarios. 5
1.3 Evolution by refinement of the movie database schema from Figure 1.1. 8

3.1 Bidirectional frameworks, diagrammatically. 43

5.1 XML Schema modeling a family genealogical tree. 114
5.2 XML Schema modeling a list of males and females. 116
5.3 Construction of a delta lens from a horizontal delta lens. 126
5.4 Composition of horizontal delta lenses. 131
5.5 Specification of grow for catamorphisms. 141
5.6 Specification of shrink for catamorphisms. 142
5.7 Specification of grow for anamorphisms. 146
5.8 Specification of shrink for anamorphisms. 146

6.1 Laws for the specialization of generic queries. 173
6.2 Architecture of the Multifocal framework. 181
6.3 Rules for the normalization of XML Schema representations. 184
6.4 XML Schema top-level elements modeling specific type patterns. . . . 186
6.5 A view of the movie database schema from Figure 1.3. 186
6.6 A company hierarchized payroll XML schema. 186
6.7 A view of the company schema. 186
6.8 Benchmark results for the IMDb example. 187
6.9 Benchmark results for the paradise example. 187
6.10 Benchmark results for the women example. 189

xiii

http://www.imdb.com
http://www.imdb.com

xiv List of Figures

List of Tables

3.1 Round-tripping properties for bidirectional transformations. 47
3.2 Consistency properties for bidirectional transformations. 50
3.3 Totality properties for bidirectional transformations. 52
3.4 Comparison of existing bidirectional transformation approaches. . . . 85

xv

xvi List of Tables

Chapter 1

Introduction

With the ever growing number of programming languages and software development
frameworks, data transformations have become a ubiquitous tool to “bridge the gap”
between technology layers and facilitate the sharing of information among software
applications. These transformations are often specified in a typeful manner, in the
sense that the input and output artifacts are required to be valid against some schema,
meta-model or data format. Focusing on XML, an XSLT program implements a
transformation between XML documents pertaining to different XML Schemas. In
many scenarios, transformations occur at the level of types, this is, they convert schemas
possibly conforming to higher-level schemas. Since XML schemas can themselves
be represented as XML documents, XSLT can uniformly be used to specify schema
transformations.

Real-world examples of type-level transformations include format evolution sce-
narios (Hainaut et al., 1994; Lämmel and Lohmann, 2001), such as small format
enrichment, removal or refactoring steps as applied during system maintenance, or
grammar modifications imposed by the natural evolution of programming languages.
Similarly typical examples encompass less conservative format changes, involving
cross-paradigm data mapping scenarios (Lämmel and Meijer, 2006; Melnik et al., 2007;
Berdaguer et al., 2007), that promote the interoperability between UML models and
Java source code implementations or the persistence of XML documents or object
models to storage efficient relational databases.

What these transformation scenarios have in common is that, in order to maintain
consistency, the transformation of a type calls for the coupled transformation of the data
instances conforming to that type. When a schema is adapted in the context of system

1

2 CHAPTER 1: INTRODUCTION

*

*

actor

imdb

film

year title review boxoffice name

user comment country value

name result

played

year title role award

**

?

director
*

*

*

Figure 1.1: Representation of a movie database schema inspired by IMDb (http:
//www.imdb.com).

maintenance, the existing instances must be adapted to conform to the new schema.
This problem has been studied for the cases of relational database schemas (Hainaut
et al., 1994) and XML schemas (Lämmel and Lohmann, 2001). When the grammar
of a programming language is modified, existing libraries and applications must be
upgraded to the new language version (Lämmel, 2001; Vermolen and Visser, 2008).
When an XML schema or object model specifying the logic of an application is
migrated to a persistent SQL database schema, the required data mapping involves also
the transformation of the XML documents or programs into SQL databases (Berdaguer
et al., 2007; Melnik et al., 2007).

Consider an XML Schema to model a movie database adapted from (Berdaguer
et al., 2007), represented graphically in Figure 1.1. In the picture, grey boxes denote
XML Schema elements and white ones model XML Schema attributes. As a very
simple example of a two-level transformation, if we choose to rename the film tag to
the movie tag, by modifying the corresponding XML Schema to

<xs:element name="imdb"/>
<xs:complexType>
<xs:sequence>
<xs:element name="movie" type="Movie"
minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="actor" type="Actor"
minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
...

the naturally induced migration on an underlying XML document

http://www.imdb.com
http://www.imdb.com

3

<imdb>
<film>
<year>2005</year>
<title>Kill Bill: Vol. 1</title>
<director>Quentin Tarantino</director>
<boxOffice country="USA" value="22089322"/>
<boxOffice country="Japan" value="3521628"/>

</film>
<actor>...</actor>

</imdb>

is to rename all film elements to movie elements:
<imdb>
<movie>
<year>2005</year>
<title>Kill Bill: Vol. 1</title>
<director>Quentin Tarantino</director>
<boxOffice country="USA" value="22089322"/>
<boxOffice country="Japan" value="3521628"/>

</movie>
<actor>...</actor>

</imdb>

Most existing transformation languages do not allow this. For example, we can use
XSLT to separately specify a transformation between schemas and between documents,
but the second is not a byproduct of the first. In this case, consistency between both
transformations must be verified manually. As any ad hoc approach, this solution
does not scale well as the complexity of the transformations increases, and makes the
software development process much more expensive and error-prone.

By contrast with the standard one-level transformations, two-level transforma-

tions (Lämmel and Lohmann, 2001) denote type-level transformations of data formats
coupled with value-level transformations of data instances corresponding to those for-
mats, such that they are consistent by construction. Unlike before, in this setup the
value-level transformations are not typed a priori for fixed formats, but are truly depen-
dent on the type-level stage since the target type is computed dynamically as we carry
the type-level transformation. Lämmel and Lohmann (2001) study the properties of
such transformations and identify categories of transformation steps (for XML schema
evolution), but stop short of formalizing and implementing a general framework for
two-level transformation. In fact, they identify this additional step as an important
research “challenge”:

We have examined typeful functional XML transformation languages,

term rewriting systems, combinator libraries, and logic programming.

4 CHAPTER 1: INTRODUCTION

However, the coupled treatment of DTD transformations and induced XML

transformations in a typeful and generic manner, poses a challenge for

formal reasoning, type systems, and language design.

Coupling is not limited to schema and instance transformations, but a reoccurring
phenomenon in computer science. Acknowledging this fact, Lämmel (2004a,b) iden-
tified a general class of coupled transformations comprising the transformation of
software artifacts that induce the reconciliation of other related artifacts. Two-level
data transformations arise then as a particular instance of such class, where the coupled
artifacts are a data format on the one hand, and the data instances that conform to that
format on the other hand.

Another prominent instance of coupling are bidirectional transformations, as a
“mechanism for maintaining the consistency of two (or more) related sources of infor-
mation” at the same level (Czarnecki et al., 2009). In a simplistic vision of software
transformations, (two-level or not) unidirectional transformations would suffice. How-
ever, users generally expect transformations to be bidirectional, in the sense that, if
after transformation both source and target instances co-exist1 and sometimes evolve
independently, changes made to one of the instances can be safely propagated to its
connected pair in order to recover consistency.

For example, in our previous XML example, if we insert a new film in the source
document, we should insert a corresponding movie in the target document, and vice-
versa. This time, the coupling does not occur vertically, between type and value
transformations, but horizontally, between forward and backward value transformations
that propagate updates, as depicted in Figure 1.2.

Many of the above transformation scenarios are also explanatory of the need for
bidirectionality. When format evolution serves only internal data storage, a forward
conversion of old to new data may be sufficient, but when these formats concern data
exported to other applications or different versions of the same application, both forward
and backward data conversions may be needed on a repetitive or continuous basis to
restore conformance. When the schema of an application is mapped onto a relational
database schema, not only do we need to migrate the original application to a database,
but also to transform further updates to the database back to a consistent application.
Standard transformation languages are again unsatisfactory since they only consider

1We will denote the domains of bidirectional transformations as source and target, as read from left
to right, and name the corresponding unidirectional transformations as forward and backward.

5

MMM1 MMM2

MM1 MM2

M1 M2

conforms

conforms conforms

conforms

(a) Unidirectional 2LT

MM1 MM2

M1 M2

conforms conforms

(b) Bidirectional 1LT

MMM1 MMM2

MM1 MM2

M1 M2

conforms

conforms conforms

conforms

(c) Bidirectional 2LT

Figure 1.2: Different coupled transformation scenarios.

unidirectional transformations.
The naive way to write a bidirectional transformation is to engineer two unidirec-

tional transformations together and manually prove that they are somehow consistent.
This ad hoc solution is notoriously expensive and error-prone, because we have to
write two transformations and not any two transformations are consistent for a specific
purpose. It is also likely to cause a maintenance problem, since any change in a data
format implies a redefinition of both transformations, and a new consistency proof.

Similarly to two-level transformations, a better approach is to design a domain-
specific language in which every expression denotes both transformations, which are
then guaranteed to be consistent by construction in the respective semantic space. Still,
identifying the particular domains and language restrictions that best meet a specific
application scenario, attaining expressiveness while holding the robustness imposed by
the consistency constraints, is a difficult challenge as pointed out by Foster (2009)2:

The main challenge in the design of a bidirectional language lies in

balancing the tradeoffs between syntax that is rich enough to express the

queries and update policies demanded by applications, and yet simple

enough that correctness can be verified using straightforward, composi-

tional, and, ultimately, mechanizable checks.

In response to this challenge, many intrinsically bidirectional transformation frame-
work have been proposed in various computer science domains, including reversible
computing (Mu et al., 2004; Yokoyama et al., 2008), data serialization (Kennedy, 2004;

2Debate on this topic has been initiated by Foster and coauthors in the seminal 2005 version of (Foster
et al., 2007), published at the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages.

6 CHAPTER 1: INTRODUCTION

Atanassow and Jeuring, 2007), heterogeneous data synchronization (Kawanaka and
Hosoya, 2006; Brabrand et al., 2008; Foster et al., 2007), string processing (Bohan-
non et al., 2008; Barbosa et al., 2010), software model transformation (Schürr, 1995;
Stevens, 2007; Xiong et al., 2009; Diskin et al., 2011b), graph transformation (Hidaka
et al., 2010), schema evolution (Berdaguer et al., 2007; Pacheco and Cunha, 2012),
relational databases (Bancilhon and Spyratos, 1981; Dayal and Bernstein, 1982; Bo-
hannon et al., 2006), functional programming (Liu et al., 2007; Matsuda et al., 2007;
Voigtländer, 2009; Pacheco and Cunha, 2010) and user interfaces (Meertens, 1998;
Hu et al., 2008). Most of these approaches are, as proposed by Foster (2009), based
on combinator-based domain-specific languages, such that they provide a rich set of
combinators that allow users to combine primitive transformations into sophisticated
transformations in a compositional way.

Unfortunately, despite the convenience of compositional approaches, the resulting
transformations can suffer from poor efficiency, due to the cluttering of intermediate
data structures. Moreover, if manual design of bidirectional transformations is tedious
and error-prone, manual optimization is a much more thankless (not to say impossible)
task. In fact, the problem of optimization of bidirectional programs remains largely
unaddressed by the community, although early recognized in the pioneering work on
bidirectional lenses by Foster et al. (2007), and poses probably the greatest challenge:

Is there an algebraic theory of lens combinators that would underpin

optimization of lens expressions in the same way that the relational algebra

and its algebraic theory are used to optimize relational database queries?

[...] This algebraic theory will play a crucial role in a more serious

implementation effort.

In the 2LT (Two-Level Transformation) project (Visser, 2008), we and others3

have taken up these three challenges altogether: to develop a two-level bidirectional
framework with the distinguished feature of being amenable to the optimization of
transformations by calculation. The resulting 2LT framework (Cunha et al., 2006a;
Berdaguer et al., 2007) is implemented in Haskell, and proposes a combinator-based
domain-specific language in which each combinator denotes a type-level transformation
and two value-level transformations of conforming instances.

3The 2LT project is the result of an extensive line of work developed in the last 5 years at the
University of Minho, and is accessible at http://2lt.googlecode.com.

http://2lt.googlecode.com

7

The two-level component of the framework is defined by instantiating a well-known
suite of combinators that have been previously defined for strategic rewriting (Visser,
2005; Lämmel, 2003), and popularized by systems such as Stratego (Visser, 2001)
or Strafunski (Lämmel and Visser, 2003). Like most existing XML transformation
and querying languages such as XSLT, XQuery or XPath, strategic programs enjoy a
structure-shy flavor, as termed by Lieberherr (1995), that allows to specify transforma-
tions that modify only specific interesting bits of a structure in a concise and generic
way without having to describe how to traverse the remaining structure.

The framework is also designed with calculation in mind. For this purpose, value-
level transformations are also defined using a combinatorial approach, but with a careful
choice of combinators with powerful algebraic laws that mitigate the optimization
problem. In particular, we use the so-called point-free style (using a variable-free,
combinator-based programming language) popularized by the algebra of programming

community (Backus, 1978; Bird and de Moor, 1997). This allows us to not only derive
efficient value-level transformations by calculation, but also to perform consistency
proofs in the purely equational point-free calculus. Furthermore, the usage of structure-
shy strategies for two-level transformations makes optimization a mandatory feature.
Though the strategies can be applied to specific types to obtain corresponding bidirec-
tional transformations, these will likely include many redundant intermediate steps and
traverse whole input structures, in the image of the original strategies. An additional
point-free transformation step is able to identify and fuse these redundancies to derive
more optimal value-level transformations.

The bidirectional component of the framework is built upon the data refinement

theory from (Morgan and Gardiner, 1990; Oliveira, 2008), used to automatically derive
concrete implementations from abstract specifications by calculation, for example in
the context of relational database design (Oliveira, 2004)4.

For example, using the language from (Berdaguer et al., 2007) we can write a two-
level strategy that refines the schema from Figure 1.1 into the schema from Figure 1.3
by adding a new alternative for TV series after renaming films to movies. Then, if we
apply the forward transformation to compute the same target as before (assuming we
choose not to insert default series in the resulting XML document), and edit the target
by correcting the year of the first “Kill Bill” movie and inserting a new review

<imdb>

4Throughout this thesis, we will often refer to concrete and abstract models, under the notion that
concrete ones contain more information than abstract ones.

8 CHAPTER 1: INTRODUCTION

*

*+ *

actor

imdb

seriesmovie

year title review boxoffice year title review season name

user comment country value user comment

name result

played

year title role award

** * *

year episode
**?

director
*

*

Figure 1.3: Evolution by refinement of the movie database schema from Figure 1.1.

<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<review user="emma" comment="Gorgeous!"/>
<director>Quentin Tarantino</director>
<boxOffice country="USA" value="22089322"/>
<boxOffice country="Japan" value="3521628"/>
</movie>
<actor>...</actor>

</imdb>

backward execution is able to bring those changes back into a new source document by
erasing irrelevant information and renaming movies to films:

<imdb>
<film>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
<review user="emma" comment="Gorgeous!"/>
<director>Quentin Tarantino</director>
<boxOffice country="USA" value="22089322"/>
<boxOffice country="Japan" value="3521628"/>
</film>
<actor>...</actor>

</imdb>

Nevertheless, the no information loss principle of refinements (detailed in Chapter 3)
permits a simple bidirectionalization, but at the cost of a rather limited updatability.
Since the emphasis is placed on the forward transformation, if a user updates the target
to values outside the range of the forward transformation, a corresponding backward
transformation may reasonably fail, convert each series in the target into a movie in the
source, or simply discard series elements, as they are not representable on the abstract

9

side. However, a severe problem arises when editing the abstract, source side of the
transformation. For instance, if we insert a new film in the source

<imdb>
<film>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
...

</film>
<film>
<year>1994</year>
<title>Pulp Fiction>
...

</film>
<actor>...</actor>

</imdb>

while already having a target instance containing TV series

<imdb>
<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
...

</movie>
<series>
<year>1999</year>
<title>The Sopranos</title>

</series>
<actor>...</actor>

</imdb>

and convert the modified source into a new target

<imdb>
<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
...

</movie>
<movie>
<year>1994</year>
<title>Pulp Fiction>
...

</movie>
<actor>...</actor>

</imdb>

we get a mangled target instance that does not contain the original TV series. In truth,
the forward transformation does not try to synchronize the source update with the

10 CHAPTER 1: INTRODUCTION

existing target value, but rather creates a new concrete value afresh solely from the
abstract information. Although this scheme is reasonable for the concrete-to-abstract
direction, in which the concrete instance contains all the necessary information to create
a new abstract instance, it is not satisfactory for the abstract-to-concrete transformation,
that needs additional guidance on how to generate the pieces of concrete information
not present in the abstract side.

This synchronization pattern has been extensively studied in the database community
under the view-update problem (Bancilhon and Spyratos, 1981; Dayal and Bernstein,
1982). A database view is a virtual “window” created by issuing a query over the original
database, that must be kept synchronized, such that data changes in the database shall
alter the data shown in the view. If users are allowed to interact with views as with
regular database tables, updates on views must likewise be translated into requests
on the respective database. Although mapping of queries does not present particular
problems, when translating a view update there is, in general, more than one possible
update to the original database state (since abstracting is not injective, i.e., different
tables can be abstracted to the same view), and the difficulty of choosing the update
with the minimal “side-effects” on the source in accordance to sufficiently complex
constraints is a problem that has been shown to be intractable (Buneman et al., 2002).

One of the most successful approaches to bidirectional transformations is the Focal

language proposed by Foster et al. (2007), to tackle precisely the view-update problem
for the domain-space of trees, whose building blocks are the so-called lenses. Lenses
are in a sense duals of refinements. The forward transformation of a lens computes
a view from a concrete data model, while its backward transformation takes both an
updated view and the original model to return an updated concrete model.

Still, bidirectional languages like Focal are at best typed but not two-level. On top
of that, the programming style that grants them bidirectionality is usually more biased
towards structure-sensitive constructs, to be able to identify precisely the concrete steps
required to translate between source and view documents.

Lenses, as a framework for data abstraction, can be of great value in scything through
the complexity of large software systems. However, in order to express transformations
over these systems, two-level and structure-shy specifications are imperative to reduce
the specification cost and foster reusability. Possible application scenarios for structure-
shy two-level lens programs may include the automated abstraction of implementation
details at particular positions of a specification, or the creation of views for independent

1.1 GOALS AND CONTRIBUTIONS 11

understanding of the components of a software system.

1.1 Goals and Contributions

The goal of this dissertation is to show that lenses, though pragmatically different,
generalize refinements and can serve as an underlying theory for two-level transfor-
mations. While refinement scenarios are inherent to strategic rewriting techniques,
like the automatic mapping of abstract schemas to more concrete ones (Berdaguer
et al., 2007), abstraction scenarios typically involve more surgical steps that factor
out or preserve specific pieces of information and motivate a transformation language
with different features. On that account, we propose the Multifocal framework for
the specification, optimization and execution of strategic two-level views over XML
Schemas and algebraic data types, whose corresponding data migration transformations
respect a strong bidirectional semantics.

Using Multifocal, we can write our running transformation (in the reverse direction)
as the following strategic lens:

everywhere (try (at "film" (rename "movie")))
>> everywhere (try (at "series" erase))

This lens transformation is not only specified in a concise way close to its informal
definition, but can also overcome the limitations of two-level refinements and correctly
propagate modifications to source or view models. In particular, the forward transfor-
mation of this lens discards TV series, and its backward transformation recovers series
in the source model, together with updating the remaining information about movies:
<imdb>
<movie>
<year>2003</year>
<title>Kill Bill: Vol. 1</title>
...

</movie>
<series>
<year>1999</year>
<title>The Sopranos</title>

</series>
<movie>
<year>1994</year>
<title>Pulp Fiction>
...

</movie>
<actor>...</actor>

</imdb>

12 CHAPTER 1: INTRODUCTION

The development of Multifocal has motivated the following broad contributions:

Language & Calculus Two of the central aspects of the design of a bidirectional
language are the semantic space over which it is defined – typically bound to a particular
application domain – and how is correctness guaranteed for programs within such space.
The first contribution of this thesis is the design of a general-purpose bidirectional lens
language over arbitrary inductive data types, used in modern functional programming
languages like Haskell, ML or F#. Following a natural embedding of our lens language
in a functional language, the type system can then reason statically if a given lens
program is type correct. Parallel to type correctness is the semantic correctness of
lens programs w.r.t the bidirectional properties that they must satisfy. For our lens
combinators, we write each value-level transformation in a point-free style that unveils
a powerful point-free calculus and allows proving correctness properties in a purely
equational and often mechanizable way. In the 2LT framework, the optimization of
bidirectional programs is achieved by independent optimization of the value-level
transformations, and is thus not truly based on an algebraic bidirectional theory. This
causes a severe overhead in the optimization process, since we have to perform two
(or more) optimizations instead of a single one. Moreover, for the case of lenses, the
complexity of the backward transformation – that must consider both the modified
target and the original source, a problem that didn’t exist for refinements – makes it also
harder for an automatic procedure to spot many optimization opportunities. Another
contribution of this thesis is a definite answer to the second challenge identified in
the introduction: an algebraic calculus for lenses that enables equational reasoning on
lenses and allows to perform proofs about bidirectional programs as if regular functional
programs. In particular, we establish that most of the standard point-free combinators
can be lifted to lens combinators in our language and preserve their characterizing set
of algebraic laws. As a result, we can show that optimization at the lens level subsumes
the independent optimization of all the value-level transformations, opening interesting
perspectives towards agile automatic lens optimization tools.

Alignment Despite the wide span of bidirectional programming languages, an or-
thogonal issue is that of alignment. In lenses, the forward transformation might discard
source information, while the backward transformation shall recombine parts of the
updated target with parts of the original source to produce an updated source. When
the source or target schemas are recursive, ordered structures, to behave as desired

1.1 GOALS AND CONTRIBUTIONS 13

lenses must be able to identify the modifications and establish correspondences between
source and target models. For example, if we write a transformation that keeps only
movie titles and later reorganize the movies in the target sequence, we want the ab-
stracted information (year, director, etc) to be restored to the same movies in the source
sequence, instead of being matched positionally, as our initial lens language would
do. Inspired by Barbosa et al. (2010), our next contribution is to recast our point-free
lens language as a set of alignment-aware combinators that compute, propagate and
use these correspondences alongside value-level transformations. This interaction and
the additional laws that guarantee that correspondences are propagated correctly are
formalized using dependent type theory. Our extension is not only able to solve data
alignment for typical mapping scenarios in the spirit of (Barbosa et al., 2010), but
also to perform shape alignment for more intricate reshaping transformations between
inductive data types.

Implementation The last contribution of this thesis is the implementation of the
Multifocal framework providing strong types and general strategies for the design of
two-level bidirectional lens transformations. On top of this framework, we develop the
Multifocal language for structure-shy two-level evolution of XML Schemas, providing
conforming bidirectional lenses to translate source and target XML documents for free.
In comparison to a Focal lens program, that describes a bidirectional view between two
particular tree structures, a Multifocal program describes a general type-level transfor-
mation that provides multiple focus points, in the sense that it produces a different view
schema and a corresponding bidirectional lens for each XML Schema to which it is
successfully applied. At the core of the framework, we provide a combinator library
for the two-level evolution of arbitrary inductive data type representations, to which
Multifocal programs can be translated. The value-level semantics of these combinators
is defined according to our point-free lens language. Moreover, we instantiate a similar
strategic rewrite system for the transformation of point-free programs with our algebraic
lens laws, to enable the automatic optimization of lens transformations resulting from
the evaluation of the two-level stage.

14 CHAPTER 1: INTRODUCTION

1.2 Overview of the Thesis

Chapter 2 introduces the point-free programming style and other formal notations
used for the developments in the succeeding chapters.

Chapter 3 presents a detailed panorama of the state of the art on bidirectional transfor-
mations, with particular emphasis on lenses, and attempts to deliver a multi-perspective
taxonomy for the classification of existing systems. It also situates our approach inside
this design space. Despite the multitude and diversity of existing solutions, many of the
fundamental problems of the area are not already well established, mostly due to the
non-existence of a universal classifying system and to the lack of common theoretical
grounds between many of the approaches. For these reasons, this chapter is per se a
relevant contribution. Part of this material is discussed in a joint article currently under
submission (Pacheco et al., 2012b).

Chapter 4 introduces our point-free lens language over arbitrary inductive data types
and unveils the rich set of algebraic laws that rule the inherent lens calculus. The
language and calculus presented in this chapter were published in two papers (Pacheco
and Cunha, 2010, 2011).

Chapter 5 discusses our vision of alignment and proposes a formal solution tai-
lored to our point-free lens language. This chapter is an extended version of a recent
paper (Pacheco et al., 2012a).

Chapter 6 sheds some light into the technical details employed in the implementation
of the Multifocal framework and provides a more comprehensive set of examples that
demonstrate our approach. Some of the components of the rewrite systems for the trans-
formation of inductive types and the optimization of point-free lenses were published
in two papers (Cunha and Pacheco, 2011; Pacheco and Cunha, 2011). The Multifocal

language for XML Schema evolution was detailed in a separate publication (Pacheco
and Cunha, 2012).

Chapter 7 reviews the main contributions of the thesis, assesses the impact of the
developed work in the bidirectional transformation community, and ends by identifying
possible directions for future work.

Chapter 2

Point-free Programming

This chapter introduces the point-free programming style of and respective notation
used throughout this thesis. It can be skipped on a first reading and consulted as a
reference by readers familiar with algebraic programming and the point-free style.

2.1 Point-free Functional Calculus

The so-called point-free style of programming, popularized by John Backus in his
1977 Turing award lecture (Backus, 1978), is a variable-free style where functions are
defined by composition of higher-order combinators that are characterized by a rich set
of algebraic laws, making it particularly amenable to program calculation.

In this thesis, we will use a standard set of point-free combinators that can be found
in related literature (Bird and de Moor, 1997; Gibbons, 2002; Meijer et al., 1991; Cunha
et al., 2006b). The algebraic programming approach described in such literature lays
its foundations on category theory in general (Mac Lane, 1998; Pierce, 1991), that
studies abstract mathematical structures and the relationships between them. In our
presentation, we will only use basic categorical concepts that are necessary to introduce
our point-free language, instantiated for the concrete category of types and functions
that realizes the algebraic approach to functional programming.

2.1.1 Basic Combinators

A category is a mathematical construction consisting of a collection of objects and a
collection of arrows (or morphisms), satisfying the following conditions:

15

16 CHAPTER 2: POINT-FREE PROGRAMMING

• Each arrow f has a domain object A and codomain object B and is denoted by
f : A→ B ;

• Two arrows f : B → C and g : A → B can be composed into a single arrow
f ◦ g : A→ C , such that the composition operation ◦ is associative:

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-ASSOC

• Every object A is connected to itself through an identity arrow idA : A→ A, that
is the unit of composition:

id ◦ f = f = f ◦ id id -NAT

Note that in the id -NAT law we have omitted the object subscripts for id . To simplify
the notation, we will often drop such subscripts whenever they are irrelevant or can
be inferred from the context, as is the case of “polymorphic” morphisms like id . The
complete definition of id -NAT with subscripts would be idB ◦ f = f = f ◦ idA.

An example of a concrete category is SET, the category of sets and total functions,
where the objects are sets (types) and arrows are typed total functions. For each type A,
there is an identity function idA : A→ A. Composition is the standard set-theoretical
composition of functions with coinciding intermediate types.

Although we will often motivate the theory with examples in Haskell, a lazy func-
tional programming language that supports partial function definitions, our semantic
domain of choice will be the SET category. Most of the past research on algebraic
programming was developed in this same SET category. The study of algebraic pro-
gramming in the alternative CPO category, more adequate to model the partiality of
functions and values typical of lazy functional languages, can be found in (Meijer et al.,
1991; Cunha, 2005).

A morphism f : A→ A between the same object A is called an endomorphism, or
in SET, an endofunction. An isomorphism f : A→ B is a special morphism, for which
there exists a unique inverse morphism f −1 : B → A such that:

f −1 ◦ f = idA ∧ f ◦ f −1 = idB ISO

In this case, we say that the objects A and B are isomorphic and write A ∼= B .

2.1 POINT-FREE FUNCTIONAL CALCULUS 17

Functors A functor F : C→ D is a mapping between two categories C and D, and is
defined according to two mappings: one that associates to every object A of C a result
object F A of D; and another that, for every arrow f : A→ B of C, constructs an arrow
F f : F A→ F B of D satisfying the following equations:

F idA = idF A FUNCTOR-ID

F (f ◦ g) = F f ◦ F g FUNCTOR-COMP

Whenever the domain and codomain categories coincide, the functor F : C → C
mapping a category C to itself is called an endofunctor.

A binary functor (or bifunctor) B is a mapping from a pair of categories to a
category, such that if f : A→ C and g : B → D then B f g : B A B → B C D . In
SET, a bifunctor takes pairs of types into types and pairs of functions into functions,
obeying the following conditions:

B idA idB = idB A B BIFUNCTOR-ID

B (f ◦ g) (h ◦ i) = B f h ◦ B g i BIFUNCTOR-COMP

By applying a bifunctor B : C → D → E to a type A of C, we get the unary functor
B A : D→ E.

Natural Transformations A natural transformation η between functors F : C→ D
and G :C→ D, denoted by η : F →̇ G, is an arrow that assigns to each object A in C an
arrow ηA : F A→ G A between objects of D, such that, for any arrow f : A→ B , the
following naturality condition holds:

G f ◦ ηA = ηB ◦ F f η-NAT

The notion of natural transformation can also be generalized to bifunctors. Whenever a
natural transformation η is also an isomorphism, it is called a natural isomorphism.

Terminal and Initial objects A terminal object of a category C is an object T such
that, for each object A of C, there is exactly one arrow of type A→ T . All terminal
objects are unique up to isomorphism, and are usually denoted by an object 1, where
the unique arrow from A to 1 is popularly known as the bang morphism ! A : A→ 1.

18 CHAPTER 2: POINT-FREE PROGRAMMING

In category theory, the uniqueness of the constructions is typically formulated as a
universal property. The universal property for ! is expressed as follows:

f = ! A ⇔ f : A→ 1 ! -UNIQ

Every terminal object of the SET category is isomorphic to the singleton set 1 = {1}
that models a data type with a single value.

Other derived reflexivity and fusion laws can be easily proved from uniqueness:

! 1 = id1 ! -REFLEX

! ◦ f = ! ! -FUSION

An initial object of a category C is an object I such that, for each object A of C,
there is exactly one arrow of type I → A. Likewise, all initial objects are unique up
to isomorphism. The unique initial object is usually denoted by an object 0, and the
unique arrow from 0 to A by an arrow ¡ A : 0 → A. In SET, every initial object is
isomorphic to the empty type 0 = { }, and the ¡ A arrow is the empty function. In our
presentation, initial objects are only of theoretical significance, namely to represent
data types with no values.

Points In categorical terms, an element of an object A can be represented by an arrow
of type 1→ A, usually called a point. For an element a of type A, the point combinator
a : 1 → A denotes the corresponding point in the category. A morphism c : B → A

is called constant if for any other two arrows f , g : C → B we have c ◦ f = c ◦ g .
By composing points with !, we can define a constant morphism a ◦ !B : B → A that
ignores the argument element of B and always returns the fixed element a of A.

Products The product of two objects A and B is defined as an object A × B and two
arrows π1 : A × B → A and π2 : A × B → B . The universal property for products is
expressed by stating that, for any two arrows f : C → A and g : C → B , there exists a
unique arrow f M g : C → A × B such that:

h = f M g ⇔ π1 ◦ h = f ∧ π2 ◦ h = g ×-UNIQ

2.1 POINT-FREE FUNCTIONAL CALCULUS 19

In SET, the product of two types A is isomorphic to the Cartesian product A × B =

{(x , y) | x ∈ A, y ∈ B }. The projections π1 and π2 project out the left and right
components of a pair, respectively, and the split combinator f M g builds a pair by
applying f and g to the same input value.

Other typical laws can be derived from the uniqueness of categorical products:

π1M π2 = id ×-REFLEX

π1 ◦ (f M g) = f ∧ π2 ◦ (f M g) = g ×-CANCEL

(f M g) ◦ h = f ◦ h M g ◦ h ×-FUSION

Although less general, these laws are more amenable to calculation because they allow
us to perform equational reasoning, i.e., to substitute (sub)terms in an expression by
equivalent terms, according to the laws. Using uniqueness, on the other side, we must
first prove the equivalences before substituting the terms, by processing the whole
formula. For example, using×-REFLEX we can directly replace the term π1M π2 with
id , whereas using×-UNIQ we have to first prove the right equation of the formula. The
other downside of uniqueness (for calculation) is that even instantiating one side of
the equation, there still remain uninstantiated variables in the other side, what requires
the programmer to already have an idea of the proof instead of performing a simple
substitution. For example, using×-UNIQ we have to instantiate h to id , and solve the
right equation for f = π1 and g = π2, to prove that it is equal to π1M π2.

Given two arrows f : A→ C and g : B → D , we can define a product arrow
f × g : A × B → C × D as follows:

f × g = f ◦ π1M g ◦ π2 ×-DEF

In SET, this product combinator builds a new pair by applying two functions in parallel
to the left and right elements of a pair, and can be seen as a bifunctor · × · : SET →
SET → SET:

id × id = id ×-FUNCTOR-ID

(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-FUNCTOR-COMP

Coproducts The coproduct of two objects A and B is defined as an object A + B

and two arrows i1 : A→ A + B and i2 : B → A + B . Dually to products, given two

20 CHAPTER 2: POINT-FREE PROGRAMMING

arrows f : A→ C and g : B → C , the uniqueness of an arrow f O g : A + B → C is
guaranteed by the following universal property:

h = f O g ⇔ h ◦ i1 = f ∧ h ◦ i2 = g +-UNIQ

In SET, the coproduct of two types A and B is isomorphic to the disjoint sum A + B =

{L x | x ∈ A} ∪ {R y | y ∈ B }. The injections i1 and i2 build left and right
alternatives (tagged with L and R, respectively) and the either (or junction) combinator
f O g applies a function f if the input is a left alternative or a function g otherwise.

We can also prove reflexivity, cancellation and fusion laws for coproducts:

i1O i2 = id +-REFLEX

(f O g) ◦ i1 = f ∧ (f O g) ◦ i2 = g +-CANCEL

f ◦ (g O h) = f ◦ g O f ◦ h +-FUSION

Given two arrows f : A→ C and g : B → D , we can build a coproduct arrow
f + g : A + B → C + D as follows:

f + g = i1 ◦ f O i2 ◦ g +-DEF

The definition in SET of this derived coproduct combinator f + g uses a function f

to build a left alternative from a left alternative, or a function g otherwise to build
a right alternative from a right alternative. As for products, it denotes a bifunctor
·+ · : SET → SET → SET according to the following laws:

id + id = id +-FUNCTOR-ID

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-FUNCTOR-COMP

Exponentials For a category C with terminal object and products, the exponential of
two objects B and C is defined as an object C B and a morphism ap : C B × B → C

such that, for any morphism f :A×B → C , there exists a unique morphism f :A→ C B

such that the following universal property holds:

g = f ⇔ f = ap ◦ (g × id) EXP-UNIQ

2.1 POINT-FREE FUNCTIONAL CALCULUS 21

The uniqueness of exponential objects also entails the following derived laws:

ap = id EXP-REFLEX

ap ◦ (f × id) = f EXP-CANCEL

f ◦ g = f ◦ (g × id) EXP-FUSION

In the point-free style, higher-order functions are definable through exponentiation.
The exponential object C B in SET denotes the set of all functions from B to C . The
morphism ap is often called apply and applies a function to a value as follows:

ap : BA × A→ B

ap (f , x) = f x

The morphism · and its converse ·̂ are usually called curry and uncurry, respectively,
and convert a function on pairs into a higher-order function, and vice-versa:

· : (A × B → C)→ (A→ C B) ·̂ : (A→ C B)→ (A × B → C)

f a b = f (a, b) f̂ (a, b) = f a b

The curry and uncurry combinators are each other’s inverse, as stated below:

f̂ = f ∧ f̂ = f CURRY-UNCURRY-ISO

Given a type A of C, we can turn the curry operation into an exponentiation functor
·A : C → C that maps each type B into an exponential type BA and provides an
operation f A : BA → C A, for each function f : B → C :

f A = f ◦ ap EXP-DEF

When the type superscript is not relevant, we replace it by the symbol •. The following
laws show that ·• is truly a functor in SET:

id• = id EXP-FUNCTOR-ID

f • ◦ g• = (f ◦ g)• EXP-FUNCTOR-COMP

Natural Isomorphisms We can define other derived combinators that are useful
“plumbing” devices to connect point-free expression with different intermediate but

22 CHAPTER 2: POINT-FREE PROGRAMMING

isomorphic types, much like wiring connectors in an electrical circuit. For example,
the following combinators express the commutativity, associativity and distributivity of
sums and products:

swap : A × B → B × A

assocl : A × (B × C)→ (A × B) × C

assocr : (A × B) × C → A × (B × C)

coswap : A + B → B + A

coassocl : A + (B + C)→ (A + B) + C

coassocr : (A + B) + C → A + (B + C)

distl : (A + B) × C → (A × C) + (B × C)

undistl : (A × C) + (B × C)→ (A + B) × C

distr : A × (B + C)→ (A × B) + (A × C)

undistr : (A × B) + (A × C)→ A × (B + C)

All these functions are natural isomorphisms in SET, as witnessed by the respective
equational laws presented in Appendix A.

Conditionals In functional languages, predicates are specified as functions from
some source type into a Boolean type. The type of Booleans can be modeled in SET as
a set containing only two elements, denoted by 2 = {True,False }. Also, there is an
isomorphism 2 ∼= 1 + 1 allowing us to reuse the coproduct operations for Booleans.
For a predicate p : A → 2, we can define a guard combinator p? : A → A + A that
applies the predicate while keeping a copy of the input as follows:

p? = (π1 + π1) ◦ distr ◦ (id M p) ?-DEF

For an input value a of A, p? a tags the input as a left value L a if it satisfies the
predicate (p a = True) or as a right value otherwise (p a = False).

When combined with an either, it allows us to specify conditionals. Given a
predicate p : A → 2 and two functions f : A → B ,g : A → B , the usual point-wise
conditional expression (if p a then f a else g a) can be encoded as the point-free

2.1 POINT-FREE FUNCTIONAL CALCULUS 23

expression (f O g) ◦ p?. We can also prove the following properties about conditionals:

(f O g) ◦ p? ◦ h = (f ◦ h O g ◦ h) ◦ (p ◦ h)? ?-FUSION

(f O f) ◦ p? = f ?-CANCEL

2.1.2 Recursive Combinators

In functional languages, algebraic data types are inductively defined using a set of
constructors, where each such constructor contains a set of values. For example, the
types of naturals and lists can be encoded in Haskell as follows (using special syntax
for lists):

data Nat = Zero | Succ Nat

data [a] = [] | a : [a]

Most of these recursive types commonly found in functional programming can be
uniquely represented (up to isomorphism) as the least fixed point of a polynomial
functor (Meijer et al., 1991). Given a base functor F : SET → SET, the inductive type
generated by its least fixed point (to be introduced later) will be denoted by µF.

A polynomial functor is a functor defined according to the following language:

F = A | Id | F⊗F | F⊕F | F�F

The constant functor A encapsulates a data type A and the identity functor Id denotes
recursive invocation. The remaining combinators model the product⊗, coproduct⊕ and
composition � of polynomial functors. For example, for naturals we have Nat = µNat,
where Nat = 1⊕ Id, and for lists [A] = µListA, where ListA = 1⊕A⊗ Id1. The
application of a polynomial functor F to a type A is isomorphic to a “flattened” sums-
of-products type F A, according to the following specialization equations:

C A = C

Id A = A

(F⊕G) A = F A + G A

(F⊗G) A = F A × G A

(F�G) A = F (G A)

1For a type A, we represent its base functor A by the same name but in the sans serif font of functors.

24 CHAPTER 2: POINT-FREE PROGRAMMING

For the base functors of naturals and lists we have Nat A = 1 + A and ListX A =

1 + X × A.
Each data type T = µF comes equipped with two morphisms: outF : µF→ F µF,

that can be used to expose its top-level structure (in a sense, encoding pattern matching
over that type), and inF : F µF→ µF, that determines how values of that type can be
constructed. They are each other’s inverse as witnessed by the following law:

inF ◦ outF = id ∧ outF ◦ inF = id in-out-ISO

The typical list constructors can be defined as the point-free terms nil = inListA ◦ i1 and
cons = inListA ◦ i2, such that nil O cons = inListA , while the constructors for naturals
are defined as zero = inNat ◦ i1 and succ = inNat ◦ i2, with zero O succ = inNat.

In functional programming, inductive data types that are parameterized by type
variables, as is the case of lists, are called polymorphic. The structure of a polymorphic
type T with a type variable A can be represented as the fixed point T A = µ(B A) of a
partially applied polynomial bifunctor B : SET → SET → SET (Jansson and Jeuring,
1997), with outB A : T A→ B A (T A) and inB A :B A (T A)→ T A. The language
of polynomial functors can be generalized to a language of polynomial bifunctors:

B = A | Id | Par | B⊗7 B | B⊕7 B | F�7 B

This language includes the constant A that lifts a regular type A to a bifunctor, the
product bifunctor ⊗7, the coproduct bifunctor ⊕7 and the composition bifunctor �7 of a
polynomial functor F after a bifunctor B. The combinators Par (that will be used to
model type parameters) and Id (that, as before, is used to model recursive invocations)
select the first and second type arguments of a bifunctor, respectively. For example, for
lists we have [A] = µ((1⊕7 Par⊗7 Id) A).

Some algebraic data types are defined in terms of other user-defined data types,
such as the type of n-ary leaf trees:

data LTree a = Leaf a | Fork [LTree a]

In order to represent such types, the above grammar of polynomial functors is often
extended to consider also compositions F�G whose left side F can be not only a
polynomial functor but also a type functor (the functor modeled by a polynomial
type). The same can be said about binary functors, and bifunctor composition F�7 B

can be extended to allow F to be a type functor. The resulting grammar of functors

2.1 POINT-FREE FUNCTIONAL CALCULUS 25

(and corresponding family of fixed point types) is called regular. For n-ary leaf trees,
we obtain LTree A = µLTreeA, with the regular functor LTreeA = A⊕ ([]� Id), or
alternatively the bifunctor-based encoding LTree A = µ((Par⊕7 ([]�7 Id)) A).

The functor mapping F f : F A → F B is a function that preserves the functorial
structure and modifies all the instances of the type argument A into instances of type B .
It can be defined as a polytypic function that takes an arbitrary functor as a parameter
and proceeds by induction on the structure of the argument functor. For polynomial
functors, we define functor mapping as follows2:

∀f : A→ B . F f : F A→ F B

Id f = f

C f = id

(F⊗G) f = F f × G f

(F⊕G) f = F f + G f

(F�G) f = F (G f)

FUNCTOR-DEF

In this definition, the argument function f is applied to the recursive occurrences of
the functor, constants are left unchanged, and the remaining cases proceed by induction.
The value-level mapping for type functors will be defined later in this section.

Catamorphisms A base functor also dictates a unique way of consuming and produc-
ing values of the corresponding data type, using well-known recursion patterns instead
of defining functions by general recursion.

In categorical terms, given a functor F :C→ C, an F-algebra is a morphism of type
F A→ A, where the object A is called the carrier of the algebra, and a F-homomorphism

from an F-algebra f : F A→ A to an F-algebra g : F B → B is a morphism h : A→ B

such that the property h ◦ f = g ◦ F h holds.

An initial F-algebra is an initial object in the category where algebras are objects
and homomorphisms are arrows. Various data types (for finite data structure) used in
functional programming can be represented by initial algebras of particular functors.
For instance, for the polynomial functors of SET, such initial algebras exist and are
unique up to isomorphism. We denote the unique initial algebra of a functor F by

2The bifunctor mapping ∀f : A → C , g : B → D . B f g : B A B → B C D can be defined in a
similar way for polynomial bifunctors.

26 CHAPTER 2: POINT-FREE PROGRAMMING

inF : F µF→ µF, where the type µF is the least fixed point of the functor.

The existence of an initial algebra (and an associated fixed point) means that, given
any other algebra g : F A→ A, there is a unique homomorphism ([g])F : µF→ A that
makes the hereunder diagram commute:

µF

([g])F
��

F µF

F ([g])F
��

inFoo

A F Ag
oo

The resulting morphism is called a fold or a catamorphism and can express all functions
defined by iteration. A catamorphism recursively consumes values of an inductive data
type µF by replacing their constructors by those of the given algebra g . The above
diagram can be rephrased into the following uniqueness law:

f = ([g])F ⇔ f ◦ inF = g ◦ F f ([·])-UNIQ

From fold uniqueness, it is trivial to derive the typical reflexivity, cancellation and
fusion laws, more amenable to equational reasoning:

([inF])F = id ([·])-REFLEX

([g])F ◦ inF = g ◦ F ([g])F ([·])-CANCEL

f ◦ ([g])F = ([h])F ⇐ f ◦ g = h ◦ F f ([·])-FUSION

A well-known example of a fold is the map f : [A]→ [B] function that maps an
argument function f : A→ B over the elements of a list and can be defined as follows:

map f = ([inListB ◦ (id + f × id)])ListA map-DEF

Mapping can be generalized from lists to arbitrary types. Specifically, a polymorphic
type T A = µ(B A) can be made into a type functor T : SET → SET that associates to
every type A a type T A, and whose action on functions T f : T A→ T B is given
by the following catamorphism, for any function f : A→ B :

T f = ([inB B ◦ B f id])B A MAP-DEF

2.1 POINT-FREE FUNCTIONAL CALCULUS 27

We can prove that T is indeed a functor:

T id = id MAP-FUNCTOR-ID

T f ◦ T g = T (f ◦ g) MAP-FUNCTOR-COMP

From the fusion law for catamorphisms, we can derive a useful law stating that a
catamorphism composed with its type functor can always be fused into a single cata-
morphism:

([g])B B ◦ T f = ([g ◦ B f id])B A ([·])-MAP-FUSION

Another example of a catamorphism is the function filter_left : [A + B] → [A]

that filters all the left alternatives from a list of left or right elements. It can be defined
in Haskell as follows:

filter_left :: [Either a b]→ [a]

filter_left [] = []

filter_left (Left x : xs) = x : filter_left xs

filter_left (Right x : xs) = filter_left xs

Using the natural isomorphisms presented before, it is not difficult to put together a
point-free algebra with the intended behavior:

filter_left = ([(inListA O π2) ◦ coassocl ◦ (id + distl)])ListA+B
filter_left-DEF

The behavior of the filter_left catamorphism is clarified in the following diagram:

[A + B]

filter_left

��

1 + (A + B) × [A + B]

(1⊕A+B ⊗ Id) filter_left

��

inListA+Boo

[A] (1 + A × [A]) + B × [A]
inListA Oπ2

oo 1 + (A + B) × [A]
coassocl ◦ (id + distl)

oo

Using fold fusion, we can also prove that filter_left is a natural transformation, by
showing that mapping two functions to distinct alternatives of a sum before filtering is
the same as mapping only the left function after filtering:

filter_left ◦map (f + g) = map f ◦ filter_left filter_left-NAT

28 CHAPTER 2: POINT-FREE PROGRAMMING

Paramorphisms A notion which extends that of a catamorphism is the paramorphism,
that can express all functions defined by primitive recursion (Meertens, 1992). In
practice, this means that the result can depend not only on the recursive result, but also
on the recursive occurrence of the type. In the SET category, for an inductive type µF,
given a function g : F (A × µF)→ A, the paramorphism 〈|g |〉F : µF→ A is the unique
function that makes the hereunder diagram commute:

µF

〈|g|〉F
��

F µF
inFoo

F (〈|g|〉F M id)

��
A F (A × µF)g
oo

Notice how a copy of the recursive occurrence is made before the recursive invocation.
The paramorphism recursion pattern is characterized by the following laws:

f = 〈|g |〉F ⇔ f ◦ inF = g ◦ F (f M id) 〈| · |〉-UNIQ

〈|inF ◦ F πi |〉F = id for i = 1, 2 〈| · |〉-REFLEX

〈|g |〉F ◦ inF = g ◦ F (〈|g |〉FM id) 〈| · |〉-CANCEL

f ◦ 〈|g |〉F = 〈|h|〉F ⇐ f ◦ g = h ◦ F (f × id) 〈| · |〉-FUSION

In a category with products and exponential objects like SET, a paramorphism can be
encoded as a catamorphism that pairs with the result of each recursion step a copy of
the input, to be used recursively. In the last step, the copy of the input is discarded:

〈|f |〉F = π1 ◦ ([g M inF ◦ F π2])F 〈| · |〉-DEF-CATA

Whenever it ignores the recursive copy of the input, the paramorphism can be reduced
to a simple catamorphism:

〈|f ◦ F π1|〉F = ([f])F 〈| · |〉-CATA

A famous example of a paramorphism is the factorial function that returns one for
the argument zero and, for a natural number n greater than zero, calculates the factorial
of n − 1 multiplied by the original argument n:

fact :: Nat → Nat

fact Zero = Succ Zero

2.1 POINT-FREE FUNCTIONAL CALCULUS 29

fact (Succ n) = mult (fact n, Succ n)

Here, the combinator mult :: (Nat ,Nat)→ Nat denotes multiplication of natural num-
bers. This Haskell point-wise definition can be translated to point-free as follows:

fact = 〈|succ ◦ zero Omult ◦ (id × succ)|〉Nat fact-DEF

Anamorphisms The categorical dual of the catamorphism is the unfold or anamor-

phism recursion pattern, that provides a standard way of producing values of a recursive
type.

Given a functor F : C→ C, a F-coalgebra is a morphism of type A→ F A, with
the object A as carrier of the coalgebra, and a F-cohomomorphism from a F-coalgebra
f : A → F A to a F-coalgebra g : B → F B is a morphism h : A → B such that the
property g ◦ h = F h ◦ f holds.

A terminal F-coalgebra is a terminal object in the category with objects as coalge-
bras and cohomomorphisms as arrows. Coinductive data types such as streams, that
allow potentially infinite values, can be represented by terminal coalgebras. We denote
the unique terminal coalgebra of a functor F as outF : F → F νF, where νF is the
coinductive data type represented as the greatest fixed point of F.

In the SET category, given a coalgebra h :A→ F A, the anamorphism [(h)]F :A→ νF

is a function that, given an element of A, builds a (possibly infinite) element of the
coinductive data type νF. The coalgebra h is used to decide when generation stops and,
in case it proceeds, which “seeds” should be used to generate the recursive occurrences
of νF.

In this thesis, we will only be interested in a specific kind of unfolds, namely those
that always terminate. Not only do we want all our anamorphisms to terminate, but we
also want to be able to freely compose them with catamorphisms – this composition
is not possible in general (in the SET category), because anamorphisms can generate
infinite values of coinductive types that are not values of the inductive types consumed
by catamorphisms.

Instead of following a strong functional programming approach (Turner, 1995;
Barbosa, 2001), we restrict ourselves to recursive (Capretta et al., 2006) (or reduc-

tive (Backhouse and Doornbos, 2001)) coalgebras. The resulting morphism (to be
called a recursive anamorphism) is then guaranteed to halt in finitely many steps. A
recursive coalgebra h : A→ F A is essentially one that guarantees that all As contained

30 CHAPTER 2: POINT-FREE PROGRAMMING

in the resulting F A are somehow smaller than its input, what serves as a proof that
the corresponding anamorphism terminates. Capretta et al. (2006) give a nice formal
definition and provide a set of constructions for building recursive coalgebras out of
simpler ones.

For the initial F-algebra inF : F µF → µF, the F-coalgebra in−1
F : µF → F µF is

a terminal recursive coalgebra: notationally, we will often reuse outF to denote the
recursive coalgebra in−1

F . Given a recursive coalgebra h : A → F A, the recursive
anamorphism [[(h)]]F : A → µF is the unique arrow that makes the hereunder diagram
commute:

µF
in−1

F // F µF

A

[[(h)]]F

OO

h
// F A

F [[(h)]]F

OO

The recursive anamorphism (over inductive types) obeys the same laws as the normal
anamorphism (over coinductive types), defined as follows:

f = [[(h)]]F ⇔ in−1
F ◦ f = F f ◦ h [[(·)]]-UNIQ

[[(in−1
F)]]F = id [[(·)]]-REFLEX

in−1
F ◦ [[(h)]]F = F [[(h)]]F ◦ h [[(·)]]-CANCEL

[[(h)]]F ◦ f = [[(h)]]F ⇐ h ◦ f = F f ◦ h [[(·)]]-FUSION

A trivial example of a recursive anamorphism between arbitrary polymorphic types
is again type functor mapping:

T f = [[(B f id ◦ outB A)]]B B MAP-[[(·)]]-DEF

Notice that B f id : (B A) →̇ (B B) is a natural transformation between partially
applied bifunctors and that a composition of a natural transformation with a recursive
coalgebra is again a recursive coalgebra (Capretta et al., 2006, Proposition 3.9), so this
is clearly a recursive anamorphism. In fact, every catamorphism ([inG ◦ η])F, where
η : F →̇ G is a natural transformation can also be defined as a recursive anamorphism
[[(η ◦ outF)]]G, and vice-versa:

([inG ◦ η])F = [[(η ◦ outF)]]G ⇐ η : F →̇ G ([·])-[[(·)]]-SHIFT

2.1 POINT-FREE FUNCTIONAL CALCULUS 31

Given its definition as an unfold, type functor mapping can also be fused with
anamorphisms as follows:

T f ◦ [[(g)]]B A = [[(B f id ◦ g)]]B B [[(·)]]-MAP-FUSION

A classical example of a recursive anamorphism that cannot be defined using a
catamorphism is the function zip : [A] × [B]→ [A × B], that zips two lists together
into a list of pairs:

zip :: ([a], [b])→ [(a, b)]

zip (x : xs , y : ys) = (x , y) : zip (xs , ys)

zip = []

This function can be redefined in the point-free style as follows:

zip = [[((! + distp) ◦ coassocl ◦ dists ◦ (outListA × outListB))]]ListA×B
zip-DEF

The behavior of the zip anamorphism is illustrated in the following diagram:

[A × B]
out1⊕A×B ⊗ Id

// 1 + (A × B) × [A × B]

[A] × [B]

zip

OO

(!+distp)◦coassocl◦dists◦(outListA×outListB)
// 1 + (A × B) × ([A] × [B])

(1⊕A×B ⊗ Id) zip

OO

Here, distp and dists are the isomorphisms given by:

distp : (A × B) × (C × D)→ (A × C) × (B × D)

distp = (π1 × π1)M(π2 × π2) distp-DEF

dists : (A + B) × (C + D)→ (A × C + A × D) + (B × C + B × D)

dists = (distr + distr) ◦ distl dists-DEF

The coalgebra of zip guarantees that the output list stops being generated if at least one
of the inputs is empty. Otherwise, both tails are used as “seeds” to recursively generate
the tail of the output list. We can prove a naturality law for zip stating that mapping
two functions in parallel either before or after zipping produces the same result:

zip ◦ (map f ×map g) = map (f × g) ◦ zip zip-NAT

32 CHAPTER 2: POINT-FREE PROGRAMMING

Hylomorphisms In algebraic programming, the composition of a catamorphism after
an anamorphism is known as a hylomorphism, that can express arbitrary recursive func-
tions. A hylomorphism solves a particular problem by first constructing an intermediate
data structure from the source type, that is then destructed to produce a result of the
target type. However as mentioned above, this composition is not possible in SET, as
inductive and coinductive types do not coincide. Therefore, we will be interested in a
particular kind of hylomorphisms that are guaranteed to terminate, namely those where
the catamorphism is composed with a recursive anamorphism:

[[[g , h]]]F = ([g])F ◦ [[(h)]]F [[[·, ·]]]-SPLIT

These recursive hylomorphisms (the unique coalgebra-to-algebra morphisms of Capretta
et al. (2006)) are quite amenable to program calculation because they enjoy a uniqueness
law similar to the other recursion patterns:

[[[g , h]]]F = f ⇔ g ◦ F f ◦ h = f [[[·, ·]]]-UNIQ

An example of a function that is easy to encode as a hylomorphism is the uncurried
addition of natural numbers:

plus :: (Nat ,Nat)→ Nat

plus (Zero,m) = m

plus (Succ n,m) = Succ (plus (n,m))

The point-free hylomorphism for plus uses the intermediate fixed point µ(Nat ⊕ Id):

plus = [[[id O succ, (π2 + id) ◦ distl ◦ (outNat × id)]]]Nat ⊕ Id plus-DEF

The diagram for the plus hylomorphism is the following:

Nat × Nat
distl◦(outNat×id) //

plus
��

1 × Nat + Nat × Nat
π2+id // Nat + Nat × Nat

(Nat ⊕ Id) plus
��

Nat Nat + Nat
id O succ

oo

2.2 POINT-FREE RELATIONAL CALCULUS 33

2.2 Point-free Relational Calculus

A generalization of the point-free functional calculus is the point-free relational cal-
culus (Bird and de Moor, 1997; Oliveira, 2008, 2009), that allows the formalization
of partially defined functions and multiple-valued relations, while preserving similar
lifted combinators and algebraic laws. To accommodate this change, we move from the
category SET of total functions to the more general category REL of relations where
objects are types and arrows are relations. Since SET is a subcategory of REL, arrows
in SET can be seen as a particular subclass of arrows in REL.

2.2.1 Relational Combinators

A relation R : A→ B can be theoretically seen as a subset of the Cartesian product
A × B . We write b R a if the pair (a, b) is in R and R a for the set {b | b R a }. The
identity relation idA :A→ A is defined by {(a, a) | a ∈ A}, and the composition of two
relations R : A→ B and S : B → C is defined by c (R ◦ S) a ≡ ∃b. b S a ∧ c R b.
Relational inclusion is defined set-theoretically by R ⊆ S ≡ ∀a, b. b R a ⇒ b S a.
The smallest relation between two types A and B is the empty relation denoted by a
bottom arrow ⊥ : A→ B , and the largest relation is their Cartesian product denoted by
a top arrow > : A→ B .

For every relation R : A→ B , there is a converse relation R◦ : B → A. When-
ever the relation R is a bijective function (according to the notation introduced later
in Section 2.2.2) its converse R◦ is the unique function R−1. Two relations R : A→ B

and S : A→ B can be combined using standard set operations such as intersection

(R ∩ S), union (R ∪ S) and difference (R − S).

Terminal and initial objects In REL, both the initial and terminal object are the
empty set 0 = { }, and the empty relation ⊥ is simultaneously the the unique arrow
from 0 to A and from A to 0, for any type A.

Unit objects In an allegory (a category with some additional structure inspired
by REL (Bird and de Moor, 1997), including a partial order ⊆ to compare two mor-
phisms with the same source and target objects), an object U is a unit object if it satisfies

34 CHAPTER 2: POINT-FREE PROGRAMMING

two properties. The first is that idU is the largest arrow of type U → U , this is:

R ⊆ idU ⇐ R : U → U

In the notation introduced later in Section 2.2.2, this is equivalent to saying that every
such arrow is coreflexive. Second, for every object A, there must be an entire (and
simple) arrow of type A→ U (again using the nomenclature from Section 2.2.2).

In the REL category, a unit object is the singleton set 1 and ! A : A→ 1 is the unique
arrow mapping every element of A to the sole element of the singleton set. The function
! A : A→ 1 is also unique in REL because the singleton set is a terminal object in its
subcategory of functions SET. In REL, for any two types A and B , the largest relation
over those types (their Cartesian product) is usually denoted by an arrow > : A→ B .
This relation can be defined by composing two unitary arrows ! ◦B ◦ ! A.

Products Modeling the product of two types A and B as the Cartesian product A× B

and using the standard projection functions π1 : A × B → A and π2 : A × B → B , the
split combinator can be defined in REL to apply two relations in parallel:

RM S = π1
◦ ◦ R ∩ π2

◦ ◦ S M-DEF

According to this definition, the split (b, c) (RM S) a is defined whenever b R a and
c S a. However, if a is not in the domain of both R and S , then the split is undefined.

Due to such partiality, our notion of relational product is not a true categorical
product in REL. The universal property for the split combinator can be obtained
from M-DEF by indirect equality:

X ⊆ RM S ⇔ π1 ◦ X ⊆ R ∧ π2 ◦ X ⊆ S ×-UNIV

Nevertheless, it satisfies reflexivity, cancelation and fusion laws modulo additional
side-conditions entailing that the relations are defined for the required domains, and the
product combinator can still be defined in a similar way to SET (Appendix A).

Coproducts Unlike products, coproducts in REL are a simple generalization of co-
products in SET. Remembering the definition of the coproduct A + B as a disjoint
sum and the usual injection functions i1 : A→ A + B and i2 : B → A + B , the either

2.2 POINT-FREE RELATIONAL CALCULUS 35

combinator can be defined as follows:

RO S = R ◦ i1◦ ∪ S ◦ i2◦ O-DEF

Relational coproducts are truly categorical and satisfy the usual laws for coproducts in
SET, that can be derived from the following universal property:

X = RO S ⇔ X ◦ i1 = R ∧ X ◦ i2 = S +-UNIQ

Coreflexives A very special class of relations with useful properties (Appendix A)
are coreflexives. A relation Φ : A → A is said to be coreflexive if it is at most the
identity (Φ ⊆ idA). Informally, we can see such coreflexive as a subset of A and by
abuse of notation we will sometimes write a ∈ Φ to signify that a value a belongs to
the set modeled by the coreflexive Φ. We will denote coreflexives by upper-case Greek
letters (Ψ,Φ,Ω, ...).

In (Macedo et al., 2012), we introduced a lift combinator [R] :A× B → A× B that
turns any relation R : A→ B to a coreflexive on products. This is defined as follows:

[R] = π2
◦ ◦ R ◦ π1 ∩ id [·]-DEF

An alternative way to put it is to say that [R] is the largest coreflexive Φ such that
π2 ◦ Φ ⊆ R ◦ π1, according to the following universal property:

Φ ⊆ [R]⇔ π2 ◦ Φ ⊆ R ◦ π1

Conditionals In the relational calculus, coreflexives act as filters of data and can be
used to model predicates, such that values a for which a Φ a satisfy the predicate
Φ. For example, predicates that always return true or false can be defined as id or ⊥,
respectively. We can also trivially specify the predicate stating that both components of
a pair are equal using the coreflexive [id] : A × A→ A × A.

Therefore, it is useful to overload the guard combinator to work over predicates
modeled as coreflexives (instead of predicates modeled as functions): for a coreflexive
Φ : A→ A, we define the total function Φ? : A→ A + A that returns a left value if the

36 CHAPTER 2: POINT-FREE PROGRAMMING

input value belongs to the coreflexive or a right value otherwise:

Φ? = i1 ◦ Φ ∪ i2 ◦ (id − Φ) ?-DEF

By O-DEF, the property ?-DEF is equivalent to:

Φ? = (ΦO id − Φ)◦

Catamorphisms The regular categorical notion of catamorphisms in a category of
functions can be generalized into catamorphisms in the more general category of
relations. Consider that an initial algebra inF :F A→ A in the subcategory of functions
is also an initial algebra in the category of relations. Given a functor F, a relation
R :F A→ A is an F-algebra if there exists an unique F-homomorphism ([R])F :µF→ A

from R to the initial F-algebra inF, that is characterized by the following universal
property:

X = ([R])F⇔X ◦ inF = R ◦ F X ([·])-UNIQ

The resulting morphism is called a relational catamorphisms. From the universal
property, we can derive the usual laws like reflexivity, cancelation and fusion:

([inF])F = inF ([·])-REFLEX

([R])F ◦ inF = R ◦ F ([R])F ([·])-CANCEL

R ◦ ([S])F = ([T])F⇐R ◦ S = T ◦ F R ([·])-FUSION

Anamorphisms In the relational calculus, the anamorphism is usually defined as the
converse of the relational catamorphism (Backhouse and Doornbos, 2001)3. Given a
functor F and a F-coalgebra S : A→ F A, the relational anamorphism [(S)]F : A→ µF

is defined as the expression:

[(S)]F = ([S ◦])F
◦

3Although this definition is technically not the categorical dual of the catamorphism, since it is not
the relational extension of the anamorphism on functions, for simplicity we will reason about them in
similar ways, specifically regarding termination. The theoretical implications are discussed in more detail
in (Hoogendijk, 1997).

2.2 POINT-FREE RELATIONAL CALCULUS 37

Backhouse and Doornbos (2001) provide a nice general theorem stating that a relational
anamorphism is terminating if and only if the coalgebra S is F-reductive. Based on this
notion of F-reductivity, they propose a calculus of F-reductive relations to reason about
the termination of recursive relational programs. If a coalgebra S is F-reductive, we
call the resulting morphism a recursive relational anamorphism, denoted by [[(S)]]F.

Hylomorphisms The relational hylomorphism is defined as the composition of a
relational catamorphism after a relational anamorphism:

[[R, S]]F = ([R])F ◦ [(S)]F

The hylomorphism is the smallest solution of the inequation R ◦ F X ◦ S ⊆ X , for all
X , that is:

[[R, S]]F ⊆ X ⇐R ◦ F X ◦ S ⊆ X

Since relational catamorphism are always terminating relations, it follows that the
hylomorphism is a terminating program if and only if the relational anamorphism
is terminating, i.e., the coalgebra S is reductive. If we consider the coalgebra to be
reductive, the resulting recursive relational hylomorphism

[[[R, S]]]F = ([R])F ◦ [[(S)]]F [[[·, ·]]]-SPLIT

is a terminating relation that satisfies the following equality:

[[[R, S]]]F = X ⇔R ◦ F X ◦ S = X [[[·, ·]]]-UNIQ

2.2.2 Properties of Relations

Using the relational converse as an instrumental combinator, we can characterize
various properties of relations. For example, the domain and range for which a re-
lation R : A→ B is defined are denoted by the coreflexives δR = R◦ ◦ R ∩ id and
ρR = R ◦ R◦ ∩ id , respectively.

A relation R is said to be simple (formally, R ◦ R◦ ⊆ id) if it is single-valued, i.e.,
a partially defined function. The converse R : A→ B of a simple relation is always
injective (R◦ ◦ R ⊆ id), i.e., it maps distinct values in A to distinct values in B . On the

38 CHAPTER 2: POINT-FREE PROGRAMMING

other hand, a relation R : A→ B is entire or total (id ⊆ R◦ ◦ R) if it is totally defined
for its domain type A, meaning that δR = id . The converse R : A→ B of an entire
relation is always surjective (id ⊆ R ◦ R◦), meaning that it is totally defined for its
codomain type B with ρR = id .

An injective (partial) function f : A→ B is always left-invertible (or just invertible),
i.e., there is a (partial) function g : B → A that undoes its behavior, such that for every
x ∈ δf we have g (f x) = x . Conversely, a surjective function f : A→ B is always
right-invertible, i.e., there is a function g : B → A that is undoable by f , such that
for every y ∈ ρf we have f (g x) = x . A function f : A→ B that is simultaneously
injective, entire, simple and surjective is said to be bijective (also referred to as a
bijection or an isomorphism).

In our notation, we define both a relation R : A → B (in REL) and a function
f : A → B (in SET) using the same kind of arrow. In particular, total functions in
SET arise as arrows in REL that are entire and simple. Henceforward, we will denote
relations by upper-case identifiers R, S ,T , ... and use the lower-cases f , g , h, ... to
denote partial functions (simple relations) in REL or total functions in SET. When f

is a partial function, we write (f a)↓ if f is defined for the input value a, i.e., a ∈ δf .
When f and g are partial functions, f v g denotes inclusion of functions and is defined
by ∀a. (f a)↓ ⇒ f a = g a.

2.2.3 Proving the Termination of Anamorphisms

A more standard technique for proving the termination of an anamorphism [(S)]F,
equivalent to stating that its coalgebra S : A → F A is recursive, is to prove that its
accessibility relation is well-founded (Bird and de Moor, 1997). The accessibility
relation of a coalgebra S : A→ F A can be formulated as the relation ∈F ◦ S : A→ A.
A relation R : A→ A is well-founded if, for any relation X : A→ B :

X ⊆ X ◦ R ⇒ X ⊆ ⊥

Put in other words, the inequation X ⊆ X ◦R only has one solution, X = ⊥, for a well-
founded R. This property corresponds to the set-theoretic notion that all descending
chains of elements in A are finite and have a minimal element. Some interesting laws
that allow reasoning about well-founded relations can be found in (Bird and de Moor,
1997; Doornbos and Karger, 1998).

2.2 POINT-FREE RELATIONAL CALCULUS 39

The membership relation ∈F : F A→ A lets through all the members of the functor
F, such that x ∈F y means that x is a member of the F-structure y . It can be defined by
induction over the structure of polynomial functors (Bird and de Moor, 1997; Barbosa
and Oliveira, 2006) as follows:

∈F : F A→ A

∈Id = id

∈C = ⊥
∈F⊗G = ∈F ◦ π1 ∪ ∈G ◦ π2

∈F⊕G = ∈FO∈G
∈F�G = ∈G ◦ ∈F

∈-DEF

For type functors, a membership can always be defined but it requires the introduction
of a more intricate notion of transitive closure (Bird and de Moor, 1997). For example,
for lists, the membership relation is given by (π1 ◦ cons◦) ◦ (π2 ◦ cons◦)∗, where the
transitive closure of π2 ◦ cons◦ computes a suffix of the list at an arbitrary depth
and π1 ◦ cons◦ selects the first element of the suffix. By defining two membership
relations for bifunctors ∈1B : B A B → A and ∈2B : B A B → B , Hoogendijk (1997)
elegantly generalized this definition to arbitrary type functors T , with T A = µ(B A),
as ∈1B ◦ outB A ◦ (∈2B ◦ outB A)∗. In this thesis, we reformulate his definition to an
equivalent one that uses a relational catamorphism:

∈T = i1
◦ ◦ ([i1 ◦ ∈1B ∪ ∈2B ∪ i2◦ !])B A

The fact that our catamorphism builds a result of type A + 1, that is later destructed
by i1◦, is due to a technical issue relating to the stop condition of the catamorphism
(for an insight about this problem see (Bird and de Moor, 1997, Exercise 6.17)), that
if ⊥ would reduce the whole catamorphism to ⊥. Therefore, we specify an explicit
stop condition for whenever an element does not exist in the type functor, to avoid the
bottom case, and select only left elements of type A in the resulting sum.

The membership relation, for any functor, satisfies the following naturality property:

∈F ◦ F f = f ◦ ∈F

∈F ◦ F R ⊆ R ◦ ∈F

 ∈-NAT

40 CHAPTER 2: POINT-FREE PROGRAMMING

2.3 Summary

This chapter has introduced the theoretical notation that will be thoroughly used across
this thesis.

The point-free functional calculus constitutes a nice and concise formalism to spec-
ify transformations (i.e., functions), as the unidirectional components of bidirectional
transformations (Chapter 3). Also, it will allow to specify bidirectional properties in
an unifying way, while the underlying calculus provides an equational methodology
to write the proofs of such properties for particular transformations. In Chapter 4, the
same notation will be adopted to elegantly express bidirectional transformations and to
develop an algebra of bidirectional transformations.

The point-free relational calculus gracefully captures the notion of partiality in the
design of bidirectional transformations. It will also be used to abstractly represent the
consistency relation (and related properties) of a bidirectional transformation in Chap-
ter 3, and will provide an elegant and general algebra for building correspondence
relations in Chapter 5. Moreover, some proofs of termination for recursive anamor-
phisms, found in Appendix A and Appendix B, can be performed at the relational
level.

Chapter 3

State of the Art

The burgeoning interest in bidirectional transformations has led to a vast number of
approaches in several computer science disciplines, inspired by different visions of the
problem and motivated by the different contexts where the need for bidirectionality
arises. Acknowledging the heterogeneity of the field, Czarnecki et al. (2009) survey the
related literature on bidirectional transformations. They give an enumeration of existing
work grouped by subcommunities, identifying some of the grand challenges of the
field and providing a modest discussion on the terminology, key concepts and semantic
properties adopted across the represented communities. A more detailed picture of the
specific subarea of bidirectional model transformations is given by Stevens (2008), with
a special emphasis on tool support and inherent open challenges.

Although these surveys enumerate such bidirectional challenges and point to some
of the existing solutions, they do not attempt to compare these various solutions in a
unifying setting, which is essential to understanding precisely their advantages and
limitations and providing effective criteria for assessing progress in the field. In general,
the design of a bidirectional language lies on a neat tension between the expressiveness
allowed by its syntax and data domain, the robustness enforced by the totality and
semantic properties of its transformations and the decidability of its type system.

One such unifying setting is presented by Antkiewicz and Czarnecki (2008), for
classifying a wide spectrum of model synchronization axiomatizations and features,
including systems that support parallel updates. Although they adopt a more formal
perspective, they do not consider the algebraic underpinnings of each instance and
only discuss the signatures of transformations, leaving aside the semantic laws which
are essential to comprehending their behavior. Conversely, Diskin (2011) explores

41

42 CHAPTER 3: STATE OF THE ART

the mathematical foundations for building delta-based synchronization frameworks,
stating the laws they should satisfy. The same author, in (Diskin, 2008a), proposes an
algebraic state-based classifying system in which fewer bidirectional axiomatizations
can be compared and analyzed in terms of their semantic laws, giving a few examples
of frameworks that realize the different properties of the proposed systematization.
Nevertheless, these two works only consider semantic and not design properties, and
many of the existing approaches that can be found in related literature do not fit into
one or both classification systems.

This chapter attempts to go further than previous work and proposes both: a general
taxonomy that is sufficiently abstract to capture the most relevant features in the design
of bidirectional languages, but precise enough to express the semantic properties that
rule their behavior; and a deep multi-perspective classification of the state of the
art of the field according to the given taxonomy. In this taxonomy, a bidirectional
transformation is defined as a pair of transformations that translate independent updates
between a pair of models in order to bring them into a consistent state. Although other
more general notions of synchronization where both models can be simultaneously
updated are not the focus of our work, we still survey some examples of synchronization
systems that are constructed using bidirectional transformations.

3.1 Taxonomy

This section proposes a taxonomy for the classification of the defining features of
bidirectional transformation approaches, namely their scheme (framework, updates),
properties (round-tripping, consistency and totality laws) and deployment (data model,
typing, specification, language and bidirectionalization approach). When introducing
each feature and respective classification axes, we will also set (in parenthesis) a
corresponding abbreviated symbol notation to be used later in Section 3.2.

3.1.1 Scheme

In contrast with general synchronization procedures that let users evolve models simul-
taneously, thus supporting parallel updates, this taxonomy focuses on a particular kind
of bidirectional transformation frameworks tailored for single update propagation.

3.1 TAXONOMY 43

S

to
%%

 T

from

ee S

get

''Q T

T × Sput

``

π1

??

S × T �
""

π1

~~
S ≷ T

S × T�

__

π2

??

Figure 3.1: Bidirectional frameworks, diagrammatically.

Framework

A bidirectional transformation from S to T encompasses a (not always explicit) con-
sistency relation R ⊆ S × T between both types, that acts as a partial specification of
two forward and backward unidirectional transformations (partial functions), whose
purpose is, respectively, to propagate S updates into T updates such that the resulting
values are consistent, and vice-versa. There are three important and well-established
bidirectional transformation frameworks (depicted in Figure 3.1):

Mappings (
) There is a forward transformation to : S → T and a backward trans-
formation from : T → S that propagate source/target updates into target/source
updates.

Lenses (Q) There is a forward transformation get : S → T that propagates source
updates into target updates and a backward transformation put : T × S → S

that propagates target updates, with knowledge of the original consistent source,
into source updates.

Maintainers (≷) There is a forward transformation � : S × T → T and a backward
transformation � : S × T → S that propagate source/target updates into target/-
source updates, with knowledge of the original target/source.

Bidirectional mappings are the simplest of these three frameworks since they trans-
late source updates into target updates (and vice-versa) without additional information
about the previous target (or source) state. An information-symmetric instantiation of
this framework are bijective languages (Yokoyama et al., 2008; Atanassow and Jeuring,
2007; Brabrand et al., 2008; Kennedy, 2004; Wadler, 1987), whose transformations
establish a bijection between subsets of S and T and define structure-preserving map-
pings, in the sense that these subsets contain essentially the same information but just
present it differently. Such languages promote the interoperability between different
formats and are easy to reason about because bijectivity is preserved by composition
and inversion.

44 CHAPTER 3: STATE OF THE ART

Less restrictive reversible languages (Berdaguer et al., 2007; Mu et al., 2004;
Terwilliger et al., 2007) define information-asymmetric mappings, by considering that
transformations are only reversible in a particular direction, namely when T refines S :
the forward transformation is an injective function and the backward transformation
is a suitable inverse. Such reversibility entails that the forward transformation is (at
least) information-preserving: it does not lose information, so that there always exists a
backward function that undoes its behavior and recovers the initial model. Note that
one particular approach that falls under this class is the 2LT framework (Cunha et al.,
2006a; Berdaguer et al., 2007).

Other instantiations of mappings where the forward transformation is not injective
also exist (Kawanaka and Hosoya, 2006; Wang et al., 2010), but due to information loss
there may be many possible backward behaviors and the backward transformation must
eventually cope with such ambiguous update translation.

Lenses are a popular asymmetric framework proposed as a solution to the classical
view-update problem from database theory (Bancilhon and Spyratos, 1981). Since the
forward transformation of a lens builds a more abstract view with less information
than the original source, its backward transformation is non-deterministic in general
as long as different sources can be abstracted to the same view. To help taming
this non-determinism, the backward transformation of a lens considers additional
traceability information: namely, put is “stateful” in the sense that it takes not only
a target updated, but also some “trace” information about the original source that
existed before the update, to be capable of restoring the information dropped by the
forward transformation. To propagate view values for which there is no counterpart
in the original source (for a typical example of this problem see the map combinator
of Foster et al. (2007)), some approaches consider an additional “stateless” backward
transformation create : T → S (Bohannon et al., 2008) that invents a default source
from a view, or extend their framework such that put admits a missing or initial value
as a source (Foster et al., 2007; Hofmann et al., 2011).

Nevertheless, the asymmetric treatment of lenses only works well for (essentially)
surjective, lossy transformations, otherwise the propagation of updates from S to T

is not able to restore T details not reflectable in S . For more general transformations
without a dominant flow of information, where each of the source and target models may
contain information not present in the other, we end up with the symmetric framework
of maintainers (Meertens, 1998): the forward transformation explains how to modify a

3.1 TAXONOMY 45

target model such that it relates to a source model; and the backward transformation
defines how to modify a source to make it relate to a target modification. Unlike
mappings and lenses, for which the consistency relation is usually implicitly defined by
the transformations (as shown in Section 3.1.4), maintainers often restore conformity
up to an explicitly defined consistency relation that represents the common subparts
between source and target types. Maintainers are arguably the chosen framework for
mainstream bidirectional model transformation approaches (Stevens, 2007), such as
the relational language bundled with the Query/View/Transformation (QVT) standard
proposed by the OMG and bidirectional approaches based on Triple graph Grammars
(TGGs) (Schürr, 1995; Schürr and Klar, 2008). The downside is that, unlike the other
bidirectional frameworks, they do not support compositional reasoning (sequential
composition of maintainers is impossible in general, at least in a constructive way), as
already noted by Meertens (1998).

Update representation

When talking about bidirectional transformations, the term “update” represents the
effect of a change on a source of information. We consider four possible definitions of
an update:

State (S) An update is represented only by the post-state.

Delta (D) An update is represented by the pre- and post-states and a delta or sameness

relation stating which components of both are conceptually the same.

Edit (E) An update is represented as a sequence of edit operations that was performed
over a particular pre-state.

Function (F) An update is represented by a semantic value modeling an endofunction
that can be applied to the pre-state to produce a post-state.

Approaches that fall within the first category are usually known as state-based, as
opposed to operation-based where some knowledge of the exact changes that led to
the update result is also recorded. Due to its simplicity, many bidirectional approaches
assume a state-based framework (Foster et al., 2007; Bohannon et al., 2008; Pacheco
and Cunha, 2010). Most operation-based frameworks are edit-based (Liu et al., 2007;
Hidaka et al., 2010; Hofmann et al., 2012), and within these some annotate the post-
state with tags that represent the edit operations (Meertens, 1998; Mu et al., 2004). A

46 CHAPTER 3: STATE OF THE ART

few delta-based frameworks have been proposed (Diskin, 2008a; Diskin et al., 2011b;
Barbosa et al., 2010) to support a more lightweight update representation. In function-
based approaches like (Wang et al., 2011), updates are only conceptually represented.

Above, we have presented state-based definitions for mappings, lenses and main-
tainers. A more general formulation that allows for instantiating a wider range of
frameworks and update representations is given in (Pacheco et al., 2012b).

Although the extra knowledge available for operation-based frameworks can lead to
better results and to the preservation of more precise properties (see the discussions on
“preservation” of updates and “minimality” of update translation in (Meertens, 1998;
Hu et al., 2008; Foster, 2009)), its provision usually demands a tight coupling with
applications, so that they can track such changes. Transforming updates onto updates
also makes them more natural with incrementality (Giese and Wagner, 2006) (rather
than recomputing a new model when the correlated model changes, only a small “delta”
is propagated), and allows bidirectional properties to be formulated in terms of updates.
On the other hand, state-based frameworks are more flexible and support more usage
scenarios such as integration with off-the-shelf applications that have not been designed
with bidirectionality in mind, and are moreover less sensitive to “noise” in the updates.

The distinction between state- and operation-based approaches is not always obvi-
ous. Some hybrid approaches build a state-based system with a richer operation-based
core (Xiong et al., 2007). As they discard all update information, some model differ-
encing procedure is required to infer new hypothetical update operations. Similarly, an
incremental system can have a simple state-base core, but keep track of updates merely
as an optimization, to exploit the locality of updates (Wang et al., 2011). Also, some
asymmetric approaches represent source and target updates differently (Mu et al., 2004;
Liu et al., 2007; Fegaras, 2010).

3.1.2 Properties

By itself, the scheme/signature of the transformations gives some hints about the
expressivity of the system. However, it says nothing regarding the semantic properties
expected of the transformations. Such properties are extremely relevant for the end-user
because they force some predictability on the behavior of the transformations, namely
concerning bidirectionality. Naturally, some schemes are more suited for particular
classes of transformations and are more likely to exhibit specific kinds of properties.
We identify several general properties that, independently of the scheme, might be

3.1 TAXONOMY 47

Property \ Framework
Mappings

from to

Stability to-Invertibility from-Invertibility
Invertibility to ◦ from v id from ◦ to v id

Undoability to-Invertibility from-Invertibility
History Ignorance trivial trivial

...
Lenses

put get

Stability put ◦ (get M id) v id put-Invertibility
Invertibility get ◦ put v π1 put ◦ (get × id) v π1

Undoability put ◦ (get ◦ π2M put) v π2 put-Invertibility
History Ignorance put ◦ (id × put) v put ◦ (id × π2) trivial

...
Maintainers

� �

Stability � ◦ (π1M�) v π1 � ◦ (�M π2) v π2

Invertibility � ◦ (�× id) v π2 ◦ π1 � ◦ (id ×�) v π1 ◦ π2

Undoability � ◦ (�M�) v π1 � ◦ (�M�) v π2

History Ignorance � ◦ (�× id) v � ◦ (π1 × id) � ◦ (id ×�) v � ◦ (id × π2)

Table 3.1: Round-tripping properties for bidirectional transformations.

desirable from an end-user perspective. Nevertheless, when introducing these properties
we instantiate them for our three particular state-based frameworks. A more global
perspective is given in (Pacheco et al., 2012b). Each of the properties described in this
subsection has a forward and a backward version and can be classified in a three-level
scale. In the graphical notation later used in Table 3.4, a normal arrow (−→) denotes
that a property is satisfied in the respective direction, while a dashed arrow (99K) signals
that only a weaker version holds. The absence of an arrow means that the property
is either not ensured, ignored by the authors, trivially satisfiable in the framework or
implied by other properties.

Round-tripping

Typically, a bidirectional transformation must satisfy round-tripping laws entailing that
its forward and backward transformations are somehow compatible (Table 3.1):

48 CHAPTER 3: STATE OF THE ART

Stability The transformations translate null updates to null updates.

Invertibility It is possible to undo the translation of an update by applying the opposite
transformation.

Undoability It is possible to undo the translation of an update by translating the con-
verse update.

History Ignorance Update translation does not depend on the update history, i.e., con-
secutive update translations can be merged into a single one.

For each framework, the notion of what is a well-behaved bidirectional transforma-
tion, i.e., the minimum set of properties that it must satisfy to be considered reasonable,
usually requires at least one of the transformations to be stable or invertible. If a frame-
work also satisfies history ignorance, then it is usually considered very well-behaved.

When instantiating these laws for a concrete framework, one must consider how
to model the converse of an update, how to compose updates and how to represent
null updates. While these notions are natural for operation-based approaches, they
often degenerate into slightly different concepts in state-based approaches. To give a
hint about how the above informal round-tripping laws are instantiated to the specific
laws from Table 3.1 for our three state-based frameworks, we make the following
considerations: (1) since state-based updates are represented by only the post-state,
composition of updates can be defined directly as u1 ◦ u2 = u1; (2) update converse can
be trivially defined if we have access to the pre-state of the update; and (3) a null update
happens when the pre- and post-states of the update are the same. Due to this forgetting
of edit information (by representing updates as states), state-based laws tend to be
stronger than their operation-based counterparts, as they must hold modulo all updates
that generate the same result. A typical example is the state-based history ignorance

law, that requires the translation of two consecutive updates to be the equivalent to the
last issued update alone (since u1 ◦ u2 = u1), as discussed in (Diskin et al., 2011b).

For mappings, assuming that the pre-state of a view update is modeled by to s

(for an original source s) and the pre-state of a source update is modeled by from t

(for an original target t), forward and backward stability are reduced to backward and
forward invertibility, respectively. Since no traceability information is passed to the
transformations, undoability follows the same rationale. History ignorance becomes
trivial, since only the post-states are used for update translation. We consider two
dual asymmetric well-behaved mapping scenarios: if to is invertible, then T is a

3.1 TAXONOMY 49

refinement of S (S 6 T), meaning that it contains more information; conversely, if
from is invertible, then T is an abstraction of S (S > T), meaning that it contains
less information. In a well-behaved symmetric mapping, both transformations must
be invertible and the bidirectional transformation must form an isomorphism (S ∼= T),
such that to and from are bijections (at least when restricted to the respective domains).

For lenses, put-Stability can be encoded by passing both the view pre-state get s

and the original source s to put, while get-Stability is similar to the one for mapppings.
Lenses are undoable (Matsuda et al., 2007) if, for an updated view v ′ and an original
source s , the view update v′ can be cancelled by translating the original view get s

using as traceability the updated source put (v ′, s) (since put-Invertibility implies that
all source updates are undoable). Lenses are history ignorant (called PUTPUT by Foster
et al. (2007)) if the translation of a (composite) view update does not depend on the
intermediate source. A lens is well-behaved if put is stable and invertible, and these
laws are usually known as GETPUT and PUTGET (Foster et al., 2007), respectively.
Likewise mappings, put-Invertibility implies that a lens is an abstraction (type T is
a view of type S), meaning that it cannot ignore view updates and must translate
them exactly, such that a view-to-view round-trip always yields the same view. As
an asymmetric framework, get-Invertibility is usually not postulated for lenses since
it would imply the transformations to be isomorphisms. Nevertheless, put-Stability
entails that get is invertible in a much weaker sense, only for a subclass of consistent
view-source pairs: abstracting a source update and immediately putting it back under
the same source yields the same updated source. Lenses for view update translation
under a constant complement (Bancilhon and Spyratos, 1981; Matsuda et al., 2007),
such that they preserve all the “hidden” data in the source that is not related by a forward
transformation, are also history ignorant.

For maintainers, the laws of � are similar to the laws of put for lenses, and the
laws of � are symmetric. A maintainer is well-behaved if it is correct and stable:
correctness will be introduced later; �-Stability entails that if the target does not change
after forward transformation, then backward transformation shall return the original
source, and vice-versa for �-Stability. Since in a maintainer both S and T may contain
information not present in the other, invertibility is often deemed too strong. Diskin
(2008a) shows that stable and history ignorant lenses and maintainers are undoable.

Sometimes, weaker versions of the laws may be satisfied instead. For example,
we can have weak variants of the round-tripping laws, namely whenever they are

50 CHAPTER 3: STATE OF THE ART

Property \ Framework
Maintainers

� �

Correctness �⊆ R◦ ◦ π2 �⊆ R ◦ π1

Hippocraticness [R] ⊆ π1
◦ ◦� [R] ⊆ π2

◦ ◦�

Table 3.2: Consistency properties for bidirectional transformations.

only satisfied modulo details that are inessential for the application scenario, like
ordering (Bohannon et al., 2008; Ennals and Gay, 2007), whitespaces (Brabrand et al.,
2008; Foster et al., 2008) or structure sharing (Kennedy, 2004). For some specific
approaches that allow side-effects, such weak laws may even amount to applying
another forward or backward transformation when comparing states. In (Hu et al.,
2008), such a kind of weak stability (dubbed bi-idempotence) is used to guarantee
that propagating a null view update followed by applying a forward transformation
yields again a null view update, and dually for source updates. Diskin et al. (2011b)
consider weak “one-and-a-half” and “undo-then-transform” variants of invertibility and
undoability laws, respectively. For operation-based approaches, normal arrows denote
lifted laws modulo updates and weak arrows may also mean that round-tripping does not
preserve the full update, but only its post-state. For example, stability and invertibility
for operation-based lens approaches are typically weakened in this sense (Barbosa et al.,
2010; Hu et al., 2008; Mu et al., 2004).

Consistency

We can also formulate consistency properties that guarantee that the work of the
transformations is coherent with the consistency relation (Table 3.2):

Correctness The transformations restore consistency.

Hippocraticness If an update does not break consistency, then it should be ignored by
the transformation.

Correctness (called range correctness by Diskin (2008a)) and hippocraticness (coined
by (Stevens, 2007)) properties are usually only considered in approaches where the
consistency relation is explicitly defined (Ehrig et al., 2007; Hermann et al., 2011;
Kawanaka and Hosoya, 2006; Meertens, 1998; Stevens, 2007). Thus, we only formulate
these properties for maintainers, despite the fact that the laws for mappings and lenses
(for which the consistency relation is usually the forward transformation) can be trivially

3.1 TAXONOMY 51

derived by ignoring the unused traceability information, and often coincide with the
round-tripping laws. For example, assuming that the implicit consistency relation in
(asymmetric) lenses is R = get , then put-Correctness is the same as put-Invertibility.
Although a well-behaved maintainer is required to be correct, hippocraticness is by
itself particularly strong and is not always desired (Diskin, 2008a).

Our definitions of correctness for maintainers entail that, if a backward transforma-
tion is defined for a target update, then it returns an updated source consistent with the
target update, and vice-versa. Written point-wise:

∀s , t . (s � t)↓ ⇒ tR(s � t) �-Correctness

∀s , t . (s � t)↓ ⇒ (s � t)Rs �-Correctness

Hippocraticness says that if a target update is consistent with the original source, then
backward transformation returns the same original source, and vice-versa:

∀s , t . tRs ⇒ s � t = s �-Hippocraticness

∀s , t . tRs ⇒ s � t = t �-Hippocraticness

In our point-free encoding, we use the combinator [R] to check if two source and target
values are consistent according to the consistency relation R.

Totality

So far, we have defined the semantic laws modulo undefinedness of the unidirectional
transformations. This is because totality requirements are by themselves an important
feature in the design of a bidirectional transformation framework. In practice, it
is often convenient to acknowledge that the type system might not be expressive
enough to capture all the constraints induced by the transformations, and allow the
source and target types to be larger than the actual domains of the transformations,
leading to partially defined transformations. For example, non-surjectivity of get for a
well-behaved lens (its range is smaller than the target type) implies partiality of put,
otherwise for an updated target t /∈ ρ(get) and any source s we would find a different
t′ = get (put (t, s)) violating well-behavedness: there exists no corresponding source
update for a target update outside the range of the query (a paradigmatic example is
the constant combinator from (Liu et al., 2007)). While this might be a “show stopper”

52 CHAPTER 3: STATE OF THE ART

Property \ Framework
Mappings

from to

Totality
Safe ρ(to) ⊆ δ(from) ρ(from) ⊆ δ(to)

Total from total to total

...
Lenses

put get

Totality
Safe ρ(get × id) ⊆ δ(put) ρ(put) ⊆ δ(get)

Total put total get total

...
Maintainers

� �

Totality
Safe δ(R◦ ◦ π2) ⊆ δ(�) δ(R ◦ π1) ⊆ δ(�)

Total � total � total

Table 3.3: Totality properties for bidirectional transformations.

for (usually state-based) batch applications that are expected to always produce results,
it is acceptable for (usually operation-based) interactive applications that have direct
control over the data manipulation interface: an editor does not need to handle every
update and can signal an error to the user disallowing a specific modification. Partiality
is though not admissible for security applications (Foster et al., 2009), since users might
extract information about hidden data from the cases for which the transformations fail.

We distinguish three totality requirements that transformations must satisfy in
increasing order of definedness (Table 3.3):

Partial The transformation is partial.

Safe The transformation is at least defined for the range of the opposite transformation.

Total The transformation is total.

In our graphical notation (Table 3.4), the absence of an arrow means that a transfor-
mation is partial. Safe transformations are denoted by weak dashed arrows, and total
transformations by normal arrows.

Some approaches do not enforce any totality requirements (Mu et al., 2004). How-
ever, this can easily be abused: a partial bidirectional transformation can be trivially
well-behaved if both transformations are always undefined.

A more reasonable statement is to require that transformations are safe (also known
as domain correct in (Diskin, 2008a)). For asymmetric frameworks, one transformation

3.1 TAXONOMY 53

generally dominates the data flow and has stronger totality requirements, and thus
mapping and lens approaches usually assume the forward transformation to be total and
the backward transformation to be either partial (Hidaka et al., 2010; Hu et al., 2008;
Liu et al., 2007; Matsuda et al., 2007; Voigtländer, 2009) or safe (Berdaguer et al., 2007;
Diskin et al., 2011a; Terwilliger et al., 2007). For lenses, the latter implies that put must
be defined for any view in the range of get, independently of the original source value.
For symmetric frameworks like maintainers, there is not generally a dominant data flow
(for example, not every Java feature can be represented in a relational database schema,
and vice-versa), and both transformations may be plausibly partial. Nevertheless, we
can give a reasonable definition for safety: if there exists at least a consistent state for a
source value, then forward transformation departing from that source must be defined
(and reach such state due to correctness), and similarly for target values.

For total bidirectional transformations (Foster et al., 2007; Kawanaka and Hosoya,
2006; Meertens, 1998; Pacheco and Cunha, 2010), the types capture the exact domains
over which the transformation is defined and guaranteed to behave well, ensuring that
update translation cannot fail at run time.

3.1.3 Deployment

The remaining features of our taxonomy characterize how the different approaches oper-
ationalize an abstract bidirectional scheme into a concrete bidirectional transformation
language or system.

Data domain

Bidirectional languages are usually conceived for the manipulation of specific kinds
of data. The choice of a data domain helps in deciding on appropriate language and
syntax, and on a type system that captures the necessary language constraints that entail
well-behavedness. In our taxonomy, approaches are grouped into four broad classes of
data models:

Strings (S) The transformations process textual data.

Trees (T) The transformations process tree-based data.

Relations (R) The transformations process relational data.

Graphs (G) The transformations process graph-based data.

54 CHAPTER 3: STATE OF THE ART

String data (Bohannon et al., 2008; Brabrand et al., 2008; Foster et al., 2008;
Kawanaka and Hosoya, 2006) abound in computer science, either as textual data
formats, such as BibTeX, or plain representations of more structured formats like
XML schemas. In some cases, manipulating the string data directly without a parsing
phase is advantageous for programmers. Typical string-processing languages include
regular string transducers (concatenation, iteration), and depend on machinery such as
context-free grammars and regular expressions to define the formation rules for strings.

Trees (Foster et al., 2007; Hofmann et al., 2011; Hu et al., 2008; Mu et al., 2004;
Voigtländer, 2009) are a natural way of representing more structured hierarchical
formats, such as XML schemas, and many bidirectional functional languages handle
essentially tree data. Typical bidirectional functional languages work with algebraic
data types (that are essentially tree structures) and explore features such as pattern
matching or polymorphism.

Much of the work on bidirectionalization and view update propagation has been
developed over relational data (Dayal and Bernstein, 1982; Bohannon et al., 2006;
Melnik et al., 2007; Terwilliger et al., 2007), concentrating on the correct handling of re-
lational constraints such as functional and inclusion dependencies and on exploiting the
algebraic properties of standard relational algebra operations such as joins and unions
to identify subsets of transformations that satisfy particular bidirectional properties.

A more general data domain considers graphs (Diskin et al., 2011b; Ehrig et al.,
2007; Hidaka et al., 2010), that natively support shared nodes and cycles and re-
quire careful algorithmic design to avoid possibly infinite traversals. Particularly in
model-driven engineering, models are often formalized as graphs and thus model trans-
formations are graph transformations. Examples of famous graph-based languages are
the UnCAL graph algebra for querying graph databases (Buneman et al., 2000), triple
graph grammars for graph-based model transformations (Schürr, 1995), and the ATLAS
model transformation language (ATL) (Jouault and Kurtev, 2006).

Some asymmetric frameworks transform between different data domains, for in-
stance from trees to strings (Kennedy, 2004) or from relations to trees (Fegaras, 2010).
Other frameworks enrich their data domains with extensions so as to represent models
that are more natural in other data domains. For example, the 2LT framework ex-
tends a tree domain with representations of relational models supporting referential
constraints (Berdaguer et al., 2007) and spreadsheet models (Cunha et al., 2009).

3.1 TAXONOMY 55

Typing

Another relevant aspect of a bidirectional language is the precision of the type system
that validates the construction of bidirectional programs and captures the domains
for which the transformations are well-defined. If done statically at compile-time (in
opposition to dynamically typed languages), type checking is important for catching
errors in an early development stage and to ensure logical or modular properties of
programs. For bidirectional languages, type systems may also be used to track elaborate
properties about programs including well-behavedness, as conjectured by Foster et al.
(2007). A type system also provides important structural information that can be used
to narrow non-determinism during bidirectionalization (Liu et al., 2007) and to guide
type-dependent optimizations (Melnik et al., 2007).

In our classification, we consider three degrees of typing:

Untyped (U) The domains of the transformations are not defined.

Typed (T) Types define the domains of the transformations.

Decidable (T) Types define the domains of the transformations and type checking is
decidable.

A transformation language may be untyped. For example, an untyped XML trans-
formation language like XSLT 1.0 (Clark, 1999) transforms XML documents, but with
no consideration for the classes of valid XML documents that are actually supported.
However, this partiality of the transformations has a direct impact on their robustness,
since users cannot have any reasonable expectations about which documents can be
processed by a particular transformation.

Therefore, most bidirectional languages consider some degree of typing. For
example, XSLT 2.0 (Kay, 2007) considers a typed approach and allows to define
transformations between XML documents pertaining to particular XML Schemas. This
time, even if transformations remain partial, the schemas give users a more realistic
upper bound on the kinds of supported documents.

For transformations to be totally defined, the types must capture the exact domains,
eventually demanding type systems for which type checking is undecidable, i.e., for
some value or function, it is not always possible to give a correct answer saying whether
or not it belongs to a given type. To remain decidable, some approaches impose
additional type restrictions or annotate the domains of the transformations (Bohannon
et al., 2008; Foster et al., 2008).

56 CHAPTER 3: STATE OF THE ART

Specification

Bidirectional approaches vary depending on which artifacts need to be specified. We
consider two particular cases:

Consistency relation (R) A bidirectional transformation is specified by the consistency
relation.

Transformation (T) A bidirectional transformation is specified by its unidirectional
transformations.

In some approaches, the consistency relation is explicitly specified, from which a
bidirectionalization procedure derives a forward and a backward transformation. This
is the case of some mainstream bidirectional model transformation frameworks based
on OMG’s QVT standard and TGGs (Schürr, 1995), such as (Stevens, 2007) and (Ehrig
et al., 2007; Hermann et al., 2011), respectively.

Another popular approach is to specify one of the unidirectional transformations,
from which the other can be derived, or similarly, to specify the bidirectional transfor-
mation in a particular language from which both transformations can be derived. For
these cases (Foster et al., 2007; Hofmann et al., 2011; Hu et al., 2008; Meertens, 1998;
Voigtländer, 2009), the consistency relation is implicitly defined.

Language

Bidirectional systems can be constructed using either a domain-specific language (van
Deursen et al., 2000) or a general-purpose language:

Domain-specific language (D) A new bidirectional language is developed.

General-purpose langauge (G) An existing language is bidirectionalized.

Languages in the first class impose a more restricted specification style (Foster et al.,
2007; Hu et al., 2008; Kawanaka and Hosoya, 2006; Meertens, 1998; Mu et al., 2004),
and are often designed to contain special-purpose bidirectional constructs allowing
programs to be read in both directions according to particular properties. The second
class (Atanassow and Jeuring, 2007; Liu et al., 2007; Matsuda et al., 2007; Takeichi,
2009; Voigtländer, 2009) is more permissive, since it amounts to interpreting or extend-
ing unidirectional programs written in an existing standard language as/to bidirectional
programs. Nevertheless, it is able to collect less information about the transformations,
making certain behaviors or validations more difficult to specify.

3.1 TAXONOMY 57

Bidirectionalization Approach

Bidirectional systems can also be classified according to the techniques that are used
to convert a specification into a bidirectional program (the process that we refer to
as “bidirectionalization”1), while ensuring the semantic correctness of the resulting
bidirectional transformations:

Ad hoc (A) The transformations are independently specified and their semantics must
be proven correct by the developer.

Combinatorial (C) Each construct in the language denotes a bidirectional transforma-
tion with built-in semantics.

Syntactic (S) The transformations are computed at compile-time according to a syntac-
tic analysis algorithm.

Semantic (S) The transformations are interpreted at run-time for specific executions of
a program.

An ad hoc solution like (Ennals and Gay, 2007) permits full freedom in the linguistic
technologies used to code the transformations, but has serious disadvantages: it is doubly
expensive because we have to write two transformations, error-prone, and likely to
cause a maintenance problem since any change in a data format or program requires a
redefinition of both transformations, and a new correctness proof.

A better approach is to design (or redesign) a combinatorial language in which
every expression is a correct-by-construction bidirectional program (Foster et al., 2007;
Hofmann et al., 2011; Hu et al., 2008; Mu et al., 2004; Pacheco and Cunha, 2010),
denoting both transformations and (when applicable) a consistency relation. Since the
combinators are natively bidirectional, bidirectionalization is trivial. An instrumental
feature of these languages is compositionality, as it allows the construction of complex
transformations via the composition of smaller ones and the reasoning about language
properties by purely compositional means.

On the other hand, a more explicitly syntactic approach can be used for cases
where a deeper whole-program analysis is necessary or for the bidirectionalization of

1In related literature (Hidaka et al., 2010; Matsuda et al., 2007; Voigtländer, 2009), sometimes the
term “bidirectionalization” is used to characterize syntactic or semantic bidirectional approaches, in
opposition to inherently combinatorial languages. Our nomenclature is more broad and considers all as
possible bidirectionalization techniques.

58 CHAPTER 3: STATE OF THE ART

a (syntactically restricted) general-purpose language according to program transfor-
mation techniques (Matsuda et al., 2007; Melnik et al., 2007; Atanassow and Jeuring,
2007; Brabrand et al., 2008; Hermann et al., 2011). Many of these approaches do not
support composition and users are often required to specify a consistency relation, from
which the system derives suitable unidirectional transformations by syntactic means.
Despite giving hand of compositional reasoning, most syntactic approaches employ
program transformation techniques to prove that their algorithms derive well-behaved
transformations by construction.

An alternative semantic approach is to consider the semantic values of programs
instead of their syntax. Thus, programs are bidirectionalized on-the-fly, by encoding the
unidirectional transformations as algorithms that observe the inputs/outputs for specific
run-time executions. Such a syntax-agnostic style allows the bidirectionalization of
arbitrary programs, including those whose source code cannot be analyzed, but requires
possibly strong static restrictions (Fegaras, 2010; Voigtländer, 2009).

Hybrid approaches can also be considered. For instance, some combinatorial
approaches (Kennedy, 2004; Terwilliger et al., 2007) make crucial use of user-defined
functions, for which additional proof obligations are required; or are essentially ad
hoc (Wadler, 1987) with some correct-by-construction cases. A mixed combinatorial
and semantic approach is presented in (Hidaka et al., 2010), while (Voigtländer et al.,
2010) resorts to both syntactic and semantic manipulation. Different but related, an
approach may resort to additional syntactic or semantic checks to rule out non-supported
transformations (Fegaras, 2010; Wang et al., 2010).

3.1.4 Exploring the Design Space

As presented thus far, any abstract bidirectional framework encompasses a consistency
relation R ⊆ S × T between source and target types, such that the unidirectional
transformations propagate updates in order to bring inconsistent values into a consistent
state. However, we have not presented how such consistency is instantiated for bidirec-
tional frameworks other than maintainers, in particular those that consider an explicit
data flow. We now unveil the formal properties required of such consistency relations
in order to witness well-behaved transformations, and study the connections among the
different frameworks.

For refinements, the relation R must ensure that T contains more information than
S , that is, each source in S can be losslessly represented in T . Hence, it must be total

3.1 TAXONOMY 59

(all sources are representable) and injective (each source is distinctly represented), as
identified in the following round-tripping theorem from (Melnik et al., 2007):

Theorem 1. The relation R is total and injective if and only if there exists a total

refinement S

to
%%

6 T

from

dd , such that to ⊆ R ⊆ from◦.

Note that the relation R must be injective (but not necessarily simple), meaning that each
source may have more than one distinct target representation. For any total refinement,
to is an injective function choosing one such representation for each source, and from

is a surjective function capable of restoring each transformed source.
Dually for abstractions, with S larger than T , the relation R must be simple (each

target is uniquely determined) and surjective (all targets are views of sources), as the
converses of total and injective relations always are (Oliveira, 2008):

Corollary 1. The relation R is simple and surjective if and only if there exists a total

abstraction S

to
%%

> T

from

dd , such that from◦ ⊆ R ⊆ to.

Conversely to refinements, to and from must now be surjective and injective functions,
respectively.

Whenever the relation forms both a refinement and an abstraction, it determines a
unique isomorphism:

Corollary 2. The relation R is a bijection if and only if there exists a total isomorphism

S

to
%%∼= T

from

dd , such that to = R = from◦.

For isomorphisms, functions to and from are both bijective and the inverse of each
other. Note that a (total) function is an isomorphism iff its converse is a (total) func-
tion (Oliveira, 2008, Exercise 14).

Lenses have subtly more structure than abstractions, and their totality requires the
relation to be additionally total, as evidenced by the following theorem:

Theorem 2. The relation R is simple, total and surjective if and only if there exists a

total well-behaved lens S

get

''Q T

T × Sput

``

π1

??
, such that π1 ◦ put◦ ⊆ R = get .

60 CHAPTER 3: STATE OF THE ART

Proof. The forward implication can be shown by taking get = R and defining put as
any total function satisfying the equation put ⊆ (π2O get◦ ◦π1)◦ [R◦]?. The backward
implication is straightforward from the properties of total well-behaved lenses.

The fact that R = get , making R necessarily total, is a consequence of GETPUT:
π1 ◦ put◦ ⊆ R tells us that the updated source returned by put and the updated tar-
get passed to put must form a consistent pair in R; if for any source s we have
put (get s , s) = s , then s must be consistent with get s , or alternatively get ⊆ R.

Indeed, Oliveira (2008) showed that lenses meet the connectivity requirements of
two >-diagrams:

Corollary 3. A total lens l is well-behaved if and only if there exist two total abstractions

S

get l
%%

> T

putl ◦π1
◦

dd and T × S

put l

&&
> S

get l M id

hh
.

Therefore, for a total well-behaved lens, get is surjective and put is surjective and
semi-injective (Foster et al., 2007), in the sense that it is injective regarding only its first
argument (i.e., put ◦ π1

◦ is injective).
A lens is oblivious (Foster et al., 2007) when put is agnostic to its source argument,

that is, for any endofunction s : S → S the following property holds:

put = put ◦ (id × s) put-Oblivious

Oblivious lenses are simply bijective mappings satisfying both get-Invertibility and
put-Invertibility:

Corollary 4. A total well-behaved lens l is oblivious if and only if there exists a total

isomorphism S

get l
%%∼= T

putl ◦π1
◦

dd .

In general, the consistency relation may be neither total nor surjective, and especially
not simple in either of the directions. Meertens (1998) showed that any relation that is
total in both directions has a total maintainer:

Theorem 3. If S 6= 0 and T 6= 0 (where 0 denotes the empty type with no values), the

relation R is total and surjective if and only if there exists a total, well-behaved and

hippocratic maintainer for R.

3.1 TAXONOMY 61

Meertens does not consider an arbitrary relation because his development is based on
total maintainers, but this restriction is too strong in practice, since the source and
target schemas may contain non-reflectable information that should not be related by
the consistency relation.

We can relax this constraint by considering only safe maintainers:

Theorem 4. If S 6= 0 and T 6= 0, there always exists a safe, well-behaved and

hippocratic maintainer for any relation R.

Proof. This proof can be conducted in a similar way to the proof done by Meertens,
assuming a biased selector

∮
: A× P+A→ A that receives a value x ∈ A and a non-

empty set of values s ∈ P+A and selects x if x ∈ s or the “closest” value otherwise.
We define:

m� n =

n
∮

(mR) if mR 6= ∅

⊥ otherwise
m� n =

m
∮

(Rn) if Rn 6= ∅

⊥ otherwise

An interesting result proven by Diskin (2008a) is that, when the consistency rela-
tion is simple, a maintainer degenerates into a lens2. Totality and surjectivity of the
consistency relation are on par with safety and totality of the put function of the lens:

Lemma 1. Given a maintainer m with a simple consistency relation R there exists a

lens l(m). Conversely, given a lens l there exists a maintainer m(l) with a consistency

relation getl(m), such that:

l(m) = S

�m◦π1
◦

))Q T

T × S�m◦swap

aa

π1

99

S × T get l◦π1

%%
π1

}}m(l) = S ≷ T

S × Tput l◦swap

aa

π2

99

Theorem 5. Given a safe/total well-behaved maintainer m with a simple and total

consistency relation, l(m) is a well-behaved lens with a total get and a safe/total put.

Also, l(m) is undoable/history ignorant if m is such. Dually, given a well-behaved lens

l with a total get and a safe/total put, m(l) is a safe/total well-behaved maintainer.

Additionally, m(l) is undoable/history ignorant if l is such.

2This is not entirely new, as lenses roughly correspond to the functional maintainers of Meertens.

62 CHAPTER 3: STATE OF THE ART

An interesting way to define composite maintainers is through the non-sequential
composition of lenses, giving rise to maintainers whose consistency relations are not
simple (and thus are not definable as lenses). One usual scenario in model-driven
development, recognized by both Meertens (1998) and Diskin (2008a), is when source
and target types are transformed into a common abstract view that represents the features
present in both types. Using lenses, this construction can be defined as follows:

Definition 1. Let f : S Q A and g : T Q A be two lenses. Their co-targetial composi-
tion is a maintainer f ./ g:

Rf ./g = get◦g ◦ get f

�f ./g = putg ◦ (get f × id)

�f ./g = put f ◦ (getg × id) ◦ swap

The consistency relation binds source and target values that have the same abstract com-
ponent, and would be defined in point-wise by tRs ≡ get f s = getg t . The forward
function generates a view from the source, and propagates the view modifications to a
new target. The backward function proceeds similarly. The co-targetial composition of
lenses has the following properties:

Theorem 6. Given two well-behaved lenses f , g with total gets and safe/total puts,

their co-targetial composition f ./ g is a safe/total, well-behaved and hippocratic

maintainer. Also, f ./ g is undoable/history ignorant if f, g are such.

Diskin (2008b) also conjectures the assumedly less usual and dual scenario of
composing lenses from a common concrete complement that is a superset of both
the source and the target types. However, he neither gives a complete definition nor
explores the properties of such construction. We complete his formulation with the
following definition:

Definition 2. Let f : C Q S and g : C Q T be two lenses. Their co-sourcial com-
position is a maintainer f ŽŻ g , being create f : S → C and createg : T → C any two

functions such that create f ⊆ put f ◦ π1
◦ and createg ⊆ putg ◦ π1

◦:

Rf ŽŻg = getg ◦ get◦f

�f ŽŻg = getg ◦ put f ◦ (id × createg)

�f ŽŻg = get f ◦ putg ◦ (id × create f) ◦ swap

3.1 TAXONOMY 63

The consistency relation now implies an existential quantification: for source s and
target t values to be related, it must be possible to find a mediating concrete value of
which they are two valid projections, i.e., t R s ≡ ∃c ∈ C . getf c = s ∧ getg c = t .
Due to the signature of the lenses’ put functions, the translations have to consider
additional create functions that invent default complements from the existing values.
The forward function creates a complement from a target to propagate the source
changes into a new complement, and computes a new target projection. The backward
function proceeds similarly.

Unfortunately, to ensure that the maintainer is well-behaved, we need to guarantee
that the additional information introduced in the complement but not present in either
the source or target types does not influence the propagation of source and target updates.
For instance, if putf does not preserve all the target information in the complement
that is not overridden by the source update, such side-effects will break the stability
of the maintainer. We can characterize pairs of complementable lenses that are free of
complement side-effects as follows:

Definition 3. For two lenses f : C Q S ,g : C Q T from a common complement C ,

we call them complementable if and only if the following equations are satisfied, for

any two endofunctions c1, c2 : C → C :

get f ◦ c1 = get f ◦ c2 ⇒ get f ◦ putg ◦ (id × c1) = get f ◦ putg ◦ (id × c2)

getg ◦ c1 = getg ◦ c2 ⇒ getg ◦ put f ◦ (id × c1) = getg ◦ put f ◦ (id × c2)

This property entails that, for a source update, any two complements possessing the
same target projection induce the same target update, and vice-versa. For an example
of two complementable lenses, define f = π1 and g = π2 using our lens combinators
from Chapter 4. A counter-example is to define f = ! + ! and g = id O id . Assum-
ing that lenses are complementable, we can prove that their co-sourcial composition
preserves all the desired properties.

Theorem 7. Consider two complementable well-behaved lenses f , g and their co-

sourcial composition f ŽŻ g . If the functions getf , getg, create f , createg are total and

putf , putg are safe, then f ŽŻ g is a safe, well-behaved and hippocratic maintainer. If

f , g are total and C 6= 0, then f ŽŻ g is a total, well-behaved and hippocratic maintainer.

Also, f ./ g is undoable/history ignorant if f, g are such.

We believe that these two constructions are important to leverage the building of

64 CHAPTER 3: STATE OF THE ART

maintainers to purely compositional means. Essential for such an approach is the ability
to track or statically check when complementability does hold for many specific cases.

On a more applicational side, Stevens (2007) discusses the application of main-
tainers to formalize bidirectional model transformations written in the QVT relations
(QVT-R) language. In QVT-R, users specify a relation between source and target
models according to a set of rules establishing the commonalities between them, from
which an implementation must derive forward and backward transformations. Although
the QVT standard contains some informal statements regarding the intended behavior of
QVT implementations, its design mainly concerns the expressiveness and conformance
with model transformation practices, in detriment of the properties of the transforma-
tions. Indeed, Stevens stresses that these postulates are ambiguous and do not lead to
clear formal definitions. To fill this gap, she points out that the “check-then-enforce”
semantics of QVT-R entails correct and hippocratic maintainers and advocates that
valid transformations should also be total and obey a stronger notion of undoability:

π1 ◦ [R] ⊆� ◦ (� ◦ π1
◦ × id) �-UNDO

π2 ◦ [R] ⊆� ◦ (id ×� ◦ π2
◦) �-UNDO

3.2 Survey

In the previous section, we have proposed a taxonomy for the classification of the
defining features of bidirectional transformation approaches. With the taxonomy in
place, this section contributes with a survey of the most influential work in the field,
organized by frameworks and discussed case-by-case within each framework. Table 3.4
takes a global picture of the state of the art of the field. It must be read with some
caution, though, since it does not capture specific intricacies of particular approaches
that are not representable in our taxonomy and since some approaches are omissive
or ambiguous regarding particular features, what leads to some subjectivity in their
classification. Despite not being essential for a global perspective on the field, these
idiosyncrasies are noted in each separate discussion.

3.2.1 Mapping Frameworks

A famous language based on bidirectional mappings is XSugar (Brabrand et al., 2008),
that translates between XML documents and ASCII textual representations. In XSugar,

3.2 SURVEY 65

bidirectional transformations are specified using pairs of intertwined grammars de-
scribing both the formats of the XML and non-XML data, from which a forward
transformation is obtained by parsing according to the rules in one grammar and a
backward transformation by parsing according to the rules in the other. XSugar trans-
formations are not purely bijective: performing a round-trip should yield the exact same
document modulo an equivalence relation that captures the loss of information related
to whitespaces, canonization/normalization of XML documents, renaming of unnamed
items and reordering of unordered XML elements. To identify such essentially bijective
dual grammars, the authors describe a static analysis for checking XSugar specifications
in order to rule out non-reversible or ambiguous grammars.

A similar language biXid (Kawanaka and Hosoya, 2006) describes XML to XML
mappings using pairs of intertwined grammars with native support for ambiguity and
non-linear use of variables. A biXid grammar specifies a consistency relation between
documents from which the system infers the unidirectional transformations. The source
and target formats specified in the dual grammar typically have quite similar structures
but with various discrepancies in detail, from which ambiguity may arise, involving
choices of multiple representations, freedom of order or non-reflectable data. Though
the consistency relation is non-deterministic, their algorithms deterministically select
one of multiple possibilities and create default data when necessary. The language
provides no explicit bidirectional properties, but its authors intend it to “morally”
preserve the similarities between the formats in such a way that resulting documents
are consistent.

Janus (Yokoyama et al., 2008) is a high-level imperative language for the spec-
ification of reversible lossless computations in a C-like syntax. Each construct in
the language is carefully designed to be purely reversible and possesses forward and
backward deterministic semantics, meaning that program inversion can be done in a
simple compositional fashion. As data structures, Janus supports integers, stacks and
arrays. The language includes assignments (for constants and reversible arithmetic and
logic operations), conditionals and loops with explicit post-conditions, stack operations,
call-by-reference procedures and local variable allocation/deallocation.

Kennedy (2004) proposes a language of combinators for serialization of internal
data representations (data types) into proper persistent formats (streams of bytes or
characters) and vice-versa, to serve storage or transmission needs. These combinators
are encoded in Haskell, and include a set of primitives over base types and combinators

66 CHAPTER 3: STATE OF THE ART

for products and sums that allow the pickling of arbitrary algebraic types into strings,
by exploiting their “sums-of-products” structure. To avoid the repetition of similar
patterns and produce more efficient serialized data, the combinators also take into
account structure sharing. The resulting picklers are mostly bijective by construction
(with additional proof obligations for some cases) modulo structure sharing: pickling
followed by unpickling returns the original data if successful; but unpickling followed
by pickling can produce a string with a different sharing. They are also partial in
essence: some picklers have specific domains (for example, the picking transformation
for the zeroTo n combinator is only defined for integers up to n); and the reverse
unpickler is only defined for particular strings.

Wadler (1987)’s views propose extending functional languages with abstract types
that describe alternative representations of data types and are amenable to equational
reasoning and pattern matching. To define a view, users must provide a type definition
together with explicit in and out functions to map between the abstract type and the
viewed type. A view is considered well-defined when in and out form a bijection
between a subset of the viewed type and a subset of the abstract type. Although defining
such functions and proving their accompanying property are left to users, a special case
is identified when they can be defined at once via an inout clause for which bijectivity
is guaranteed.

Atanassow and Jeuring (2007) propose UUXML, an automatic mechanism for
inferring Haskell data types and respective data bindings from a class of XML Schemas,
that provides a type-safe embedding for XML-processing applications. Since the
resulting types are very verbose and unnatural for users, they identify a set of primitive
isomorphisms within Haskell data types, and devise an additional step that automatically
infers type-preserving coercions between the machine-derivable types and more natural
user-defined data types, by normalizing both to a common algebraic representation of
sums-of-products.

Guava (Terwilliger et al., 2007) allows developers to build bridges between user
interfaces and the underlying databases in order to be able to issue updates and answer
queries directly against the user interface. The framework maps the user interface into
a tree structure from which it infers a natural database schema, that developers can
refine into a proper physical database schema using a language of typed invertible
algebraic operations. These operations take parameters for which additional constraints
are assumed, such as the injectivity of functions, or checked by the type system, such

3.2 SURVEY 67

as the existence of functional dependencies. Although they only postulate forward
invertibility, the core operations are essentially bijective, as they are defined as inverses
of each others for specific subsets. This design intention is corroborated by the contrast
of such operations with other supported refinements, such as tuple augmentation, whose
backward transformations are not invertible. Since in practice it is unreasonable to store
a materialized instance of the natural schema, their combinators support incremental
updating and translate user interface updates in the form of statements in a Data

Manipulation Language (DML), like INSERT statements in SQL, into respective
database update statements.

In (Cunha et al., 2012), we and others present a bidirectional transformation environ-
ment to maintain spreadsheet models (modeling the business logic of spreadsheets) and
instances synchronized. The core of our environment is built as a mapping that trans-
forms edits on spreadsheet models into edits on spreadsheet instances, and vice-versa,
such that its transformations are total for a restricted language of distinct operations
on both sides. Spreadsheet instances refine spreadsheet models (to-Invertibility), such
that we can undo the translation of an operation on models with an application of
from that yields the original model operation. Our transformations are correct in
respect to a conformity relation ::, where s :: m means that a spreadsheet instance s

conforms to a spreadsheet model m. Moreover, we postulate a from-Hippocraticness
law entailing that any model operation such that the original instance still conforms to
the modified model is translated to a null update, together with edit-based stability and
history ignorance laws.

On a more algebraic tone, Mu et al. (2004) propose a point-free language of injective
and left-invertible functions called Inv. For an injective function to, its converse function
from is only partially defined for the range of to. In order to deal with duplication and
structural changes, they admit edit tags (insertion, deletion and in-place modification)
to model target updates and define an extended semantics that enlarges backward
transformation for such tags. Considering the extended semantics, to may fail for
outputs of from. On top of to-Invertibility, the authors also formulate a from-Weak
Invertibility property modulo edit tags to highlight that Inv transformations are capable
of repairing target invariants:

from ◦ to ◦ from v from FROMTOFROM

For the case of duplication, if only one element of a target pair is updated (and thus

68 CHAPTER 3: STATE OF THE ART

marked with an edit tag), a target-to-target round-trip is then able to propagate the
modifications to the other element and return a consistent duplicated pair (without edit
tags), since we know that another from would not modify the source value.

We and others have proposed the 2LT system (Berdaguer et al., 2007) for the two-
level transformation of XML schemas and SQL databases. After translating the schemas
to internal Haskell type representations, the core of the system consists of a library
of point-free combinators modeling schema refinement steps that preserve structural
information and referential constraints. The type-safety of the coupled value-level
transformations is ensured with a deep embedding in Haskell.

Wang et al. (2010) propose RInv, a language of surjective and right-invertible point-
free combinators for defining total abstractions. Their design intends to liberate the
original view mechanism of Wadler from the over-restrictive isomorphism requirement
and the undesired manual proofs, while preserving sound equational reasoning and
pattern matching at the view level. As long as the schema of the language is based
on non-injective mappings, the forward transformation might loose concrete details
that are not recoverable by the backward transformation. This problem is, however,
not crucial for their design because they only consider views that discard redundant
information (justifying the omission of general projection functions), whose concrete
implementations are simply more efficient representations such as join lists or double-
list queues. RInv also supports non-surjective data type constructors as primitives,
what implies an additional compile-time check to test the joint surjectivity of programs
involving such constructors.

3.2.2 Lens Frameworks

Work on operation-based view update translation has a long tradition in the database
community going back to the late ’70s and ’80s, when different authors explored the
existing design space between the expressivity of the supported relational operations,
the totality of the update functions and the strength of the semantic properties. Bancil-
hon and Spyratos (1981) remarked that if one considers translation under a constant

complement that keeps (at least) all the information in the view, so that any changes
to the information that the complement has kept are forbidden, then there is at most
one database update that reflects a given view update. More permissive approaches
that reject fewer view updates, but permit several reasonable translations, were studied
by Gottlob et al. (1988) and Dayal and Bernstein (1982). Keller (1986) studied rea-

3.2 SURVEY 69

sonable criteria for disambiguating view updates for views defined using selections,
joins and projections. In particular, he proposed an interactive algorithm that, based
on the view definition and on the schema information, runs a dialog with the user to
choose a sensible view update policy. As of now, we will focus on a more recent
trend of bidirectional approaches developed mainly by the programming languages and
model-driven engineering communities. A detailed review of related database literature
can be found in (Foster, 2009).

One of the first linguistic approaches to the view-update problem is the Focal tree
transformation language (Foster et al., 2007), that introduced the framework of lenses
(and well-known round-tripping laws) as the main constructs of a data synchronization
framework called Harmony. Focal provides a rich set of lens combinators, from general
functional programming features (composition, mapping, recursion) to tree-specific
operations (splitting, pruning, merging), whose backward behavior is inferred from the
compositional structure of the transformations. Each combinator is proven total and
well-behaved against a complex but precise type system based on record types. Using
such semantic types (Frisch et al., 2008), they are able to define the exact domains
for which their lens combinators are well-behaved, allowing the definition of constant,
duplication and conditional combinators as total well-behaved lenses. For instance, for
the constant combinator in Focal, if the forward function introduces a constant value,
then it cannot be modified at the cost violating well-behavedness – the range of the lens
is a singleton set with a sole constant value. To deal with creation of source information,
the authors extended the universe of source values with a placeholder Ω for missing
information, that is recognized and propagated by put and handled judiciously by the
constant lens: if the source value is missing, then it creates a new source value as a
result. They also demonstrated that well-behaved lenses are equivalent to the dynamic

views by Gottlob et al. (1988), and very well-behaved lenses are isomorphic to the
stronger notion of closed view-updating by Bancilhon and Spyratos (1981).

More languages have been proposed by the same group, including a new bidirec-
tional language with a set of relational algebra primitives (selection, join, projection)
and a complex type system with value-level predicates and functional dependencies
targeted at relational data (Bohannon et al., 2006). To guarantee that their relational
lenses are total and well-behaved, they impose several restrictions on the typing rules
for each combinator, like assuming that functional dependencies are representable in a
tree form. The authors estimate that type-checking should be decidable for a sensible

70 CHAPTER 3: STATE OF THE ART

class of predicates, but do not pursue this argument.

A third language Boomerang (Bohannon et al., 2008) tackles the bidirectional
transformation of string data. Boomerang is built using a set of regular operations
(union, concatenation, iteration) and a type system based on regular expressions. To
ensure decidability and well-behavedness, the typing rules for some combinators impose
particular restrictions on the regular expressions, such as disjoint or unambiguously
concatenable domains. This time, a create function is used for the cases when the
original concrete model is unavailable, what avoids extending the type universe with
a missing value and propagating it through the transformations. To overcome issues
with order, they allow users to annotate lens expressions with key mechanisms – termed
dictionary lenses – and extend put with a pre-processing step that parses source strings
into a dictionary of chunks indexed by keys that is used to match source and view
elements by keys rather than by positions. By design, dictionary lenses are quasi-

oblivious, a property that obliges lenses to ignore concrete details in respect to an
equivalence relation ∼S (the operation that parses a dictionary satisfies the equivalence
relation that ignores the order of the concrete elements):

s ∼S s ′ ⇒ put (v , s) = put (v , s ′) QUASIEQUIVPUT

In later work, Foster et al. (2008) recognized that, especially for string transforma-
tion languages like Boomerang (that manipulate the data directly without parsing/pretty-
printing it to/from an intermediate abstract syntax tree), it is reasonable to assume
that transformations only satisfy the round-tripping laws modulo specific details that
are behaviorally inessential, and formalize such quotient lenses by considering lens
domains and round-tripping laws modulo general equivalent relations. For that purpose,
they consider a quotient lens S∼S

Q V∼V
, between sources of type S and views of type

V coarsened by the equivalences ∼S and ∼V , to be well-behaved if it satisfies loosened
round-tripping laws

put (get s) s ∼S s GETPUTEQUIV

get (put (v , s)) ∼V v PUTGETEQUIV

and additional laws ensuring that it is faithfully oblivious to the equivalences:

s ∼S s ′ ⇒ get s ∼V get s ′ EQUIVGET

3.2 SURVEY 71

v ∼V v ′ ∧ s ∼S s ′ ⇒ put (v , s) ∼S put (v ′, s ′) EQUIVPUT

They also consider the composition of lenses with pure abstractions – dubbed canonizers

– to build quotient lenses that ignore the abstracted details from more concrete source
or target domains. Because composition requires testing the equality of equivalence
relations, only those with an intermediate equality relation are accepted by the type
checker. The authors advocate that even such a simple technique supports interesting
scenarios, namely lenses whose quotienting is biased to one side of the lens. Inspired
by quotient lenses, secure lenses (Foster et al., 2009) extend Boomerang with a sim-
ple declarative way to specify view update policies determining which parts of the
view can be updated that is formally expressed with equivalence relations and entails
corresponding coarsened laws.

Matching lenses (Barbosa et al., 2010) generalize the key-based dictionary lenses
to consider arbitrary alignment heuristics. Operationally, they assume an explicit sep-
aration of values into a rigid structure or shape, that is treated positionally by the
lenses, from a list of chunks that populate the structure and can be freely rearranged
according to the chosen alignment directive. They retool each Boomerang combinator
with an auxiliary function that computes a source-to-view delta denoting the forward
traceability, and with put functions that process view deltas (a canonical set of corre-
spondences denoting the common chunks in the pre- and post-states) instead of mere
states. Matching lenses obey particularly restrictive laws enforcing the propagation
of all source chunks to the view (GETCHUNKS law) and that shape alignment is kept
positional (SKELPUT law), together with delta-based round-tripping laws ensuring
that deltas are correctly propagated. For instance, they postulate a law stating that put
translates view reorderings into corresponding source reorderings, yielding delta-based
put-Invertibility.

With the upsurging of lenses, other authors have proposed different visions of
related bidirectional problems. A line of work regarding the design of bidirectional
languages supporting duplication has been developed by a group of researchers from
Tokyo. Hu et al. (2008) design a programmable editor for the interactive development
of XML documents, so that users start from a view to which they can gradually apply
modifications, while maintaining a source document and a linking transformation. The
editor is built upon a lens language named X that provides typical functional combina-
tors (composition, mapping, folding) and three primitives for Galois-connected pairs of

72 CHAPTER 3: STATE OF THE ART

functions (that are bi-idempotent), arbitrary constant functions (that disallow all view
modifications) and duplication. Each combinator l : S Q V in X is bidirectionalized
through an embedding into the Inv language (Mu et al., 2004): after identifying an
Inv refinement r : S 6 V × S that computes a view together with a copy of the input,
they define get l = π1 ◦ tor and put l = fromr , considering the extended semantics with
edit tags. Since X supports duplication and other view inter-dependencies, they only
require transformations to satisfy a weak stability property modulo edit tags dubbed
bi-idempotence, stating that source-to-source and view-to-view round-trips preserve
null updates3:

put ◦ (get M id) ◦ put v put PUTGETPUT

get ◦ put ◦ (get M id) v get GETPUTGET

This guarantees that the system “converges” into a final state, in the sense that after a
round-trip further transformation does not change the state. For example, using their
lenses, when the view is modified, a bidirectional system may apply put to calculate a
new source followed by get to compute the view side-effects, knowing that a further
put would not change the computed source. However, they acknowledge that a valid
put = π2 would not update the source at all, and conjecture a new update preservation

property ensuring that an edited view should not fall back to a less updated one after a
round-trip:

get ◦ put � π1 �-PUTGET

Above, the ordering � on views determines if a view is more edited than other. We
classify their lenses as partial, since put may fail for views within the range of get and
(according to the Inv semantics) get may also fail for sources within the range of put.
Anyhow, the transformations are used in an online setting, such that the editor reacts
immediately after each update, forbidding certain unsupported cases like editing both
sides of a duplicated pair.

Liu et al. (2007) propose Bi-X, a functional lens language closely resembling the
XQuery Core language that can serve as the host language for the bidirectionalization
of XQuery. The main feature of Bi-X is its support for variable binding, allowing lenses

3Although to-Invertibility of the embedded Inv expressions implies put-Stability of lenses, Galois-
connected functions for instance do not satisfy such property.

3.2 SURVEY 73

that perform implicit duplication. Operationally, they annotate XML tree values with
edit tags and establish an edit-based round-tripping property stating that put propagates
all and only the view update tags to the source. Although their development is done
in an untyped setting, they define a type system of regular expressions that is used to
refine backward behavior for insertion tags. A more practical application of Bi-X is
the Vu-X system (Nakano et al., 2009), that can be used to describe a bidirectional
connection between a XML document and a set of HTML web pages. It provides a
WYSIWYG interface for editing the HTML sources while reflecting the updates on
the XML document (content updating), or the Bi-X transformation that describes the
layouting of the database (code editing).

Following a similar approach, Hidaka et al. (2010) provide a bidirectionalization
for the UnCAL graph algebra (Buneman et al., 2000), supporting structural recursion,
conditionals and variable binding for integration in the GRoundTram system for bidi-
rectional graph transformations. For the forward transformation, they consider the bulk
semantics of UnCAL, that computes the result while preserving the shape of the original
graph, and enrich it with additional traceability information to aid backward transfor-
mation. Each combinator is then given a corresponding backward semantics that uses
the available traces for propagating in-place view updates. Since the language supports
conditionals and implicit duplication, the authors postulate a put-Weak Invertibility
property allowing view side-effects:

put ◦ (get ◦ put M π2) v put WPUTGET

Despite the language is combinatorial, deletion and insertion updates are translated in a
semantic way: for deletion, they compute the set of nodes in the source that corresponds
to the deletion of a set of nodes in the view, and fail if a node is not correlated or if
further forward transformation does not return the modified view graph, what would
violate WPUTGET; for insertion, they extract the inserted view graph, and compute
a corresponding inserted source graph using a universal resolving algorithm that ex-
plores all possible right inverses for the forward transformation and satisfies even the
stronger PUTGET. Their approach also supports optimization. The key construct of
their language is the structural recursion operation on graphs, that enjoys a fusion law
on the underlying unidirectional graph algebra: two consecutive structural recursions
rec e2 ◦ rec e1 can be fused into a single structural recursion rec (rec e2 ◦ e1) that
avoids computing an intermediate result, if the expression e2 does not depend on its

74 CHAPTER 3: STATE OF THE ART

argument graph. This calculational law is applied to optimize get before bidirection-
alization, but since it is not stated bidirectionally it may lead to different behaviors in
the backward transformation. Although the bidirectionalization approach is completely
untyped, Inaba et al. (2011) propose a static verification algorithm that checks if Un-
CAL transformations annotated with schema annotations consume and produce graphs
obeying to source and target graphs schemas, respectively. Sasano et al. (2011) report a
first effort towards the bidirectionalization of a restricted class of ATL transformations
by converting them into UnCAL bidirectional programs.

A more pragmatic approach, described as bidirectionality by programming, is
proposed by Takeichi (2009). He advocates that it is more flexible for language
developers to only assume put-Stability as a basilar property, with other particular laws
being only sensible for specific lens combinators. He exercises this methodology by
bidirectionalizing the HaXML Haskell library, to serve as a back-end to a graphical
interface for view-updating of XML documents. In the lifted HaXML, lens combinators
are implemented as a higher-order bidirectional function of type S → V × (V → S),
that given a source value returns a view and a backward function for that particular
source. This partial evaluation of the backward function avoids inspecting the original
source twice during forward and backward updating.

Other lens approaches without an emphasis on totality or duplication have also
been proposed. Matsuda et al. (2007) studied the automatic derivation of backward
transformations under a constant complement (Bancilhon and Spyratos, 1981), for
functions defined in a restricted first-order functional language forbidding repeated
variable occurrences (affine) and nested function calls (treeless). Given a get : S → V

function, they derive an explicit complement function cpl : S → C , such that the tupled
function get M cpl is injective and put 〈get ,cpl〉 = (get M cpl)−1 ◦ (id × cpl) is unique.
However, there are many complement functions that preserve at least the information
dropped by the view and make view propagation unique. The corresponding put

functions have different updatability according to the complement, that needs to be kept
constant as stated by the following law:

cpl ◦ put v cpl ◦ π2 PUTCPL

The more information preserved by the complement, the less modifications are permitted
in the view, and thus the optimal complement is one such that get M cpl is bijective,
meaning that the complement keeps exactly the information dropped by the view. To

3.2 SURVEY 75

compare complements, Bancilhon and Spyratos define a collapsing order - between
two functions g1, g2 as:

g1 - g2 ⇔ ∀s , s ′. g2 s = g2 s ′ ⇒ g1 s = g1 s ′ --DEF

The preorder g1 - g2 means that g1 will collapse more inputs than g2. Minimal comple-
ments are constant functions that collapse all inputs into the same value, and maximal
complements are injective functions, that do not collapse any inputs. A smaller com-
plement function discards more data, producing a better backward transformation.
Formally, Bancilhon and Spyratos establish that for the same view function f a back-
ward function created from a smaller complement is always more defined:

g1 - g2 ⇒ put 〈f ,g1〉 v put 〈f ,g2〉 --PUT

The algorithm devised by Matsuda et al. employs injectivity and range analysis tech-
niques to find smaller complement functions. They also provide a static procedure
that checks if a view update is in the range of get M cpl , and thus in the domain of
put. The bidirectional properties follow those of closed view-updating and yield partial
(undoable) very well-behaved lenses, since put should forbid any changes to the infor-
mation that the complement has kept. For instance, inserting and removing elements
are forbidden updates in their running example of a filtering lens.

To avoid restricting the syntax of the forward transformations, Voigtländer (2009)
allows regular Haskell functions to be used in lens definitions. He instead considers
parametrically polymorphic get : ∀α. [α]→ [α] functions over lists, that work on the
“shape” of the data and are oblivious to the actual values of the polymorphic type α.
Although this parametricity forbids many non-polymorphic lenses, such as mapping
and content filtering, it allows the data values to be replaced by values of a type of
positions, what permits observing the runtime behavior of the forward transformations.
Based on such traceability information, he defines a put function as a higher-order
bidirectionalizer bff : (∀α. [α]→ [α])→ (∀α. [α] × [α]→ [α]), and exercises how
to generalize bff to support arbitrary polymorphic functions. This semantic bidirection-
alization yields very well-behaved lenses, but with a severe updatability limitation: put
is only defined for updates that do not change the shape of the view. For example, the
put function for a halve function that computes the first half of a list would only be
defined for the cases when the target list remains with exactly half of the size of the

76 CHAPTER 3: STATE OF THE ART

original list.

To overcome the updatability of the two previous approaches, Voigtländer et al.
(2010) explore an hybrid syntactic and semantic approach that is applicable to the inter-
section of their domains, i.e., affine, treeless and polymorphic Haskell functions over
lists. Operationally, the backward transformation for the combined technique extracts
the shape of the source and target types (by replacing polymorphic type variables with
the unit type, inducing a move from [α] to the type Nat of natural numbers isomorphic
to [1]), invokes the syntactic approach to compute a put : Nat × Nat → Nat function
on shapes, and applies an adapted semantic approach to estimate an updated source list
with the desired shape from the updated view data values and the original source list.
Although the gain in updatability is quite significant for their examples – for instance,
sieve that takes every second element of a list and reverse that reverses a list become
total lenses using their approach – it is not guaranteed in general that the resulting lenses
are safe or total. The combined approach is proven to produce well-behaved (and no
longer history ignorant) lenses, justifying the improved updatability.

Another mixed syntactic and semantic approach is used by Fegaras (2010) to
translate view updates written in the XQuery Update facility view to embedded SQL
updates, without view side-effects (denoting state-based put-Invertibility). Although no
particular restrictions are placed in the XQuery syntax, he restricts the way relational
tables are joined to form a view. The main idea of this approach is to use polymorphic
type inference to statically infer trace information for the view expression and to identify
which columns in the database table are exclusive data sources (EDS) that appear at
most once in the view. Using such information, view updates reflectable to EDS
sources and non-reflectable view updates can be translated at compile-time, while other
updates must be checked for view side-effects at run-time. Unlike (Voigtländer, 2009),
where view functions must be polymorphic, Fegaras only requires the updatable view
components appearing in the view to be polymorphic, whereas non-updatable ones may
be defined in any other way.

In Microsoft’s Entity Framework, developers specify declarative mappings (using
the general-purpose Entity SQL query language) between entities (objects) in an appli-
cation model and tables in a relational database, and the system tries to infer a (reverse)
lens that handles the data access layer and reflects updates to the client-side model as
updates to the persistent data (Melnik et al., 2007). For each mapping that is a total and
injective relation (Theorem 1), they infer a refinement that handles the reshaping of the

3.2 SURVEY 77

data (containing a query view q that expresses entities in terms of tables and an update

view u that expresses tables in terms of entities), and a merge function m, based on view
complements, that captures the store-side state transition behavior (taking an old and a
new database states and returns an updated state where the unexposed information in the
old state is kept intact); and construct the lens given by get = q and put = m ◦ (u× id).
Compilation guarantees that the resulting lens is total and well-behaved by construction
for all client models but only for database states in the range of the mapping.

Diskin et al. (2011a) discuss the inherent limitations of state-based lens approaches
and conceive an abstract framework of delta lenses that generalizes matching lenses (Bar-
bosa et al., 2010) and separates lenses into two distinct phases: a differencing or
alignment operation that computes a delta between two view states; and delta-based
transformations that transform view deltas into source deltas, and vice-versa. A well-
behaved delta lens satisfies lifted well-behavedness laws stating that put preserves
identity updates and that a view-to-view round-trip preserves deltas, and a backward
totality law stating that put processes any update to the original view. Their framework
also gives a more refined account of history ignorance, by showing that a state-based
instantiation of the PUTPUT law subsumes both a delta-based history ignorance law
and a very well-behaved alignment property requiring that computing the alignment
between two states is the same as composing the alignments between those states and
an intermediate state. They also argue that, in practice, the component that makes
history ignorance an overly restrictive premise is very well-behaved alignment, while
preservation of update composition is manageable for delta-based applications. Note
that since they only formulate the framework and do not propose a concrete language
of delta lenses, none of the deployment axes is instantiated in Table 3.4.

An abstract framework of change-based lenses is proposed by Wang et al. (2011),
in order to capitalize any locality of view updates into incrementality of update prop-
agation. In their setting, view updates are seen as total endofunctions on views and
view update propagation consists in identifying the location (and respective subterm)
in the view where a modification occurs, applying a state-based put function to pro-
duce an updated source subterm, and replacing the old source subterm at the original
location with the updated one. The authors discuss sufficient semantic conditions of
the types and the transformations so that the transformed structures enjoy good local-
ity properties, and focus particularly on polymorphic get functions specified as folds
between parametrically polymorphic algebraic data types, with locations pointing to

78 CHAPTER 3: STATE OF THE ART

recursive subcomponents of source and view values. As long as their approach is not
dependent on any particular bidirectional language, all the deployment axes besides the
data domain are not instantiated in Table 3.4.

3.2.3 Maintainer Frameworks

In pioneering work, Meertens (1998) studies (constraint) maintainers in the context of
graphical user interfaces. The idea is that a maintainer preserves a connection between
two graphical objects, so that its unidirectional transformations propagate updates
while restoring some desired constraint or relationship between them. For Meertens,
a well-defined maintainer must be correct and total. He also postulates a principle of

least change expressing that the action taken by a maintenance operation to restore
the violation of a constraint should be minimal up to some sense. This implies that:
if the constraint is not violated, then the maintainer shall introduce no change (hippo-
craticness); and harder to specify, changes shall be as small as possible when given
many possible choices. To formalize this notion of distance between values, he treats
domains as well-ordered sets that establish a preorder on values and builds maintainers
that choose the closest values within such preorder for specific constraints over sets
based on selectors. Moreover, Meertens develops a number of edit-based maintainers
over algebraic structures such as lists by extending the algebra of types with additional
constructors denoting edit operations. By considering explicit edit operations, these
maintainers are able to identify precisely which parts of the models are not involved in
a change and must be preserved. Meertens also explores the construction of maintainers
by combinatorial means. In particular, he acknowledges that composition of maintain-
ers is impossible in the general case, but identifies certain restrictions that make these
constructions possible.

Hofmann et al. (2011) propose a different symmetric formulation and explore an
algebraic category of symmetric lenses that generalize traditional asymmetric lenses
and support composition unlike maintainers. Many of their results corroborate our
own conclusions for asymmetric lenses (presented later in Chapter 4), such as the
existence of tensor products and sums (but not categorical sums and products), and
the ability to define recursive lenses with folds and unfolds that satisfy uniqueness. In
comparison to a maintainer, a symmetric lens from S to T defines two transformations
putr : S × C → T × C and putl : T × C → S × C that use as traceability a com-
plement of type C to recover and store the information not present in S or T , instead

3.2 SURVEY 79

of whole states. Well-behaved symmetric lenses are said to be total and stable in their
own sense:

π1 ◦ putl ◦ putr = π1 PUTRL

π1 ◦ putr ◦ putl = π1 PUTLR

The added flexibility over maintainers comes from treating complements as inter-
nal components, not visible to users, that are constructed through composition. For
instance, when composing two symmetric lenses, the internal complement of the
composition lens (that is available as inputs to the transformations) is the product
of the complements of the two lenses. A total stable maintainer with an arbitrary
consistency relation can be converted into a total well-behaved symmetric lens with
putr (t ′, (s , t)) = (s � t ′, (s � t ′, t ′)) and a dual putl . Using this conversion, the com-
position of two maintainers (as symmetric lenses) is possible but not hippocratic.
Another nuance is that due to the nature of the complements, standard syntactic equiv-
alence of symmetric lenses is not possible. Instead, two symmetric lenses are said to
be observationally equivalent if the behavior of their unidirectional transformations is
indistinguishable, even though their complements may be structurally different. This
entails that lens laws do not hold “on the nose” but only up to equivalence.

Hofmann et al. (2012) show how state-based symmetric lenses can be lifted to an
operation-based space of edit lenses that handle updates in the form of the edits describ-
ing only the changes rather than whole annotated states. A well-behaved symmetric
lens must be total (if an edit can be applied to a value, then propagation must be defined
for such edit), stable and correct up to an explicit consistency relation considering the
internal complement. Their language of edit lenses includes combinators for inductive
products, sums, lists and two particular combinators over container structures, namely
mapping (that only modifies the data) and restructuring (that only modifies the shape).
Nevertheless, their restructuring combinator requires the positions of the transformed
containers to be in bijective correspondence, meaning that it can not change the number
of data placeholders of the shapes. Additionally, their language of edits over containers
considers insertion and deletion at the rear positions of containers and rearrangement of
the elements of a container without changing its shape. This entails that shape alignment
is kept positional, as insertions and deletions at arbitrary positions are always reflected
at the end positions of the shape.

In the follow-up of their previous delta-based framework, (Diskin et al., 2011b)

80 CHAPTER 3: STATE OF THE ART

conceive an abstract framework of symmetric delta-based lenses, where transformations
consume and produce both a vertical delta representing the update and an horizontal
delta representing the traceability information. They formulate a delta-based Weak
Invertibility law stating that the result of a source-to-source round-trip is equal to the
original source modulo another forward transformation (and vice-versa); and another
Weak Undoability law stating that the propagation of a converse source update produces
the converse target update modulo another backward transformation (and vice-versa).
Because they only discuss the conceptual aspects of such a symmetric framework, the
classification of their work in Table 3.4 does not include any deployment axes.

Most bidirectional transformation approaches in the context of model-driven devel-
opment are based on graph grammar formalisms (Ehrig et al., 2006), especially triple
graph grammars (Schürr, 1995; Schürr and Klar, 2008). A TGG consists of three source,
correspondence and target graphs (conforming to three additional graph schemas if the
TGG is typed), together with two graph morphisms from the correspondence graph to
the source and to the target graphs. The composition of these two mappings defines a
consistency relation between source and target elements, and is specified declaratively
by a set of graph rules that match specific sub triple graphs and describe how any graph
that conforms to the graph grammar can be created. Thus, the application of triple
graph rules formalizes the simultaneous evolution of source and target graphs that are
always consistent, using the third graph to track the correspondences between them.
However, a TGG can only handle simultaneous updates, as the rules force graphs to
evolve simultaneously, and is not able to restore inconsistent models, since the graphs
must be consistent at all times. To derive an actual bidirectional transformation that
processes independent updates and restores consistency, a set of operational rules can
be generated automatically from a TGG according to some syntactic procedure. These
rules can be seen as maintainer forward and backward transformations that use the
correspondence graph, an instance of the consistency relation linking the source and
target graphs, to provide important traceability information. The FUJABA graphical
consistency management tool provides the most serious application support based on
TGGs, and proposes to answer some of the design goals of the QVT proposal (Königs
and Schürr, 2006).

As one of the first results regarding round-tripping behavior for TGGs, Ehrig et al.
(2007) study in which particular circumstances a TGG realizes invertible forward and

3.2 SURVEY 81

backward transformations.

Hermann et al. (2011) propose a carefully designed algorithm that derives a sym-
metric delta lens (Diskin et al., 2011b) from a TGG, but that does not even guarantee by
construction that the derived transformations are deterministic, i.e., functions. Hence,
they identify sufficient static conditions on the TGGs that can be automatically checked
and ensure that the resulting transformations are indeed functions that are safe, correct
and weakly invertible. In their context, update deltas are specified as graph morphisms
denoting the elements that are preserved by each modification.

Cicchetti et al. (2011) propose JTL, a declarative bidirectional model transformation
language inspired by a QVT-like syntax. A JTL transformation specifies a consistency
relation between source and target schemas in the same way as a QVT relations program,
that is compiled into a set of logic predicates. Then, they implement non-deterministic
maintainers whose forward and backward transformations invoke a logic programming
solver to find all possible models in the following sense: if a modified target model
has a trace to a source model, such source model is modified, otherwise all consistent
source models are returned. In their context, a bidirectional transformation must be
safe and total, even if the consistency relation is non-total. Whenever no source model
exists that is consistent with a modified target model, their transformations employ a
model approximation technique to infer the closest non-consistent source model. As a
result, transformations are not correct since they may generate inconsistent models.

An example of an ad-hoc symmetric approach is JT (Ennals and Gay, 2007), a
bidirectional system for maintaining source code written in two specific programming
languages, namely C and Jekyll, a superset of C with high-level features of functional
languages. Since code translation is non-deterministic in general (the same behavior in
C may be encoded in different flavors in Jekyll, and a Jekyll feature may be implemented
in several ways in C), JT employs a notion of textual difference between each possible
update and the original files in order to choose the closest match, allowing the detection
of non-local edits such as reorderings. Although they don’t provide any formal evidence,
the authors clearly intend their system to be correct and stable modulo comments and
whitespaces. For example, once a C file is translated to a Jekyll file, JT checks that the
Jekyll file can be translated back to a C file with the original semantic meaning and, if
possible, the same comments and layout. The translations are also assumed to be total –
they advocate that all features in one language shall have reasonable translations into
the other.

82 CHAPTER 3: STATE OF THE ART

3.2.4 Synchronization Frameworks

Up until now, the studied bidirectional frameworks permit to synchronize different
models but only describe how to propagate an update to a single model into an update to
a previously consistent one. This contrasts with more general (partial) synchronization
procedures that are concerned with bringing pairs of models into a consistent state
by evolving both simultaneously, thus allowing parallel updates. Take for example
the trivial consistency relation id : S → S : since it is a bijection, a corresponding
bidirectional transformation would just copy modifications from one model to the
other, while a synchronizer would need to somehow merge two arbitrary models into a
consistent duplicated state.

Nevertheless, bidirectional transformations may serve as intermediate constructs to
build parallel synchronization systems. The first example of such an approach is the
Harmony framework for the synchronization of heterogeneous data formats (Foster
et al., 2005). In Harmony, developers design bidirectional lenses that transform source
S and target T formats into a common abstract format A, and the framework employs
a core three-way merger engine that takes two replicas and a common ancestor (all
values of type A) to yields two updated replicas in which all non-conflicting changes
have been merged. Using these components, they devise an heterogeneous synchronizer
sync : S × T → A→ S × T that takes modified source and target models and a
common ancestor to returns new synchronized source and target models, by using the
forward transformations of the lenses to translate the modified artifacts into the abstract
format and their backward transformations to translate abstract updates into updates to
the original source and target models.

Another example is the SyncATL tool (Xiong et al., 2007), that proposes to syn-
chronize models related by an ATL model transformation. The idea is to “lensify” the
byte-code instructions of a stack-based language corresponding to an ATL low-level vir-
tual machine, by extending each instruction with putting-back functions that resemble
the bidirectional programs of Takeichi and are called when target values are replaced,
deleted or inserted. They then define a synchronizer sync : S × T → S → S × T

that takes the modified models and the original source model (from which the original
target model can be calculated) and returns synchronized models as follows: they com-
pute source and target updates using a model differencing algorithm, merge the source
update with the result of putting back the target update to compute the synchronized
source value, and compute the synchronized target value by applying the transformation.

3.3 SUMMARY 83

The authors define the properties of their synchronizer in terms of correctness (it returns
a consistent state), stability (if the models are not modified, it produces no change) and
an additional update preservation property meaning that synchronization shall preserve
user modifications or else track inappropriate non-reflectable modifications.

Following a different approach, Xiong et al. (2009) propose the construction of a
model synchronizer sync : S × T → S × T → S × T from a QVT-R bidirectional
maintainer and a user-defined model difference procedure. To lift the bidirectional
transformation into a parallel synchronizer, they apply the backward transformation to
the modified target model and the original source model, use a three-way merger (that
is calculated from the model difference procedure) to combine the modified source,
the original source and the result into a synchronized source and apply the forward
transformation to propagate the source modifications to the updated target. The authors
show that synchronization is correct if the maintainer is so, and stable if the maintainer
is hippocratic. However, their implementation does not check automatically if the QVT
transformation obeys these postulates. The third preservation property is ensured by an
additional check at the end of synchronization; if user modifications are deleted, then it
reports a conflict to the user.

3.3 Summary

In this chapter, we have presented a taxonomy for the classification of the defining
features of BX frameworks. In table Table 3.4, we have taken a global picture of the
state of the art of the field at the light of our taxonomy.

Looking at Table 3.4, we can see that most frameworks are essentially state-based.
Some operation-based approaches exist, but many still consider only state-based laws.
It is also noteworthy that most frameworks only guarantee (state-based) stability, cor-
rectness and invertibility properties. Unfortunately, these properties still leave a lot
of room in the behavior of the transformations, and make it harder to compare the
effectiveness of two bidirectional frameworks solely based on their stated properties.

Another relevant aspect is that most of our surveyed approaches are based on the
abstract frameworks of mappings and lenses. In more recent years, a few symmet-
ric frameworks inspired by (slightly more general formulations of) maintainers have
been proposed. In this context, considerable effort has been put in trying to formal-
ize model-driven transformation scenarios with typically language-based bidirectional

84 CHAPTER 3: STATE OF THE ART

transformation techniques. In fact, we can identify two more or less clear (and not
exclusive) subcommunities within the field of bidirectional transformations: a program-

ming languages subcommunity, concerned with the semantic properties and linguistic
mechanisms required to specify bidirectional transformations; and a model transforma-

tions subcommunity, more focused on software-model synchronization, tool integration
and real-world application scenarios. However, the significantly distinct motivations
and techniques (language-based solutions usually go by the framework of lenses, while
model-based solutions are more inspired by QVT specifications or graph formalisms
like TGGs) still make it very challenging to compare work originating from different
subcommunities.

More related to this thesis, we can identify other open issues that are not directly
inferable from Table 3.4. First, despite the huge majority of bidirectional approaches
are combinatorial and therefore suffer from inherent efficiency limitations, the problem
of optimizing bidirectional programs remains largely unaddressed. Second, although
state-based languages are already quite mature, they are often poorly configurable as
long as they do not allow users to control the alignment mechanisms that affect the
behavior of the bidirectional transformations. Existing delta-based frameworks bring
up this issue and discuss it in abstract way, but stop short of proposing a concrete
solution. Third, the specification style of lens-based bidirectional languages is usually
not very flexible, in the sense that it requires users to describe exactly how source
models are mapped to target models. In order to make these languages applicable
to very large models, some generic features are necessary to reduce the specification
cost and foster the reusability. These problems will be studied and addressed in the
succeeding chapters.

3.3 SUMMARY 85

Approach

Feature
Scheme Properties Deployment

Fr
am

ew
or

k
So

ur
ce

U
pd

at
es

Ta
rg

et
U

pd
at

es

St
ab

ili
ty

In
ve

rt
ib

ili
ty

U
nd

oa
bl

e

H
is

to
ry

Ig
no

ra
nc

e

C
or

re
ct

ne
ss

H
ip

po
cr

at
ic

ne
ss

To
ta

lit
y

So
ur

ce
D

om
ai

n
Ta

rg
et

D
om

ai
n

Ty
pi

ng
Sp

ec
ifi

ca
tio

n
L

an
gu

ag
e

B
id

ir
ec

tio
na

liz
at

io
n

Brabrand et al. (2008)
 S L9999K ←−−→ ←−−→ S T R D S
Kawanaka and Hosoya (2006)
 S ←−−→ ←−−→ S T R D S

Yokoyama et al. (2008)
 S ←−−→ ←−−→ T T T D C
Kennedy (2004)
 S L99−→ L9999K T S T T D C
Wadler (1987)
 S ←−−→ L9999K T T T G A

Atanassow and Jeuring (2007)
 S ←−−→ ←−−→ T T T G S
Terwilliger et al. (2007)
 S E −→ L99−→ T R T T D C

Cunha et al. (2012)
 E ←−−→ −→ ←−−→ ←−−→ ←− ←−−→ R T A
Mu et al. (2004)
 S E L99−→ L99 T T T D C

Berdaguer et al. (2007)
 S −→ L99−→ T T T D C
Wang et al. (2010)
 S ←− ←−−→ T T T D C
Foster et al. (2007) Q S ←− ←− ←−−→ T T T D C

Bohannon et al. (2006) Q S ←− ←− ←−−→ R T T D C
Bohannon et al. (2008) Q S L99 ←− ←−−→ S T T D C

Foster et al. (2008) Q S L99 L99 ←−−→ S T T D C
Barbosa et al. (2010) Q S D ←− ←− ←−−→ S T T D C

Hu et al. (2008) Q S E L9999K T T T D C
Liu et al. (2007) Q S E ←− ←− −→ T T T G C

Hidaka et al. (2010) Q S E ←− L99 −→ G T T G CS
Takeichi (2009) Q S ←− −→ T T T G C

Matsuda et al. (2007) Q S ←− ←− ←− ←− −→ T T T G S
Voigtländer (2009) Q S ←− ←− ←− ←− T T T G S

Voigtländer. et al. (2010) Q S ←− ←− −→ T T T G SS
Fegaras (2010) Q S E ←− L99 −→ R T T T G SS

Melnik et al. (2007) Q S ←− ←− ←−99K G R T R G S
Diskin et al. (2011a) Q D ←− ←− ←− L99−→
Wang et al. (2011) Q S F ←− ←− ←− L99−→ T

Chapter 4 Q S ←− ←− ←−−→ T T T D C
Chapter 5 Q D ←− ←− ←−−→ T T T D C

Meertens (1998) ≷ S/E ←−−→ ←−−→ ←−−→ T T T D C
Hofmann et al. (2011) ≷ S ←−−→ ←−−→ T T T D C
Hofmann et al. (2012) ≷ E ←−−→ ←−−→ ←−−→ T T T D C
Diskin et al. (2011b) ≷ D ←−−→ L9999K L9999K ←−−→
Ehrig et al. (2007) ≷ S ←−−→ ←−−→ ←−−→ G T R D S

Hermann et al. (2011) ≷ D L9999K ←−−→ L9999K G T R D S
Cicchetti et al. (2011) ≷ S ←−−→ ←−−→ G T R D SS
Ennals and Gay (2007) ≷ S L9999K ←−−→ ←−−→ T T A

Table 3.4: Comparison of existing bidirectional transformation approaches.

86 CHAPTER 3: STATE OF THE ART

Chapter 4

Generic Point-free Lenses

This chapter shows that most of the standard point-free combinators can be lifted to a
language of total well-behaved lenses, allowing us to use the point-free style to define
powerful bidirectional transformations by composition. Since general recursion is
usually deterred in the point-free style of programming in favor of more calculation-
friendly recursion patterns, we define generic lenses over arbitrary inductive data types
by lifting standard constructs like folds and unfolds. These constructs allow to define
lenses over rich data types like lists and trees in terms of their structure and using only
a small set of generic combinators. This often-called datatype-generic programming

style (Gibbons, 2007) leads to shorter and clearer specifications in comparison to
datatype-specific programs defined directly by induction on specific base types.

The point-free style is also characterized by a rich set of algebraic laws, opening
interesting perspectives towards a lens calculus to reason about bidirectional transfor-
mations. The second goal of this chapter is to develop such a calculus, by showing
that many of the laws characterizing point-free combinators and recursion patterns are
also valid at the lens level. A key result of our work is that uniqueness also holds for
bidirectional folds and unfolds, thus unleashing the power of fusion as a bidirectional
program optimization technique.

This algebraic theory mitigates the inefficiency of combinatorial bidirectional lan-
guages and draws practical applications for the optimization of lens programs, by
ensuring that optimization at the lens level preserves the bidirectional semantics and
subsumes the independent optimization of all unidirectional transformations. This con-
trasts with traditional bidirectional approaches, that either do not support optimization
or do not consider the implications of optimizing the forward transformation on the

87

88 CHAPTER 4: GENERIC POINT-FREE LENSES

behavior of the bidirectional transformation.

4.1 Point-free Combinators as Lenses

In this chapter, we will develop the building blocks of our point-free language of
total well-behaved lenses over algebraic data types. Instantiating the design space
from Chapter 3, our formulation of lenses can be defined as follows:

Definition 4 (Lens). A well-behaved lens l , denoted by l : C Q A, is a bidirectional

transformation that comprises three total functions get : C → A, put : A × C → C

and create : A→ C , satisfying the following properties:

get ◦ create = id CREATEGET

get ◦ put = π1 PUTGET

put ◦ (get M id) = id GETPUT

Definition 5 (Lens equality). Two lenses f and g are equal, written f = g , iff their

transformations are equal, i.e., getf = getg, putf = putg and createf = createg.

Recapitulating, property CREATEGET guarantees that get is an abstraction function,
i.e., A contains at most as much information as C . PUTGET guarantees that the lens is
acceptable (put-Invertibility in Chapter 3), i.e., updates to a view cannot be ignored and
are to be translated exactly. Finally, GETPUT states that the lens is stable (put-Stability
in Chapter 3), i.e, if the view does not change, then neither does the source.

By favoring totality and a simple data domain, not all point-free combinators will
be valid lenses in our setting. Therefore, our first research question is: which point-free
combinators in SET also denote lenses? In order to answer this question, we will
scrutinize each point-free combinator from Chapter 2 and, whenever possible, lift it to a
lens combinator. The point-free style being so intertwined with algebraic calculation,
the followup question must necessarily be: are the laws characterizing the standard
point-free combinators also valid for the lifted lenses? To answer this second question,
we will state for each bidirectionalized combinator the laws that characterize it.

To avoid introducing new notation, we will denote the lens corresponding to a
particular combinator using the same syntax. It shall be clear from the context if we are
referring to the lens combinators and laws or to the standard point-free combinators

4.1 POINT-FREE COMBINATORS AS LENSES 89

and laws. For some lenses there is some freedom in the design of the backward
transformations (namely, create and put). As such, they will receive extra parameters
to plugin in contexts where such freedom exists.

4.1.1 Basic Lens Combinators

Two of the most fundamental lens combinators are identity and composition, first
defined in (Foster et al., 2007). Both can be restated in point-free as follows:

id : C Q A

get = id

put = π1

create = id

∀f : B Q A, g : C Q B . (f ◦ g) : C Q A

get = getf ◦ getg
put = putg ◦ (putf ◦ (id × getg)M π2)

create = createg ◦ createf

Identity simply copies the input value for get and create , and ignores the original source
value for put . For composition, if the concrete domain of f and the abstract domain
of g have the same type, then f and g are composable and f ◦ g is a lens with the
concrete domain of g and the abstract domain of f . In the get and create directions,
the composed transformation is just the composition of the respective transformations
from f and g . In the put direction, in order to apply the put functions in sequence,
the original concrete value is duplicated. Note that, while putg consumes the original
concrete value with type C , the intermediate concrete value with type B passed to putf
is calculated by applying getg to the original concrete value.

The identity and associativity axioms that characterize these combinators are also
valid for the lens versions:

id ◦ f = f = f ◦ id id -NAT

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-ASSOC

Since both these laws are valid, we can define a category LENS, whose objects are the
same objects of SET and arrows are well-behaved lenses.

Proof. The first equality is always trivially true because the get function has exactly
the same point-free definition as the lens itself. The trickiest part is always proving that
both puts are equal (especially when involving lots of compositions). For example, for
◦-ASSOC such proof can done as follows:

90 CHAPTER 4: GENERIC POINT-FREE LENSES

put f ◦(g◦h)

= {definition of put }
putg◦h ◦ (putf ◦ (id × getg◦h)Mπ2)

= {definition of put }
puth ◦ (putg ◦ (id × geth)M π2) ◦ (putf ◦ (id × getg◦h)Mπ2)

= {×-ABSOR;×-ABSOR;×− CANCEL}
puth ◦ (putg ◦ (putf ◦ (id × getg◦h)M geth ◦ π2)M π2)

= {definition of get }
puth ◦ (putg ◦ (putf ◦ (id × getg ◦ geth)M geth ◦ π2)M π2)

= {×− FUSION;×− FUNCTOR-COMP;×− CANCEL}
puth ◦ (putg ◦ (putf ◦ (id × getg)M π2) ◦ (id × geth)M π2)

= {definition of put }
puth ◦ (put f ◦g ◦ (id × geth)Mπ2)

= {definition of put }
put (f ◦g)◦h

The proof for create is trivial and will be elided.

Note that, in the above proof, the equalities are proven using laws valid for point-
free functions on SET (see Chapter 2 for a compendium). Throughout the chapter, we
will use the same name to denote laws valid both on LENS and SET. Disambiguation
should be trivial from the context. The well-behavedness (and equational) proofs for
composition and other crucial combinators introduced in this section can be found
in Appendix B. The remaining proofs, although a bit more complex than the one above,
are still fairly easy, at least for someone experienced with the point-free style.

The bang combinator is the primitive lens for defining abstractions and ignores all
the source information:

∀f : 1→ C . ! f : C Q 1

get = !

put = π2

create = f

Since get drops the source value, in put we simply need to restore the original source.
Here, the superscript is a function f : 1→ C that generates default concrete values

4.1 POINT-FREE COMBINATORS AS LENSES 91

to be used by create. Due to this parameter function, we cannot state that 1 is a
proper terminal object of LENS, because there is more than one lens with type C Q 1.
Nonetheless, we can phrase a lifted version of the uniqueness law for bang:

f = ! createf ⇔ f : C Q 1 ! -UNIQ

4.1.2 Products

Like the bang combinator, the projections π1 and π2 are two main ingredients for
defining more complex lenses that project away components of a concrete data type:

∀f : A→ B . π1
f : A × B Q A

get = π1

put = id × π2

create = id M f

∀f : B → A. π2
f : A × B Q B

get = π2

put = swap ◦ (id × π1)

create = f M id

Since π1 and π2 project the corresponding elements of the source pair, the backward
transformations have to recover the projected out elements to construct a new pair.
While create simply generates a new value (using the parameter function) for the “lost”
value of the pair, put copies it from the original source pair.

In general, the split of two lenses f : C Q A and g : C Q B sharing the same
domain is not a well-behaved lens f M g : C Q A × B . For example, the duplication
combinator id M id : A Q A × A would be a valid lens iff the invariant π1 = π2 was
imposed on the codomain A × A, stating that both components of the pair are always
equal, i.e., there are no lenses of type A Q A× A (unless A is the unit type), because
the target is not an abstraction of the source. Nevertheless, if f and g project distinct
concrete information from C , such that get f M g is surjective (what can be proven by
showing that id ⊆ [getg ◦ getf ◦]), then from Theorem 2 there exists a well-behaved
lens f M g . Additionally, we would like the transformations of the split lens to be
constructively defined using the transformations of its argument lenses. A tempting
(incomplete) definition for the split lens is the following:

∀f : A Q B , g : A Q C , h : B × C → A.

getf ◦ putg = getf ◦ π1 ∧ getg ◦ putf = getg ◦ π2 ⇒ (f M g) : A Q B × C

get = getf M getg
put = putf ◦ (id × putg) ◦ assocr

create ⊆ (f M g)◦

92 CHAPTER 4: GENERIC POINT-FREE LENSES

For our lens to be well-behaved, we must impose some additional conditions in the style
of PUTCPL stating that getf is a complement of the lens g and that getg is a complement
of the lens f . This ensures that putf and putg preserve the distinct information in the
other side of the view pair, and thus that we can propagate updates to the view to the
concrete model by independent inspection of both components of the pair, for example
by defining put as the expression putf ◦ (id × putg) ◦ assocr . Unfortunately, it is hard
to provide a reasonable general definition for create at the cost of createf and createg,
since it would require the relational intersection of the possible results produced by
createf and createg. This prevents us from giving a generic definition of split as a
well-behaved lens, and create can be any total function satisfying the CREATEGET law.

For swap, it is rather easy to show that the complement conditions are valid, that
the suggested definition for put is equal to the expected swap ◦ π1 (according to the
further presented generic definition of an isomorphism as a well-behaved lens), and that
create can be done using swap itself.

Another instance of split that satisfies the complement conditions is the product
combinator f × g , defined as follows:

∀f : C Q A, g : D Q B . f × g : C × D Q A × B

get = getf × getg
put = (putf × putg) ◦ distp

create = createf × createg

Again, it is easy to show that the put of the split is equivalent to (putf × putg) ◦ distp.
For this particular split, creating a concrete pair from an abstract one can be done
by independently creating both components of the pair. In practice, most expressions
involving split whose argument lenses are complements of each other can be transformed
into point-free expressions using other valid lens combinators on products (like × or
swap).

Due to the non-existence of splits and thus categorical products, our category of
lenses is not as “well-behaved” as SET. However, our product and projections still
satisfy some interesting laws. The following laws guarantee that the product lens is also
a bifunctor in the category of lenses:

id × id = id ×-FUNCTOR-ID

(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-FUNCTOR-COMP

4.1 POINT-FREE COMBINATORS AS LENSES 93

Projections also enjoy a kind of naturality law, with a precise characterization of how
the default generation function must be adapted.

π1
f ◦ (f × g) = f ◦ π1

createg◦f ◦getf π1-NAT

π2
f ◦ (f × g) = g ◦ π2

createf◦f ◦getg π2-NAT

4.1.3 Sums

Moving to sums, the either (or junc) combinator can be lifted into the following lens:

∀p : A→ 2, f : C Q A, g : B Q A. (f O g)p : C + B Q A

get = getf O getg
put = (putf + putg) ◦ distr

create = (createf + createg) ◦ p?

When putting back, putf is used if the concrete value is a left alternative and putg
otherwise. For create we have two alternatives – either apply createf or createg –
depending on the result of applying the predicate to the view value. We can also
define left-biased (•O) and right-biased (O•) versions of this lens, for the cases when
the predicate always returns true or false, respectively. Assuming that predicates are
represented using sums (as fed to p?), this lens corresponds to a point-free formulation
of the concrete conditional combinator ccond from (Foster et al., 2007).

The sum injections i1 : A→ A + B and i2 : B → A + B are non-surjective functions
that are classic examples of refinements (Cunha et al., 2006a). Similarly to split, the
only way to lift them into lenses would be by imposing an invariant on the codomain
A + B , constraining its values to be all left or all right alternatives, respectively. Since
this semantic constraint is not supported by standard type systems, unrestricted usage
of the injections will be disallowed in our lens language. Notwithstanding, if injections
are used inside an expression that is jointly surjective as in (Wang et al., 2010), they
can sometimes build up well-behaved lenses. Two particular useful cases are the
lenses i1O f and f O i2. These eithers are necessarily surjective (because f , being a
well-behaved lens, is already surjective) and give rise to the following lens combinators:

∀f : C Q A + B . i1O f : A + C Q A + B

i1O f = (id •O id + id) ◦ coassocl ◦ (id + f) i1-EITHER-DEF

94 CHAPTER 4: GENERIC POINT-FREE LENSES

∀f : C Q A + B . f O i2 : C + B Q A + B

f O i2 = (id + id O• id) ◦ coassocr ◦ (f + id) i1-EITHER-DEF

In practice, they will allow us to write non-trivial (but still jointly surjective) constructor
lenses like the following ones for naturals and lists, that will be useful for some of the
examples presented later:

zero O id = inNat ◦ (i1O outNat) id O succ = (inNat ◦ (outNatO i2))

nil O id = inListA ◦ (i1O outListA) id O cons = (inListA ◦ (outListA O i2))

The sum combinator can have the following lifting into a lens:

∀h : A × D → C , i : B × C → D , f : C Q A, g : D Q B .

getf ◦ h = π1 ∧ getg ◦ i = π1 ⇒ (f + g)h,i : C + D Q A + B

get = getf + getg

put = (putf O h + i O putg) ◦ dists

create = createf + createg

In the definition of put , dists : (A + B) × (C + D)→ (A × C + A × D) + (B ×
C + B × D) is first used to span the four possible cases. If the abstract and concrete
values match (cases A × C and B × D), then we apply putf and putg as expected.
Otherwise (cases A × D and B × C), we need some mechanism to bring the “out of
sync” abstract and concrete values into a new concrete value that is consistent with the
abstract value: we use the parameter functions h : A × D → C and i : B × C → D

to reconstruct such values from the available information. The conditions getf ◦ h = π1

and getg ◦ i = π2 force these functions to be acceptable (likewise put), i.e., the view
cannot be ignored when computing the defaults. Useful candidates for h and i are
createf ◦π1 and createg ◦π1; in fact, when superscripts are omitted from the sum these
are assumed to be the parameters. The definition of create is merely the sum of the
create functions of f and g . This sum combinator is essentially the point-free analogue
of the abstract conditional combinator acond from (Foster et al., 2007).

Likewise its functional counterpart, the either lens combinator also satisfies fusion
and absorption laws in LENS:

f ◦ (g O h)p = (f ◦ g O f ◦ h)p◦createf +-FUSION

(f O g)p ◦ (h + i)j ,k = (f ◦ h O g ◦ h)p +-ABSOR

4.1 POINT-FREE COMBINATORS AS LENSES 95

Note how the first law constrains the new predicate to be coherent with the create of
the fused lens. Compositions of sums can be fused according to the following law, that
states how the new parameter functions can be deduced:

(f + g)j ,k ◦ (h + i)l ,m = (f ◦ h + g ◦ i)n,o

⇔

n = l ◦ (j ◦ (id × get i)M π2) ∧ o = m ◦ (k ◦ (id × geth)M π2)

+-COMP

If the parameters are the standard create ◦ π1, we have the following simplified version:

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-FUNCTOR-COMP

This and the following law ensure that the sum combinator is also a bifunctor in LENS:

(id + id)f ,g = id +-FUNCTOR-ID

4.1.4 Isomorphisms as Lens Combinators

The simplest cases of bidirectional transformations are isomorphisms. Given a bijective
function f : A→ B , we can trivially define a lens isomorphism f : A Q B with:

get = f

put = f −1 ◦ π1

create = f −1

It is trivial to prove that f ◦ f −1 = f −1 ◦ f = id is also valid at the lens level. There
are many useful examples of such lens isomorphisms, such as swap, assocl , coswap,
coassocl and distl . Since splits and injections are not valid lenses, these lens isomor-
phisms play an important role in extending the expressivity of our point-free lens
language. For example, all lenses that rearrange nested pairs can be defined as composi-
tions of swap, assocl , assocr and products (Mu et al., 2004).

We name a lens η describing a bidirectional natural transformation between functors
F and G a natural lens and type it with the signature η : F Q̇ G, where get : F →̇ G,
put :G⊗F →̇ F and create :G →̇ F are natural transformations. It assigns to each type
A an arrow ηA : F A Q G A such that, for any lens f : A Q B , the following naturality

96 CHAPTER 4: GENERIC POINT-FREE LENSES

condition holds:

η ◦ F f = G f ◦ η η-NAT

This concept can be generalized to functors of higher arity. If a natural lens η is also an
isomorphism, then it is called a natural lens isomorphism. Such is the case of swap and
all similar lenses. For example, the following bidirectional naturality and isomorphism
laws are also valid in the LENS category:

swap ◦ (f × g) = (g × f) ◦ swap swap-NAT

swap ◦ swap = id swap-ISO

coswap ◦ (f + g)f ,g = (g + f)g,f ◦ coswap coswap-NAT

coswap ◦ coswap = id coswap-ISO

The naturality law for distl is a bit more tricky because we need to adapt the default
functions passed to the put of the sum:

distl ◦ ((f + g)j ,k × h) = (f × h + g × h)l ,m ◦ distl

⇔

l = (j × puth) ◦ distp ∧ m = (k × puth) ◦ distp

distl -NAT

To understand the bottom equation of this law, consider that f :A→ A′, g :B → B ′ and
h : C → C ′. For the left side of the top equation, the backward semantics of the sum
f + g considers only the view A′+ B ′, and C ′ values are processed independently using
puth. For the right side of the top equation, that first distributes the source sum over the
product, the backward semantics of the sum considers the view (A′ × C ′) + (B × C ′),
what may lead to a different “out of sync” behavior if the choices of the parameter
functions are unconstrained. For an example, if we consider that the parameter functions
are the default create ◦ π1, the left case would apply create f or createg to “out of sync”
values, while the right case would instead apply create f×h or createg×h , independently
of the fact that the original source of type C required to restore C ′ values is always
available. Our side-condition ensures that the parameter functions for the right equation
apply puth instead.

4.1 POINT-FREE COMBINATORS AS LENSES 97

Many other useful laws can be proved about these lens isomorphisms, such as the
following cancelation laws:

π1
f ◦ swap = π2

f ∧ π2
f ◦ swap = π1

f swap-CANCEL

(f O g)p ◦ coswap = (g O f)coswap◦p coswap-CANCEL

(π1
f + π1

g)
putπ1

,putπ1 ◦ distl = π1
f O g distl -π1-CANCEL

(π2
f O π2

g)
p ◦ distl = π2

(f +g)◦p? distl -π2-CANCEL

(id O id)p◦π1 ◦ distl = (id O id)p × id distl -id -CANCEL

4.1.5 Higher-order Lens Combinators

Higher-order lenses are also definable in our category of lenses through exponentiation.
The exponentiation combinator • can be lifted into a lens as follows:

∀f : B Q C . f • : BA Q C A

get = getf
•

put = putf
• ◦ M̂

create = createf
•

Here, M̂ : C A × BA → (C × B)A denotes the uncurried version of the split combina-
tor (Cunha and Pinto, 2005), and is defined as the following point-free expression:

M̂ = (ap × ap) ◦ ((π1 × id)M(π2 × id)) M̂-DEF

Again, exponentiation is a functor in the LENS category:

id• = id EXP-FUNCTOR-ID

(f ◦ g)• = f • ◦ g• EXP-FUNCTOR-COMP

The ap combinator can also be lifted to a lens, as follows:

∀f : B → A. apf : BA × A Q B

get = ap

put = (π1 ◦ π1O ap ◦ (π1 ◦ π2 × id)) ◦ [π2 ◦ π2]?M π2 ◦ π2

create = π1M f

98 CHAPTER 4: GENERIC POINT-FREE LENSES

Since the point-free definition is a bit tricky, we also present the point-wise versions of
the backward transformations for better comprehension:

put (y , (g , x)) = (λz → if x ≡ z then y else g z , x)

create y = (λz → y , f y)

Note how the put function updates the original function with a new result for the input
value that was applied. The parameter function f is used in create to choose a value of
the domain A. Any such value can be chosen, since the constant function returned by
π1 : B → BA will always restore the view value passed to create.

Application cancels exponentiation, according to the following law:

apg ◦ (f • × id) = g ◦ apg◦getf EXP-CANCEL

Unfortunately, we also do not have categorical exponentiation in LENS because the
curry of a well-behaved lens may not be a well-behaved lens. For example, note that,
although π2 : A× B Q B is a lens, π2 : A→ BB is not surjective and thus cannot be
made into a lens (given a value of type A it returns the function id).

4.2 Recursion Patterns as Lenses

In this section, we investigate the specification of recursive lenses over inductive data
types. As we have seen in Chapter 2, the sum-of-products structure of such types can be
represented generically as a fixed point of a regular functor. Instead of defining lenses
“by-hand” using general recursion as in (Foster et al., 2007), we resort to well-known
recursion patterns and use their rich algebraic laws to prove that the resulting lenses
are well-behaved. These patterns are examples of datatype-generic programs (Gibbons,
2007) that are parameterized by the base functor of any regular data type, and can be
instantiated on many base functors to obtain the respective datatype-specific lenses.
Also, the lens arguments passed to our generic recursion patterns can be defined by
reusing the non-recursive point-free lens combinators from the previous section.

4.2.1 Functor Mapping

Building on our lenses over products and sums, we can define a polytypic functor
mapping lens combinator simply by induction on the structure of polynomial functors:

4.2 RECURSION PATTERNS AS LENSES 99

∀f : C Q A. F f : F C Q F A

Id f = f

C f = id

(F⊗G) f = F f × G f

(F⊕G) f = F f + G f

(F�G) f = F (G f)

FUNCTOR-DEF

Given two lenses f :A Q C and g :B Q D , the bifunctor mapping lens B f g :B A B Q
B C D can be defined in a similar way.

Using the laws from the previous section, we can polytypically prove, in the style
of Hinze (2000), that this definition trivially satisfies the functor laws:

F id = id FUNCTOR-ID

F f ◦ F g = F (f ◦ g) FUNCTOR-COMP

In the put direction, the functor mapping lens will first align the abstract and concrete
instances of the same F-structure, and then apply putf to each instance. We can
decompose this first alignment step as a polytypic functor zipping function fzipF,
defined as follows for polynomial functors:

fzipF : (A→ C)→ F A × F C → F (A × C)

fzip Id f = id

fzipC f = π1

fzip(F⊗G) f = (fzipF f × fzipG f) ◦ distp

fzip(F⊕G) f = (fzipF f OF (id M f) ◦ π1 + G (id M f) ◦ π1O fzipG f) ◦ dists

fzip(F�G) f = F (fzipG f) ◦ fzipF (G f)

fzip-DEF

As usual for lenses, fzip gives preference to the values from the abstract data type. In
the case of sums (similarly to the definition of the + lens), fzip is applied recursively
to the subfunctors F and G, and whenever the abstract and concrete values are “out
of sync”, the abstract value is preserved and a new concrete value is created from the

100 CHAPTER 4: GENERIC POINT-FREE LENSES

abstract value, by invoking the argument function. We can prove additional laws about
fzipF:

putF f = F putf ◦ fzipF createf fzip-PUT

F π1 ◦ fzipF f = π1 fzip-CANCEL

fzipF f ◦ (F g MF h) = F (g M h) fzip-SPLIT

fzipF f ◦ (F g × id) = F (g × id) ◦ fzipF (f ◦ g) fzip-NAT

The first shows that fzipF does indeed subsume the alignment behavior of putF f . The
second states that fzipF cannot modify the shape of the abstract type, nor the data
contained in it. The third states that zipping two “in sync” values can be trivially done
just by mapping. The fourth law formulates a kind of naturality law for fzipF modulo
its concrete value generation function. The proof of the second property can be found
in Appendix A.

4.2.2 Catamorphisms

Catamorphisms can be lifted to well-behaved lenses as follows:

∀f : F A Q A. ([f])F : µF Q A

get = ([getf])F
put = [[(fzipF create ◦ (putf ◦ (id × F get)M π2) ◦ (id × outF))]]

F

create = [[(createf)]]F

Notice how put , encoded as an anamorphism, still gives preference to abstract values
by using fzip, as depicted in the following diagram:

µF F µF
inFoo

A × µF

put

OO

id×outF
// A × F µF

id×F get
//
M

π2

((
A × F A

putf
// F A × F µF

fzipF create
// F (A × µF)

F put

OO

To prove that ([f]) is a well-behaved lens, we must prove that create terminates, i.e.,
is a recursive anamorphism. Assuming this condition, the proofs that put is always a
recursive anamorphism and that ([f]) is well-behaved are given in Section B.2.2. The

4.2 RECURSION PATTERNS AS LENSES 101

proofs of laws CREATEGET and PUTGET can be done using the uniqueness law for hy-
lomorphisms, and the proof of law GETPUT uses the fusion law for anamorphisms. We
can also prove that, whenever the create anamorphism is recursive, our catamorphism
lens also has uniqueness in the LENS category:

f = ([g])F ⇔ f ◦ inF = g ◦ F f ([·])-UNIQ

Proof. This proof can be factorized into the following three lemmas:

getf = get ([g])F
⇔ get f ◦inF

= getg◦F f

createf = create([g])F
⇔ create f ◦inF

= createg◦F f

putf = put ([g])F
⇔ put f ◦inF

= putg◦F f ⇐
getf = get ([g])F

createf = create([g])F

Again, the first follows directly from the unidirectional uniqueness. The proof of the
remaining is presented in Section B.2.2.

We can also derive the lens versions of the well-known fold laws from uniqueness
in LENS:

([inF])F = id ([·])-REFLEX

([g])F ◦ inF = g ◦ F ([g])F ([·])-CANCEL

f ◦ ([g])F = ([h])F ⇐ f ◦ g = h ◦ F f ([·])-FUSION

Examples The map and filter_left functions over lists from Section 2.1 are examples
of fold lenses for which it is not difficult to prove that the unfold for create (and thus
the unfold for put) is indeed recursive. Although the lifted map is defined exactly as its
unidirectional version, the definition of the filtering lens uses the left-biased version of
the either combinator:

filter_left : [A + B] Q [A]

filter_left = ([(inListA •O π2) ◦ coassocl ◦ (id + distl)])ListA+B
filter_left-DEF

We do not provide a default function to π2 because it would never be used by •O . By
examining this lens, we get the expected definitions for create and put . For better

102 CHAPTER 4: GENERIC POINT-FREE LENSES

understanding, we present them using Haskell syntax and explicit recursion (easily
derivable from the original point-free definition): The create corresponds to the Haskell
map Left function that maps a list into a list of left alternatives:

create :: [a]→ [Either a b]

create [] = []

create (x : xs) = Left x : create xs

The put function restores right alternatives from the original concrete list:

put :: ([a], [Either a b])→ [Either a b]

put (xs ,Right y : ys) = Right y : put (xs , ys)

put ([],) = []

put (x : xs , []) = Left x : put (xs , create xs)

put (x : xs ,Left y : ys) = Left x : put (xs , ys)

For an example of a catamorphism lens whose create function is not recursive, just
replace the left-biased either combinator by the right-biased version in the point-free
definition presented above. This change yields the following redefinition of create

(assuming b to be a default constant function that parameterizes π2) that is visibly not
terminating:

create :: [a]→ [Either a b]

create xs = Right b : create xs

We can also show that the mapping lens preserves its unidirectional properties, plus
a lifted law ruling its interaction with filtering. Remember that these laws are proved
directly at the lens level using algebraic laws in LENS:

map id = id map-FUNCTOR-ID

map f ◦map g = map (f ◦ g) map-FUNCTOR-COMP

([g])ListB ◦map f = ([g ◦ (id + f × id)])ListA ([·])-map-FUSION

filter_left ◦map (f + g)j ,k = map f ◦ filter_left filter_left-NAT

4.2.3 Anamorphisms

We can also “lensify” anamorphisms using the same ingredients. For the resulting lens
to be well-behaved, the coalgebra of the anamorphism must be recursive and itself a
well-behaved lens. The generic definition is as follows:

4.2 RECURSION PATTERNS AS LENSES 103

∀f : A Q G A. [[(f)]]G : A Q µG

get = [[(getf)]]G
put = [[[putf , fzipG create ◦ (outG × getf)M π2]]]

G⊗A

create = ([createf])G

Knowing that createf is an algebra with type G A→ A, create is trivially defined using
a catamorphism. The generic definition of put uses an accumulation technique (Pardo,
2003) implemented as a recursive hylomorphism: it proceeds inductively over the
abstract value, using the concrete value as an accumulator. The function that propagates
the accumulator to recursive calls is τ = fzipG create ◦ (outG × getf). The diagram
for this hylomorphism is the following:

µG × A

put

��

outG×getf //

M
π2

44
G µG × G A

fzipG create // G (µG × A) × A

G put×id
��

A G A × A
putf

oo

The anamorphism is well-behaved if get is a recursive anamorphism. In the above
definition, we defined put as a general hylomorphism instead of as an accumulation
because the function τ is not proper for accumulation (Pardo, 2003): in particular,
fzipF is not polymorphic as witnessed by the fzip-NAT law. Nevertheless, we can
prove that our put is always a recursive hylomorphism, and thus a terminating function
(Section B.2.3). The proof that this lens is well-behaved is given in Section B.2.3.
The proofs of laws CREATEGET and PUTGET can be done using the fusion law for
anamorphisms. The proof of law GETPUT uses hylomorphism fusion and uniqueness.
Likewise the fold, it is possible to prove that the bidirectional version of unfold also has
uniqueness (Section B.2.3) and the remaining derived laws:

f = [[(g)]]F ⇔ outF ◦ f = F f ◦ g [[(·)]]-UNIQ

[[(outF)]]F = id [[(·)]]-REFLEX

outF ◦ [[(g)]]F = F [[(g)]]F ◦ g [[(·)]]-CANCEL

[[(g)]]F ◦ f = [[(h)]]F ⇐ g ◦ f = F f ◦ h [[(·)]]-FUSION

Examples As an example, the zip function from Section 2.1 can be lifted to the
following lens:

104 CHAPTER 4: GENERIC POINT-FREE LENSES

zip : [A] × [B]→ [A × B]

zip = [[((!c◦ ! + distp) ◦ coassocl ◦ dists ◦ (outListA × outListB))]]ListA×B
zip-DEF

The coalgebra of the zip anamorphism lens is illustrated in the following diagram:

[A] × [B]

outListA×outListB
��

(1 + A × [A]) × (1 + B × [B])

coassocl◦distp
��

((1 × 1 + 1 × (B × [B])) + (A × [A]) × 1) + (A × [A]) × (B × [B])

(! c◦ ! +distp)

��
1 + (A × [A]) × (B × [B])

We define the constant c as L (L (1, 1)), meaning that the empty list is put back as two
empty source lists. From the diagram, other possible choices would be to append an
additional suffix to only one of the generated source lists, what would satisfy the lens
laws. The create induced by this lens is commonly known as the unzip function, a fold
that recursively splits a list of pairs into two lists:

create :: [(a, b)]→ ([a], [b])

create [] = ([], [])

create ((x , y) : t) = let (xs , ys) = create t in (x : xs , y : ys)

The put has a more intricate behavior: it only recovers elements of one of the original
concrete lists when the updated abstract list is smaller than it but with exactly the
same length of the other concrete list. This guarantees that zipping the result again
yields the same view. For example, put ([(1, 2), (3, 4)], ([4, 5], [6, 7, 8, 9])) returns
([1, 3], [2, 4, 8, 9]). Notice how the elements 8 and 9 of the bigger list are recovered:

put :: ([(a, b)], ([a], [b]))→ ([a], [b])

put ([], ([], r)) = ([], r)

put ([], (l , [])) = (l , [])

put ((x , y) : t , (: l , : r)) = let (xs , ys) = put (t , (l , r)) in (x : xs , y : ys)

put (l ,) = create l

4.2 RECURSION PATTERNS AS LENSES 105

Naturally, not all valid unidirectional laws in SET can be lifted to bidirectional laws
in LENS. A perhaps surprising example of a law that is not preserved at the lens level
is zip-NAT. For any two lenses f : A Q C and g : B Q D , consider the following lens
compositions corresponding to the left and right sides of the zip-NAT law, respectively:

zipmap = zip ◦ (map f ×map g)

mapzip = map (f × g) ◦ zip

In LENS, mapzip can be fused into the following lens anamorphism:

[[((! c◦ ! + ((f × g)× id) ◦ distp) ◦ coassocl ◦ dists ◦ (outListA × outListB))]]ListC×D

However, due to the side-conditions of the distl -NAT and +-COMP laws on lenses,
applying fusion to zipmap yields a slightly different lens anamorphism:

[[((! c◦ ! + ((f × g)× id) ◦ distp)
x ,y ◦ coassocl ◦ dists ◦ (outListA × outListB))]]ListC×D

Here, the x and y variables constitute more refined creator functions that resort to putf
and putg in some particular cases when only an A or a B element exists in the source
lists for a A × B pair in the view, instead of simply applying their creates.

Consider that we instantiate f = π1
’x’◦ ! and g = π1

’y’◦ ! . Then, executing
put zipmap ([(1, 2)], ([], [(2,’a’)])) returns ([(1,’x’)], [(2,’a’)]), where the inserted
number 1 has been assigned a default ’x’ value and the ’a’ value for the num-
ber 2 has been recovered from the original right list. On the other hand, if we run
putmapzip ([(1, 2)], ([], [(2,’a’)])) the result is ([(1,’x’)], [(2,’y’)]), where the
original ’a’ associated to 2 has been replaced with the default ’y’. In the first case,
put zip is applied to the view list and to the result of mapping the source pair into
([], [2]), followed by applying putmap f×map g . In the second case, the composition is
performed in a dual way: putmap (f×g) is applied to the view list and to the result of
zipping the source pair into ([], []) (since get zip returns a zipped list with size equal to
the smaller input list), followed by applying put zip . The practical difference in the latter
is that the original ’a’ is not restored, because get zip will remove the element (2,’a’)

from the right source list, meaning that putmap (f×g) will not recover such element.
As for catamorphisms, we can prove that our mapping lens also preserves fusion with

bidirectional anamorphisms (using its encoding as an unfold and unfold uniqueness):

map f ◦ [[(g)]]ListA = [[((id + f × id) ◦ g)]]ListB [[(·)]]-map-FUSION

106 CHAPTER 4: GENERIC POINT-FREE LENSES

4.2.4 Natural Transformations

A special case of the previous lenses occurs when the forward transformation is both
expressible as a catamorphism and an anamorphism, with the same natural transforma-
tion in the recursive gene building its corresponding algebra or coalgebra. Unlike the
previous cases, where we still have to check that the coalgebras are recursive, given a
natural lens η : F Q̇ G, both ([inG ◦ η])F and [[(η ◦ outF)]]G immediately determine well-
behaved lenses between µF and µG because termination is guaranteed for the respective
anamorphisms. In fact, for the lenses ([inG ◦ f])F and [[(f ◦ outF)]]G to be well-behaved, it
is sufficient that the gene f : F A Q G A is “almost a natural lens” (Section B.2.4). By
this, we mean that its forward transformation is a natural transformation getf : F →̇ G,
but its backward transformations putf : G A × F A→ F A and createf : F A→ G A

can be defined for the particular type A, with A = µG for folds and A = µF for unfolds.
There are several examples of these lenses. As seen before, the map function is a

well-known example that can be expressed either as a catamorphism from lists or an
anamorphism to lists. Likewise, we can lift generic mapping into a catamorphism or
an anamorphism lens and show that all type functors (as least fixed points of regular
binary functors) denote well-behaved lenses in LENS:

∀f : A→ C . T f : T A→ T C

T f = ([inB C ◦ B f id])B A MAP-DEF

T f = [[(B f id ◦ outB A)]]B C MAP-[[(·)]]-DEF

We can also show that our generic mapping lens preserves its unidirectional laws:

T id = id MAP-FUNCTOR-ID

T f ◦ T g = T (f ◦ g) MAP-FUNCTOR-COMP

([g])B C ◦ T f = ([g ◦ B f id])B A ([·])-MAP-FUSION

T f ◦ [[(g)]]B A = [[(B f id ◦ g)]]B C [[(·)]]-MAP-FUSION

This entails that we can also extend lens functor mapping to regular functors, and
therefore define catamorphism and anamorphism lenses over regular inductive data
types. For example, for a type functor T such that for every A we have T A = µ(B A),
we can define fzipT as a general zipping function that generalizes zip on lists1:

1Actually, zip merges two lists while dropping elements if one list is longer than the other, while

4.2 RECURSION PATTERNS AS LENSES 107

fzipF : (A→ C)→ F A × F C → F (A × C)

fzipT f = [[(bzipB f (T f) ◦ (outB A × outB C))]]B (A×C)

The proof that this anamorphism is recursive is similar to the proof that put [[(g)]]F
is

recursive. General bifunctor zipping can be defined for regular bifunctors as follows:

bzipB : (A→ C)→ (B → D)→ B A B × B C D → B (A × C) (B × D)

bzip Id f g = id

bzipPar f g = id

bzipC f g = π1

bzipF ⊗7G f g = (bzipF f g × bzipG f g) ◦ distp

bzip(F ⊕7G) f g = (bzipF f g OG (id M f) (id M g) ◦ π1

+ G (id M f) (id M g) ◦ π1O bzipG f g) ◦ dists

bzip(F �7B) f g = F (bzipB f g) ◦ fzipF (B f g)

bzip-DEF

Another lens that establishes a natural transformation between the base functors of
lists and naturals is length, that computes the length of a list:

lengthA : [A] Q Nat

lengthv = ([inNat ◦ (id + π2
v◦ !)])ListA = [[((id + π2

v◦ !) ◦ outListA)]]Nat length-DEF

The parameter v is the default value of type A to be inserted in the source list when the
target length increases. In this example, the gene of the catamorphism and anamorphism
is a natural lens id + π2

v : 1⊕A⊗ Id Q 1⊕ Id, since the constant function v does not
depend on the type of the functor argument.

Using ([·])-map-FUSION, the proof that computing the length of a list cancels
mapping can be done as follows

lengthv ◦map f

= { length-DEF; ([·])−map-FUSION}
([inNat ◦ (id + π2

v◦ !) ◦ (id + f × id)])ListA
= {+-FUNCTOR-COMP; π2 − NAT}
createf ◦ v◦ ! ◦ get id

= { ! − FUSION; definition of get }

fzip[] merges two lists such that the merged list has the same length as the left input list.

108 CHAPTER 4: GENERIC POINT-FREE LENSES

createf v◦ !

([inNat ◦ (id + π2
createf v◦ !)])ListA

= { length-DEF}
lengthcreatef v

and is captured by the following naturality equation:

lengthv ◦map f = lengthcreatef v length-NAT

4.2.5 Hylomorphisms

It is well known that most recursive functions can be encoded using hylomorphisms
over polynomial functors. Given that [[[·, ·]]]-SPLIT allows us to factorize a hylomorphism
into the composition of a catamorphism after an anamorphism, the range of recursive
functions that we can lift to well-behaved lenses is considerably enlarged. Of course,
the algebras and coalgebras of the hylomorphism must themselves be lenses and the
coalgebras must be recursive.

Examples Take as an example the natural number addition function plus from Sec-
tion 2.1, that can be lifted to a lens hylomorphism whose both algebra and recursive
coalgebra are lenses:

plus : Nat × Nat Q Nat

plus = [[[id O succ, (π2
! + id) ◦ distl ◦ (outNat × id)]]]Nat ⊕ Id plus -DEF

In order to constitute a well-behaved lens, the create and put functions should guarantee
that the sum of the generated pair of numbers equals the abstract value. The create

automatically derived by the techniques presented above simply creates a pair with the
abstract value and a Zero as the second element:

create :: Nat → (Nat ,Nat)

create n = (n,Zero)

As usual, the induced put function is a bit more tricky: if the abstract value is greater
than the first element of the concrete pair, that element is preserved and the second
element becomes the difference between both; if the abstract value is smaller, it is
paired with zero likewise create:

4.2 RECURSION PATTERNS AS LENSES 109

put :: (Nat , (Nat ,Nat))→ (Nat ,Nat)

put (Zero,) = (Zero,Zero)

put (n, (Zero,)) = (Zero, n)

put (Succ n, (Succ m, o)) = let (a, b) = put (n, (m, o)) in (Succ a, b)

A similar lens is binary list concatenation, defined as follows:

cat : [A] × [A] Q [A]

cat = [[[id O cons , (π2
! + assocr) ◦ distl ◦ (outListA × id)]]][A]⊕A⊗ Id cat -DEF

Here, the intermediate functor [A]⊕A⊗ Id is the base functor NeListA of the inductive
type of lists appended with a list suffix at the rear, defined in Haskell as follows:

data NeList a = NeNil [a] | NeCons a (NeList a)

We can also generalize binary addition and concatenation to n-ary lenses over lists using
catamorphisms:

sum : [Nat] Q Nat

sum = ([(zero O id) ◦ (id + plus)])ListNat
sum-DEF

concat : [[A]] Q [A]

concat = ([(nil O id) ◦ (id + cat)])List[A]
concat -DEF

These binary and n-ary lens combinators enjoy interesting laws, such as the following
naturality laws modulo map and interaction laws with length:

map f ◦ cat = cat ◦ (map f ×map f) cat-NAT

map f ◦ concat = concat ◦map (map f) concat-NAT

lengthv ◦ cat = plus ◦ (lengthv × lengthv) length-CAT

lengthv ◦ concat = sum ◦map lengthv length-CONCAT

An example of a lens over a regular type is the following function that flattens a
n-ary leaf tree into a list:

lflatten : LTree A→ [A]

lflatten = ([(wrap O id) ◦ (id + concat)])LTreeA lflatten-DEF

110 CHAPTER 4: GENERIC POINT-FREE LENSES

Similarly to other jointly-surjective lenses, wrap O id : A + [A] Q [A] can be defined
by unwrapping the input list and using lens combinators on sums. The associated
naturality law for lflatten , modulo type functor mapping, is also valid at the lens level:

map f ◦ lflatten = lflatten ◦ LTree f lflatten -NAT

4.3 Summary

We have shown how to lift most of the standard point-free combinators and recursion
patterns to total well-behaved lenses, enabling the definition of complex generic lenses
over inductive data types. Additionally, we have identified precise termination condi-
tions to verify in order to guarantee that recursive lenses like folds and unfolds constitute
well-behaved lenses. By putting the emphasis on totality, while keeping a decidable
type system that is implemented in functional languages like Haskell, the counterpart is
that we have a more limited set of well-behaved lenses than other approaches (Foster
et al., 2007; Mu et al., 2004; Matsuda et al., 2007; Voigtländer, 2009), namely not all
point-free combinators denote well-behaved lenses.

The point-free style being so intertwined with algebraic calculation, we have studied
the algebraic laws preserved by our lifting to lenses and proposed an equational calculus
to reason directly about lenses defined in our point-free language. Apart from few
side-conditions to control the non-determinism of the backward transformations, this
calculus allows us to hide the complex backward synchronization behavior and perform
conventional proofs at the lens level, by calculating with lenses using only their forward
point-free specification.

Unfortunately, for recursive lenses defined using our generic recursion patterns,
the user still has to prove that the corresponding coalgebras are recursive. While for
anamorphisms this problem is more controlled, since only the termination of the forward
transformation (whose syntax matches that of the lens specification) must be proved
independently of the backward transformations, for catamorphisms the dual create

backward transformation must be proved to be a recursive anamorphism. Nevertheless,
we have identified an interesting class of recursive lenses for which termination proofs
can be discharged, namely if a lens can be specified either as a catamorphism or an
anamorphism.

Chapter 5

Generic Point-free Delta Lenses

Our point-free lens language from the previous chapter is state-based: a lens S Q V en-
compasses a forward transformation get : S → V that translates a modified source into
a new view, and two backward transformations create : V → S and put : V × S → S

that translate a modified view (with optional knowledge of the original source) into a
consistently modified source.

As discussed in Chapter 3, the above state-based formulation, where updates are rep-
resented simply by their post-states, underpins many bidirectional languages. Although
very flexible, this formulation provides little knowledge to the put function, whose
behavior can be largely non-deterministic due to the existence of many possible source
translations for a particular view update. For that reason, put must somehow align

models to recover a more informative high-level description estimating the performed
view update (a delta describing the relation between elements of the modified and
original view), to be used to guide the propagation of the view modifications to the
source model. In fact, a large part of the non-determinism in the design space of a
state-based bidirectional language concerns precisely the choice of a suitable alignment
strategy.

Like our language from Chapter 4, some state-based languages (Foster et al., 2007;
Matsuda et al., 2007) do not consider this alignment step and end up aligning values
positionally, agnostically to the actual view update, i.e., elements of the view are
always matched with elements of the source at the same positions, even when they
are rearranged by an update. This suffices for in-place updates that only modify data
locally without affecting their order, but produces unsatisfactory results for many other
examples. Other state-based languages (Xiong et al., 2007; Bohannon et al., 2008) go

111

112 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

slightly further and align values by keys rather than by positions. Nevertheless, this
specific alignment strategy is likewise fixed in the language and might not be suitable
for values without natural keys (or for translating updates that modify keys themselves).

On the other hand, some operation-based bidirectional languages (Mu et al., 2004;
Hidaka et al., 2010; Hofmann et al., 2012) avoid this potential alignment mismatch
by relying on an alternative formulation, where the backward transformation receives
the exact low-level sequence of edit operations. The drawback of this approach is that
put only considers a fixed update language (typically allowing just add, delete, and
move operations), defined over very specific types, making it harder to integrate such
languages in a legacy application that does not record such edits.

In-between both worlds is the abstract delta-based framework proposed by Diskin
et al. (2011a) that encompasses an explicit alignment operation for computing view
deltas, and where put is a delta-based transformation that propagates view deltas to
source deltas. Matching lenses (Barbosa et al., 2010) are the first bidirectional language
that we are aware of promoting this separation principle: they decompose strings into a
rigid structure or shape, a container with “holes” denoting data placeholders, and a list
of data elements that populate such shape. This enables elements to be freely rearranged
according to the delta information. Users can then specify an alignment strategy that
computes the view update delta as a correspondence between element positions.

The main limitation of matching lens combinators is that they are shape preserving:
when recast in the context of general user-defined data types, their expressivity amounts
to a mapping transformation T l : T A Q T B over a polymorphic data type, with
l : A Q B being a regular state-based lens operating on its elements. In this setting,
lenses are sensitive to data modifications (on data values of type A and B) but not
to shape modifications (on the T shape component of values) and the behavior of
the backward transformation is rather simple: it just copies the shape of the view,
overlapping the original source shape, and realigns elements using their explicitly
computed delta correspondences rather than by their positions.

Consider, as an example, an XML document representing a genealogical tree of
persons conforming to the XML Schema from Figure 5.1

<tree>
<person name="Peter" birth="1981"/>
<tree>
<person name="Joseph" birth="1955"/>
<tree>
<person name="Luigi" birth="1920"/>

113

<tree/><tree/>
</tree>
<tree>
<person name="Margaret" birth="1923"/>
<tree/><tree/>
</tree>

</tree>
<tree>
<person name="Mary" birth="1956"/>
<tree/><tree/>

</tree>
</tree>

from which we can compute a sequence of names of left (male) ascendants in the tree:

<males>
<male name="Peter"</male>
<male name="Joseph"</male>
<male name="Luigi"</male>

</males>

By encoding the recursive XML Schema from Figure 5.1 in Haskell as a binary tree of
persons, we can write the above transformation using the language of point-free lenses
from Chapter 4:

data Tree a = Empty | Node a (Tree a) (Tree a)

data Males = Males [Male]

data Person = Person Name Birth type Name = String

data Male = Male Name type Birth = Int

fathernames : Tree Person Q Males

fathernames = inMales ◦ names ◦ fatherline

names : [Person] Q [Male]

names = map (inMale ◦ π1
2012◦ ! ◦ outPerson)

fatherline : Tree Person Q [Person] lspine : Tree A Q [A]

fatherline = lspine lspine = ([inListA ◦ (id + id × π1
[]◦ !)])TreeA

This transformation is defined in two steps: first compute the left ascendants with
fatherline by calculating the left spine of the tree (using a default empty list of right
ascendants for new elements in the backward direction), and then select only their names
using the names mapping that converts each person element into a male element by
forgetting birth years (using 2012 as the default birth year for created persons in the
backward direction). By porting the matching lens approach to this domain, we could

114 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

<xs:schema>
<xs:element name="tree">
<xs:complexType>
<xs:sequence minOccurs="0" maxOccurs="1">
<xs:element name="person" type="Person"/>
<xs:element ref="tree"/>
<xs:element ref="tree"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:complexType name="Person">
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="birth" type="xs:short"/>
</xs:complexType>

</xs:schema>

Figure 5.1: XML Schema modeling a family genealogical tree.

easily replace the map list mapping lens with a suitable alignment-aware combinator.
Unfortunately, lspine does not fit the mapping corset imposed by the matching lens
framework, since it reshapes the source tree into a list. Leaving lspine as a standard
state-based (positional) lens would produce less than optimal results. For instance, if
we insert a new male named John at the head of the view list, and use a “best match”
alignment strategy (Barbosa et al., 2010) to infer a view delta (relating every male
element in the updated view but John to the respective person element in the original
view), put would return the following updated source XML tree:

<tree>
<person name="John" birth="2012"/>
<tree>
<person name="Peter" birth="1981"/>
<tree>
<person name="Joseph" birth="1955"/>
<tree>
<person name="Luigi" birth="1920"/>
<tree/><tree/>
</tree>
<tree/>

</tree>
<tree>
<person name="Margaret" birth="1923"/>
<tree/><tree/>

</tree>
</tree>
<tree>
<person name="Mary" birth="1956"/>
<tree/><tree/>

115

</tree>
</tree>

Although the order of males in the view changes, the birth years of existing people
are retrieved correctly due to the improved behavior of mapping modulo deltas, but
the positional shape behavior of lspine makes Mary an incorrect parent of John and
Margaret an incorrect parent of Peter. With the extra delta information at hand
we could have done better though: lspine could recognize John as a new male and
propagate his insertion to the head of the source tree without affecting the mother
relationships of the existing persons in the source:

<tree>
<person name="John" birth="2012"/>
<tree>
<person name="Peter" birth="1981"/>
<tree>
<person name="Joseph" birth="1955"/>
<tree>
<person name="Luigi" birth="1920"/>
<tree/><tree/>

</tree>
<tree>
<person name="Margaret" birth="1923"/>
<tree/><tree/>

</tree>
</tree>
<tree>
<person name="Mary" birth="1956"/>
<tree/><tree/>
</tree>

</tree>
<tree/>

</tree>

It is easy to justify that this behavior on shapes induces a smaller change and is thus
more predictable.

As another example, imagine that we have the same persons but organized in a list
sorted by age, discriminating males and females, according to the schema from Fig-
ure 5.2

<people>
<male name="Peter" birth="1981">
<female name="Mary" birth="1956"/>
<male name="Joseph" birth="1955"/>
<female name="Margaret" birth="1923"/>
<male name="Luigi" birth="1920"/>

</people>

116 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

<xs:schema>
<xs:element name="people">
<xs:complexType>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="male" type="Person"/>
<xs:element name="female" type="Person"/>
</xs:choice>

</xs:complexType>
</xs:element>
<xs:complexType name="Person">
<xs:attribute name="name" type="xs:string"/>
<xs:attribute name="birth" type="xs:short"/>
</xs:complexType>

</xs:schema>

Figure 5.2: XML Schema modeling a list of males and females.

and that we want to select only the females from the list:

<females>
<female name="Mary" birth="1956"/>
<female name="Margaret" birth="1923"/>

</females>

In Haskell, the shape of the schema from Figure 5.2 can be encoded as a list of
optionals, whose data elements are the male or female elements in the source. We can
select only the females according to the following transformation:

data People = People (ListOpt Male Female)

data Females = Females [Female]

data ListOpt a b = NilOpt | ConsL a (ListOpt a b) | ConsR b (ListOpt a b)

data Male = Male Name Birth data Female = Female Name Birth

females : People Q Females

females = inFemales ◦ filter_right ◦ outPeople

filter_right : ListOpt A B Q [B]

filter_right = ([(inListB •O π2) ◦ coassocl ◦ (id + coswap)])ListOptA B

Again, the specification of filter_right is not a mapping. If we consider that it behaves
positionally, inserting a new female Jane at the head of the sorted view sequence and
deleting the rear female Margaret (while preserving the delta correspondences for
the other persons) would produce the following unsorted source:

<people>
<male name="Peter" birth="1981">

5.1 DELTAS OVER POLYMORPHIC INDUCTIVE TYPES 117

<female name="Jane" birth="2012">
<male name="Joseph" birth="1955"/>
<female name="Mary" birth="1956"/>
<male name="Luigi" birth="1920"/>

</people>

A better solution would be to use the deltas to recognize the inserted and deleted
elements, and propagate the updates to the same relative positions, what would induce
a smaller source update that (for this case) would leave the source list sorted by age:

<people>
<female name="Jane" birth="2012">
<male name="Peter" birth="1981">
<female name="Mary" birth="1956"/>
<male name="Joseph" birth="1955"/>
<female name="Luigi" birth="1920"/>

</people>

The lesson to learn is that like a positional data alignment (the matching of data
elements) is only reasonable for in-place updates, a positional behavior on shapes
(that ignores the shapes of the original source and overrides it with the shape of the
updated view) is innate for mapping scenarios but again ineffective for shape-changing
transformations that restructure source shapes into different target shapes and for which
simple overriding for put is not possible. In this chapter, we focus on the treatment and
propagation of generic deltas (independently of the more particular heuristic techniques
that can be used to infer this information for specific application scenarios), identify the
new problem of shape alignment (the matching of new and old shapes) and propose to
answer it with the development of a delta lens language, whose inhabitants are lenses
with an explicit notion of shape and data that can perform both data and shape alignment.
Our language is designed in such a way that many lens programs over arbitrary types
written in our generic state-based lens language from Chapter 4 can be lifted to generic
delta lens programs over the corresponding shapes without significant effort by users.

5.1 Deltas over Polymorphic Inductive Types

Higher-order functors The central requirement for this chapter is the existence of
types that have an explicit notion of shape and data. In functional programming, these
are known as polymorphic data types like the trees and lists from our examples. As
mentioned in Chapter 2, a polymorphic inductive data type T A can be defined as the
least fixed point T A = µ(B A) of a partially applied bifunctor B : SET → SET → SET,

118 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

with outB A : µ(B A)→ B A (T A) and inB A : B A (T A)→ µ(B A). The applica-
tion of outB A to a type results in a one-level unfolding to a sum-of-products repre-
sentation capable of being processed with point-free combinators. However, in this
chapter we want to lift our point-free combinators so that they work not over “flattened”
sum-of-products types but over explicit shapes, i.e., we want to compute an explicit
sum-of-products functor representation F A that models the shape of B A (T A).

For this purpose, we will use an alternative formulation and characterize the
polymorphic type constructor T as a fixed point T = µF of a higher-order functor
F : (SET → SET)→ (SET → SET), a functor over functor categories where objects
are functors and arrows are natural transformations. This way, we have the applied
fixed point T A = µF A and initial algebras and final coalgebras are the natural iso-
morphisms outF : T →̇ F T and inF : F T →̇ T . Although this formulation is more
expressive, namely enabling the encoding of non-regular nested data types (Johann and
Ghani, 2007) by admitting higher-order functor composition, we restrict the syntax of
higher-order functors to the following regular family equivalent to the formulation as
regular bifunctors:

F = A | Par | Id | F �F | F �F | F�F

In this language, A returns the constant type A, Par denotes the type parameter, Id
denotes recursive invocation and � and � represent higher-order sums and products.
Note that we do not support higher-order functor composition as long as our composition
� applies a unary functor to a higher order functor. The functor to the left side of a
composition can be a polymorphic inductive data type, as a fixed point of a higher-order
regular functor. For example, the type functors of lists, trees and optional lists (by fixing
the type of the first polymorphic argument) can be represented as follows:

[] = µList List = 1�Par � Id
Tree = µTree Tree = 1�Par � (Id � Id)

ListOpt A = µListOpt
A

ListOpt
A

= 1� (A� Id �Par � Id)

A regular higher-order functor F can always be reduced to a binary functor B

such that B A (F A) ∼= F F A holds, for every unary functor F and type A1. The
application of a regular higher-order functor F to a unary functor F yields a unary
functor F F, according to the following specialization equations:

1This restriction allows the definition of generic functions over higher-order functors that are not
natural transformations, as detailed later in Section 5.4.

5.1 DELTAS OVER POLYMORPHIC INDUCTIVE TYPES 119

A F = A

Par F = Id

Id F = F

(F �G) F = F F⊕G F

(F �G) F = F F⊗G F

(G�G) F = G�G F

To emphasize the shape, we will often denote a transformation f : F A → G B

between functors F and G applied to data elements of type A and B (i.e., a function
with a notion of domain and target shapes) by f :FA → GB , with the types as subscripts.

Dependent Types In this chapter, we will resort to a dependent type notation to
characterize precisely the positions of elements in a shape functor. In non-dependently
typed languages such as Haskell, universal type quantification is used to express poly-
morphism. For example, we can write the identify function id : ∀A. A → A. This
quantification over types (objects in a category such as SET) can be often made implicit
by writing simply id : A→ A.

A dependent type is a type that depends on values. To elegantly introduce such
dependencies, dependently-typed systems also permit quantification over values, with
the types being special cases of values belonging to the sort of all types SET. The
dependent function space ∀a : A. B a characterizes functions that, given a value a : A,
return values of the dependent type B a. For example, considering that a dependent
type Vec A n models an n-sized vector of elements of type A, this allows us to write
∀n : Nat . Vec A n as the type of all functions that take a natural number and return a
vector of precisely that size. Again using an explicit quantification, the signature for the
identity function becomes id : ∀A : SET, a : A. A. When B does not depend on a , as is
the case of id , this degenerates into the non-dependent function space A→ B .

The dependent cartesian product Σa : A. B a models the type of dependent pairs
where the type of the second component depends on the first component. For instance,
vectors of arbitrary length could be represented by a dependent pair Σn : Nat . Vec A n .
Again, when B does not depend on a, the dependent cartesian product models the
normal cartesian product A × B .

To simplify the presentation, we will often mark some arguments of a dependent
function space as implicit using curly braces in signatures like f : ∀{a : A}. B a,

120 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

as found in dependently typed languages such as Agda (Norell, 2009). To provide
an implicit argument explicitly, we assume implicit function application f {a }. In
principle, these parameters can be omitted and their value inferred from the context2.

Positions Polymorphic inductive data types can also be seen as instances of container

types (Abbott et al., 2005). A container type S .P consists of a type of shapes S

together with a family P of position types indexed by values of type S . The extension
of a container is a functor JS .PK, that when applied to a type A (the type of the
data) yields the dependent product Σs : S . (P s → A). A value of type JS .PK A

is thus a pair (s , f), where s : S is a shape and f : P s → A is a total function from
positions to data elements. A polymorphic data type T A is isomorphic to the extension
JT 1 .PK A, where the dependent type P of positions can be inductively defined over
functor representations (Abbott et al., 2005) and polymorphically for the type A of data
elements. For each value v : T A, we define:

P : ∀{T : SET → SET}, v : T A. SET

P { Id} a = 1 -- unit type
P {C } c = 0 -- empty type
P {F⊕G} (L a) = P {F} a -- left branches
P {F⊕G} (R b) = P {G} b -- right branches
P {F⊗G} (a, b) = P {F} a + P {G} b -- left or right components
P {µF } a = P {F µF } (out a) -- recursive unfolding

The type of positions for P {F�G} a is handled by unrolling the composition F�G

according to the following equations, whereF �G applies a functor G to the parameters
of a higher-order functor F :

Id�G = G Id �G = Id
C �G = C C �G = C

(F⊕G)�H = (F�H)⊕ (G�H) (F �G)�G = (F �G)� (G�G)

(F⊗G)�H = (F�H)⊗ (G�H) (F �G)�G = (F �G)� (G�G)

(F�G)�H = F� (G�H) (F�G)�G = F� (G�G)

µF �G = µ(F �G) Par �G = G�Par
2Throughout this chapter, we will often write implicit parameters mostly for presentation reasons.

Although we believe that some of these implicit parameters may be actually inferable by an Agda
implementation, we will only implement our concepts in the Haskell non-dependently typed language
(Chapter 6), and we do not claim that all such parameters could be inferred by a dependently typed
implementation.

5.1 DELTAS OVER POLYMORPHIC INDUCTIVE TYPES 121

Notice that the type of positions is polymorphic over the type of data elements and
the shape of a type T A is given by T 1. Therefore, the type of positions for a value of
type T A is the same as the type of positions for its shape of type T 1. Intuitively, they
both have the same set of positions and the same number of placeholders.

For trees and lists, the above definition produces the following types of positions:

P {Tree } Empty = 0

P {Tree } (Node x l r) = 1 + P {Tree } l + P {Tree } r

P { []} [] = 0

P { []} (x : t) = 1 + P { []} t

P {ListOpt A} NilOpt = 0

P {ListOpt A} (ConsL x t) = P {ListOpt A} t

P {ListOpt A} (ConsR y t) = 1 + P {ListOpt A} t

For the ListOpt type, we consider only positions on its second polymorphic argument,
by fixing its first argument to the type A. The idea is that the (dependent) type of
positions P is a tree resembling the structure of the value on which it depends, but
considering only polymorphic elements. This tree representation ensures that each
placeholder in the shape of a value is referenced by an unique position. For example,
for a list value with length n , the type of position is equivalent to the natural number n

denoting the exact number of elements in the list.
Inspired by shapely types (Jay, 1995) notation, the isomorphism between a type

T A and its container JT 1 .PK A will be witnessed by three functions

shape : T A→ T 1

data : ∀v : T A. (P v → A)

recover : JT 1 .PK A→ T A

where shape extracts the shape of a shapely type, data extracts a total function from
positions to data elements, and recover rebuilds a data value from a shape and an index
of data elements. For lists, the shape [1] is isomorphic to the type Nat of naturals, and
thus we have shape l = length l , P l = {0, . . , length l−1}, and data l = λn → l !!n ,
where !! : [A]→ Nat → A is a function that returns the element at the n-th position of
a list. Forming an isomorphism, these functions satisfy the following two equations:

recover ◦ (shape M data) = id recover -ISO

(shape M data) ◦ recover = id shape-data-ISO

122 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

In the standard shapely types formulation (Jay, 1995), the shape-data-ISO law is only
an inclusion because recover is a partial function that may fail if the number of argument
data values does not match the argument shape. We are able to specify it as an equality
due to the added precision provided by the dependent types.

Deltas In our work, we model a delta b ∆ a between a target value b and a source
value a as a correspondence relation P b → P a (an arrow in the REL category) from
positions in the target value to positions in the source value. Matching lenses (Barbosa
et al., 2010) capture the same concept but assume that a shape has a list of positions,
while we formulate it in a type-safe manner with a dependent type. We will also
distinguish vertical deltas that model updates between values of the same type, from
horizontal deltas that establish correspondences between values of different (view and
source) types (Diskin, 2011). In our setting, this correspondence relation must be
simple, i.e., each target position has non-ambiguous provenance and is related to at
most one source position. In practice, this assumption does not seriously restrict the
kind of supported correspondences. For example, when constructing views every view
element must necessarily be uniquely related to a source element and when performing
an update we can still insert, delete and duplicate elements. The only implication is that
elements must be considered atomically, this is, we can not express for example that an
element in the view is the combination of two elements in the source.

To describe deltas we will use the point-free relational language from Section 2.2.
To preserve simplicity, some combinators will only be used in controlled situations. For
example, if a relation R is injective and simple (like get∆ presented further on), then
R◦ is also simple. By resorting to this language, we can reason about deltas using the
powerful algebraic laws ruling its combinators (Section A.2).

5.2 Laying Down Delta Lenses

In the delta-based framework of Diskin et al. (2011a), updates are encoded as triples
(s , u, s ′) where s , s ′ are the source and target values and u is a delta between elements
of s and s ′, and lens transformations are arrows that simultaneously translate states
and deltas. In our presentation, we choose to separate the state-based and delta-based
components of the lenses. This, together with the dependent type notation, leads to a
simpler formulation of delta lenses for polymorphic inductive data types: operationally,

5.2 LAYING DOWN DELTA LENSES 123

the delta-based components required for defining composite delta lenses can be ignored
by end users, that are only required to understand the more intuitive interface of the state-
based components. Also, the use of a dependent type notation removes redundancies
and helps clarifying some subtleties in the delta lens formulation, that are specified in
the form of incidence relations by (Diskin et al., 2011a). As a consequence, delta lens
transformations are no longer partially defined modulo additional properties entailing
preservation of the incidence between values and deltas. We adapt the definition
of Diskin et al. (2011a) for our domain of polymorphic inductive data types as follows:

Definition 6 (Delta lens). A delta lens l , denoted by l : S A Q▲ V B , is a bidirectional

transformation that comprises four total functions:

get : S A→ V B

get
▲

: ∀{s ′ : S A, s : S A}. s ′∆ s → get s ′∆ get s

put : ∀(v , s) : V B × S A. v ∆ get s → S A

put
▲

: ∀{(v , s) : V B × S A}, d : v ∆ get s . put (v , s) d ∆ s

The delta lens is called well-behaved iff it satisfies the following properties:

get (put (v , s) d) = v PUTGET

put (get s , s) id = s GETPUT

get
▲

(put
▲

d) = d PUTGETN

put
▲

id = id PUTIDN

In the above definition, the state-based component of the delta lens is given by
the functions get , that computes a view of a source value, and put , that takes a pair
containing a modified view and an original source, together with a delta from the
modified view to the original view, and returns a new modified source. The delta-based
function get

▲
translates a source delta into a delta between views produced by get , and

put
▲

receives a view delta and computes a delta from the new source produced by put

to the original source. Properties PUTGET and GETPUT are the traditional state-based
ones: view-to-view round-trips preserve view modifications; and put must preserve
the original source for identity updates. PUTGETN and PUTIDN denote similar laws on
deltas: view-to-view round-trips preserve view updates; and put

▲
must preserve identity

updates. It is easy to see that our formulation is equivalent to the well-behaved delta
lenses from (Diskin et al., 2011a). For example, their GETID property is a consequence
of our axiomatization.

Abstractly, delta lenses are simple to understand since they transform updates
(vertical deltas) into updates. However, to propagate view updates, put

▲
must somehow

124 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

recover a horizontal delta between the original view and the original source that provides
the required traceability information to calculate a new source update (Hidaka et al.,
2010).

From an implementation perspective, an alternative formulation of delta lenses
that compute and process these horizontal deltas explicitly is preferable (instead of,
for instance, having to infer them at run-time for specific executions as conducted
in (Voigtländer, 2009)). As such, we propose an alternative framework of horizontal

delta lenses, whose delta-based functions explicitly return the horizontal deltas induced
by the state-based transformations. Moreover, it is convenient to include in this less
abstract framework a create function (Bohannon et al., 2008) that reconstructs a default
source value from a view value for situations where the original source is not available.

Definition 7 (Horizontal delta lens). A horizontal delta lens l , denoted by l : S A Q∆

V B , comprises three total functions get : S A → V B , put : ∀(v , s) : V B ×
S A. v ∆ get s → S A, and create : V B → S A, plus three horizontal deltas:

get∆ : ∀{s : S A}. get s ∆ s

put∆ : ∀{(v , s) : V B × S A}, d : v ∆ get s . put (v , s) d ∆ (v , s)

create∆ : ∀{v : V B }. create v ∆ v

It is called well-behaved iff it satisfies PUTGET, GETPUT, a third state-based law

get (create v) = v CREATEGET

and the following delta-based properties:

create∆ ◦ get∆ = id CREATEGETM

put∆ d ◦ get∆ = i1 PUTGETM

(get∆Oid) ◦ put∆ id = id GETPUTM

The horizontal deltas are complements of the state-based functions and explicitly
record the traceability of their execution: get∆ denotes a delta from the original view
to the original source and vice-versa for create∆, while put∆ is a delta from the
new source to the input view-source pair. In practice, this duality will allow us to
derive by construction the deltas of most of our lens combinators by reversing their
behaviors on states3. The delta-based laws also dualize the state-based laws, with

3Since put is a dependent function, it first receives a view-source pair, with which the argument

5.2 LAYING DOWN DELTA LENSES 125

the insight that the type of positions of a view-source pair is the disjoint sum of the
positions in the view and in the source. For example, while the CREATEGET law states
that abstracting a created source shall yield the original view, the CREATEGETM law
evidences that the corresponding delta on views shall also preserve all view elements
(identity). The PUTGETM law states the same for put : abstracting a source generated
by put shall preserve all (left) view elements in the original view-source pair (hence the
i1 delta). GETPUTM entails that abstracting a source and immediately putting it back
(taking an identity delta on views) yields an identity delta on sources.

From these delta-based laws, we can also derive that: get∆ is a total injective
function that maps each position in the view to a distinct position in the source
(since PUTGETM and CREATEGETM entail that get∆ is a total and injective rela-
tion and GETPUTM entails that get∆ is simple); create∆ is a partial surjective func-
tion that maps some positions in the source to all positions in the view (as entailed
by CREATEGETM); and put∆ d is a partial function such that i1◦ ◦ put∆ d is surjective
(from PUTGETM), meaning that it relates all view positions to new source positions.

We now show how horizontal delta lenses can be used to implement the more
abstract framework of delta lenses:

Definition 8. A horizontal delta lens l : S A Q∆ V B can be lifted to a delta lens

l▲ : S A Q▲ V B with the same state-based get and put functions and the delta-based

transformations get
▲

d = get◦∆ ◦ d ◦ get∆ and put
▲

d = (get∆ ◦ dOid) ◦ put∆ d .

This definition is illustrated in Figure 5.3. Normal arrows denote state-based
functions and dotted arrows denote deltas between the types of positions of particular
values. Given a source update dS and a view update dV , the get

▲
dS (Figure 5.3a) and

put
▲

dV (Figure 5.3b) deltas of the resulting delta lens can be calculated by composing
the dotted arrows.

Theorem 8. If a horizontal delta lens l : S A Q∆ V B is well-behaved, then the delta

lens l▲ is well-behaved.

Proof. The state-based laws dismiss proof obligations. The PUTGETN law is proven
using PUTGETM and by knowing that get◦∆ ◦ get∆ = id , since get∆ is a total and

delta must be consistent, and so we write expressions of the form put (v , s) dV . Because this means
that we must know the concrete view and source values before specifying the delta, in this chapter we
will present the state-based functions of our horizontal delta lens combinators in the point-wise style.
Anyway, to emphasize the duality between the (point-wise) state-based and the (point-free) delta-based
functions, in diagrams we will sometimes abuse the notation and write put dV (v , s), so that put dV
can be composed in the point-free style.

126 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

S A
get

// V B
get∆oo

S A
get //

dS

OO

V B
get∆

oo

get
▲

dS

OO

(a) Forward delta-level transformation

S A
get

//

i2

%%

V B
get∆oo

S A

put
▲

dV

OO

put∆ dV

// V B × S A
put dVoo π1 //

π2

ee

V B
i1
oo

dV

OO

(b) Backward delta-level transformation

Figure 5.3: Construction of a delta lens from a horizontal delta lens.

injective relation. The PUTIDN law follows directly from GETPUTM. The formal proofs
are written in Section B.3.1.

A horizontal delta lens l : S A Q▲ V B can be embedded into a state-based lens
blcdiff : S A Q V B that receives a differencing function diff , estimating a delta from
the pre- and post-states of a view update, but forgets shape and alignment for further
compositions:

∀(diff : ∀v ′ : V B , v : V B . v ′∆ v), l : SA Q∆ VB . blcdiff : S A Q V B

get = get l

create = create l

put (v , s) = put l dV (v , s)

where dV = diff (v , get s)

As long as the resulting lens is state-based, this combinator ignores the delta-based
functions. Since put l demands a delta between the modified view and the original view,
embedding uses the additional differencing function to estimate such delta. Similar
constructions have already been studied for delta lenses by Diskin et al. (2011a) and put
to practice in matching lenses by Barbosa et al. (2010). The lens blcdiff is well-behaved
if diff is well-behaved, i.e., if it returns the identity update given the same states,
according to the following law:

diff (v , v) = id DIFF-ID

5.3 COMBINATORS FOR HORIZONTAL DELTA LENSES 127

5.3 Combinators for Horizontal Delta Lenses

We have developed a suitable framework for implementing delta lenses over inductive
types. In this section, we introduce some primitive horizontal delta lens combina-
tors for lifting state-based lenses into delta lenses, supporting in particular mapping
and reshaping transformations, and define liftings of our point-free lens combinators
from Chapter 4 to horizontal delta lens combinators that can be used to define more
complex transformations in a compositional way.

5.3.1 Primitive Combinators

Lifting There are two trivial ways to lift a regular state-based lens into an horizontal
delta lens: the constant lifting l applies the lens l to constant shapes with no elements
(note that the types of elements can be arbitrary, since they are never populated); and the
identity lifting Id l applies the lens l to single elements with identical shapes. These two
combinators have exactly the same behavior on states, but process deltas differently:

∀l : S Q V . l : S A Q∆ V B

get s = get l s get∆ = ⊥
put (v , s) d = put l (v , s) put∆ d = ⊥
create v = create l v create∆ = ⊥

∀l : A Q B . Id l : IdA Q∆ IdB

get a = get l a get∆ = id

put (b, a) d = put l (b, a) put∆ d = i1

create b = create l b create∆ = id

Mapping The above primitive combinators can be generalized to more complex
shapes that may contain multiple elements. For example, identity lifting can be general-
ized to a mapping horizontal delta lens (for an arbitrary functor T) as follows:

∀l : A Q B . T l : TA Q∆ TB

get s = T get l s get∆ = id

put (v , s) d = recover (shape v , dput ∪ dcreate) put∆ d = i1

where dput = put l ◦ (data vMdata s ◦ d)

dcreate = create l ◦ data v ◦ (id − δdput)

create v = T create l v create∆ = id

Like the state-based functor mapping lens from Chapter 4, the get and create functions
simply map the components of the basic lens over the data elements, producing trivial

128 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

deltas (all positions are preserved). Instead of aligning elements by their positions (as
done by fzipT create l : T B × T A→ T (A × B) for state-based functor mapping),
put now performs global data alignment based on the view update delta: for each view
element ve , if it relates to a source element se , put (ve , se) is applied; otherwise, a
default source is generated with create l ve . In the definition of put , dput ∪ dcreate

builds a (total) function from view positions to source elements as a correspondence
relation P v → A, to pass as an argument to recover. The relation dput matches
view elements with existing source elements, and dcreate creates fresh source elements
for the remaining unmatched view elements. Since dput and dcreate are two simple
relations with disjoint domains, as guaranteed by the filter (id − δdput), their relational
union is simple. Their union is also entire, and thus a total function in SET. The put∆
delta is trivial, since all elements in the new source come from elements in the view.

Mapping defines a functor on horizontal delta lenses, preserving identity and com-
position laws (composition of horizontal delta lenses is defined below):

T id = id MAP-FUNCTOR-ID

T f ◦ T g = T (f ◦ g) MAP-FUNCTOR-COMP

Reshaping Given a natural lens that only transforms shapes, we can lift it to a
reshaping horizontal delta lens using the following combinator:

∀η : S Q̇ V.←→η : SQ̇∆V

get s = getη s get∆ {s } =
←−−
getη s

put (v , s) d = putη (v , s) put∆ {(v , s)} d =
←−−
putη (v , s)

create v = createη v create∆ {v } =
←−−−−
createη v

Although this combinator permits defining delta lenses that transform the shape of the
source, it just infers suitable horizontal deltas for an existing state-based lens. Therefore,
the state-based components of the horizontal delta lens are determined by the value-level
functions of the argument lens. The horizontal deltas are calculated using a semantic
approach inspired by (Voigtländer, 2009), by running the value-level functions against
sources with the data elements replaced by the respective positions, thus inferring the
correspondences in the target. This is performed by the auxiliary function←−· :

∀η : F →̇ G.←−η : ∀s : F A. η s ∆ s

5.3 COMBINATORS FOR HORIZONTAL DELTA LENSES 129

←−η = data ◦ η ◦ recover ◦ (shape M(id◦ !))

The behavior of←−· is illustrated in the following diagram:

s : F A

shape M(id◦ !)

��

←−η // P (η s)→ P s

F 1 × (P s → P s) recover
// F (P s) η

// G (P s)

data

OO

Note that the type of positions for s : F A and shape s : F 1, and for η s : G A and
the value of type G (P s) computed in the diagram, are the same. Another relevant
observation is that data returns a total function, and thus the delta produced by←−· is
always an entire and simple correspondence relation.

Many useful examples of these natural horizontal delta lens transformations are
polymorphic versions of the usual isomorphisms handling the associativity and com-
mutativity of sums and products, such as swap : (F⊗G)A Q∆ (G⊗F)A. Another
primitive combinator that falls under this category is the identity horizontal delta lens
id : FA Q∆ FA. Nevertheless, this combinator is only interesting to lift state-based
lenses for which there is no ambiguity in view-update translation and whose alignment
behavior cannot be improved by taking into account delta information, as is the case
of isomorphisms. Since the behavior of the lifted delta lenses is completely deter-
mined by the argument state-based lens, using this combinator to define the lspine

and filter_right examples from the beginning of this chapter (which are indeed natural
lenses) as horizontal delta lenses would not perform proper alignment.

Our reshaping combinator defines a functor on horizontal delta lenses, and is also
natural transformation on horizontal delta lenses:

←→
id = id ↔· -FUNCTOR-ID
←−−→
(f ◦ g) =

←→
f ◦←→g ↔· -FUNCTOR-COMP

G g ◦
←→
f =

←→
f ◦ F g ↔· -NAT

The last law opens the door to an interesting optimization, since in a composition
involving only natural transformations and mappings, they can be grouped together into
sequences of natural transformations and mappings and fused with↔· -FUNCTOR-COMP

and MAP-FUNCTOR-COMP.

130 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

We can also define a more liberal reshaping combinator inspired by the mixed
semantic approach from (Voigtländer et al., 2010) that, unlike our reshaping combinator
that requires a natural lens transformation, takes as input a natural transformation for
the forward transformation and a lens on shapes. As defined in (Voigtländer et al.,
2010), the put of this combinator can then use the argument lens to calculate the shape
of the source lists, and calculate the source positions for the view elements through
the polymorphic interpretation of the natural transformation. Since the motivation for
this combinator is different from the goal of this section, we refrain from providing a
concrete definition.

5.3.2 Point-free Combinators

We now show that many of the point-free combinators from Chapter 4 can also be lifted
to horizontal delta lenses.

Composition Two fundamental point-free combinators are identity and composition.
Identity id : SA → SA can be trivially defined. Composition can be lifted to horizontal
delta lenses as follows:

∀f : VB Q∆ UC , g : SA Q∆ VB . (f ◦ g) : SA Q∆ UC

get s = get f (getg s) get∆ = get∆g ◦ get∆f

put (u, s) dU = putg (u, s) dV put∆ dU = (dv ′Oi2) ◦ put∆g dV

where v ′ = put f (v , getg s) dU where dv ′ = (id + get∆g) ◦ put∆f dU

dV = (get∆f ◦ dUOid) dV = (get∆f ◦ dUOid)

◦ put∆f dU ◦ put∆f dU

create u = createg (create f u) create∆ = create∆f ◦ create∆g

The behavior of our composition combinator is illustrated in Figure 5.4. In the get

direction, we simply compose the respective functions of the lenses f and g , and the
get∆ delta is calculated by composing the argument deltas in the reverse order. The
create direction is dual. In the put direction, the intermediate delta dV passed to putg

maps elements in the new value of type V B (computed with put f (u, getg s) dU)
to elements in the original view of type V B (computed with getg s). This delta
corresponds to the put

▲
(u, getg s) dU delta from Definition 8 and can be calculated

by composing the dotted arrows from Figure 5.4a. In the point-free style, put f ◦g would

5.3 COMBINATORS FOR HORIZONTAL DELTA LENSES 131

SA
getg

//

i2

VB

get∆goo

get f
//

i2

!!

UC

get∆foo

SA

OO

put∆g dV

// VB × SA

putg dVoo π1 //

π2

``

VB
i1
oo

dV

OO

put∆f dU

// UC × VB

put f dUoo π1 //

π2

aa

UC
i1
oo

dU

OO

(a) Delta-level transformations.

UC × SA

(id×getg)Mπ2

��
(UC × VB) × SA

(id+get∆g)O i2

OO

put f dU×id

��
VB × SA

put∆f dU +id

OO

putg dV

��
SA

put∆g dV

OO

(b) Functions put and put∆.

Figure 5.4: Composition of horizontal delta lenses.

be defined as shown in Figure 5.4b, that essentially corresponds to the state-based
definition from Chapter 4. As long as the type of positions of a pair value is a sum, we
can elegantly calculate the delta-based arrows and the composite delta put∆f ◦g delta by
dualizing the state-based point-free combinators from products to sums.

The following laws witness the existence of a category of horizontal delta lenses,
whose objects are polymorphic inductive types and arrows are horizontal delta lenses:

f ◦ (g ◦ h) = (f ◦ g) ◦ h ◦-ASSOC

id ◦ f = f = f ◦ id id -NAT

A more liberal kind of forgetful composition bf cdiff 1
◦ bgcdiff 2

is also possible to
define, by first converting the horizontal delta lenses f and g into normal lenses, for
cases when they do not match on their intermediate shapes. This mechanism is used
in (Barbosa et al., 2010) for the specification of nested matching lenses, but is deemed
ill-formed in (Diskin et al., 2011a) since the resulting lenses may identify and align
updates differently. Also, as long as the behavior of the resulting state-based lenses
depends on the differencing functions, this alignment mismatch “pollutes” the algebraic
laws with additional side conditions. For example, in order to fuse two mapping
horizontal delta lenses T f : TB Q∆ TC and T g : TA Q∆ TB into a single mapping,

132 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

we would need to prove that they agree on their differencing functions:

bT f cdiff 1
◦ bT gcdiff 2

= bT (f ◦ g)cdiff 1

⇐

diff 2 = diff 1 ◦ (getT g M getT g)

MAP-DIFF-COMP

Products The product projections can be lifted to horizontal delta lenses as follows:

∀f : FA → GA. π1
f : (F⊗G)A Q∆ FA

get (x , y) = x get∆ = i1

put (z , (x , y)) d = (z , y) put∆ d = (i1Oi2 ◦ i2)

create z = (z , f z) create∆ = i1
◦

∀f : GA → FA. π2
f : (F⊗G)A Q∆ GA

get (x , y) = y get∆ = i2

put (z , (x , y)) d = (x , z) put∆ d = (i2 ◦ i1Oi1)

create z = (f z , z) create∆ = i2
◦

These lifted combinators are sort of natural transformations that project away specific
components of the shape of a pair. Although the forward transformation get is a natural
transformation, the projection lenses are not natural, because the default parameter f

may be defined for a concrete type A, making create non-natural.
Nevertheless, they enjoy kind of naturality laws modulo product and modulo map-

ping (that is defined as a primitive delta lens and not polytypically like the state-based
functor mapping lens), like the state-based lens projections:

π1
h ◦ (f × g) = f ◦ π1

createg◦h◦get f π1-NAT

π2
h ◦ (f × g) = g ◦ π2

createf ◦h◦getg π2-NAT

π1
h ◦ (F⊗G) f = F f ◦ π1

F createf ◦h◦F get f π1-MAP

π2
h ◦ (F⊗G) f = G f ◦ π2

G createf ◦h◦G get f π2-MAP

The lifted product bifunctor applies two horizontal delta lenses in parallel and is
defined as follows:

5.3 COMBINATORS FOR HORIZONTAL DELTA LENSES 133

∀f : FA Q∆ HB , g : GA Q∆ IB . f × g : (F⊗G)A Q∆ (H⊗ I)B

get (x , y) = (get f x , getg y) get∆ = get∆f + get∆g

put ((z ,w), (x , y)) d = (x ′, y ′) put∆ d = dists ◦ (dx ′ + dy ′)

where x ′ = put f (z , x) (i1
◦ ◦ d ◦ i1) where dx ′ = put∆f (i1

◦ ◦ d ◦ i1)

y ′ = putg (w , y) (i2
◦ ◦ d ◦ i2) dy ′ = put∆g (i2

◦ ◦ d ◦ i2)

create (z ,w) = (create f z , createg w) create∆ = create∆f + create∆g

When computing put , the product combinator splits the delta over the view pair in
two deltas mapping only left or only right elements, to be passed to put f and putg ,
respectively. By halving the deltas, the puts of the argument lenses will loose the
delta correspondences for view elements that were swapped to a different side of the
view pair. For example, the delta lens π1 × π1 : ((F⊗G)⊗ (F⊗G)) A Q∆ (F⊗F) A

would only be able to restore left/right information for left/right elements. Given the
polymorphic nature of this combinator, which is agnostic to the concrete instantiations
of the functors F and G, this is the only reasonable behavior. A more refined behavior,
involving non-trivial fitting of the right data elements of y that are related to the left
view z into the original left view x , to be restored by put f , would only be possible for
very specific functor instantiations.

The product horizontal delta lens is a bifunctor in the category of horizontal delta
lenses, preserving identity and composition laws:

id × id = id ×-FUNCTOR-ID

(f × g) ◦ (h × i) = f ◦ h × g ◦ i ×-FUNCTOR-COMP

Sums The either combinator can be lifted to a horizontal delta lens as follows:

∀p : HB → 2, f : FA Q HB , g : GA Q HB . f O gp : (F⊕G)A Q HB

get (L x) = get f x get∆ {(L x)} = get∆f {x }
get (R y) = getg y get∆ {(R y)} = get∆g {y }
put (z ,L x) d = put f (z , x) d put∆ {(z ,L x)} d = put∆f {(z , x)} d

put (z ,R y) d = putg (z , y) d put∆ {(z ,R y)} d = put∆g {(z , y)} d

create z = if p z then create f z else createg z

create∆ {z } = if p z then create∆f {z } else create∆g {z }

In the specification of the horizontal deltas, the implicit parameters must be known to
disambiguate which side of the source sum was consumed by the forward transformation.
For create, we use a conditional to test whether to generate left or right source values.

134 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

The lifted sum bifunctor applies two horizontal delta lenses to both sides of a sums
and is defined as follows:

∀f : FA Q HB , g : GA Q IB . f + g : (F⊕G)A Q (H⊕ I)B

get (L x) = L (get f x) get∆ {(L x)} = get∆f {x }
get (R y) = R (getg y) get∆ {(R y)} = get∆g {y }
put (L z ,L x) d = L (put f (z , x)) put∆ {(L z ,L x)} d = put∆f {(z , x)} d

put (L z ,R y) d = L (create f z) put∆ {(L z ,R y)} d = i1 ◦ create∆f {z }
put (R w ,L x) d = R (createg w) put∆ {(R w ,L x)} d = i1 ◦ create∆g {w }
put (R w ,R y) d = R (putg (w , y)) put∆ {(R w ,R y)} d = put∆g {(w , y)} d

create (L z) = L (create f z) create∆ {(L z)} = create∆f {z }
create (L w) = R (createg w) create∆ {(R w)} = create∆g {w }

Like the other lifted point-free combinators, the state-based functions mimic those of the
sum combinator from Chapter 4. The delta-based functions are implicitly parameterized
on the view and source sums and return the corresponding delta-based functions of the
argument horizontal delta lenses.

Similarly to its state-based homologue, the either combinator satisfies fusion and
absorption laws:

f ◦ (gOh)p = (f ◦ gOf ◦ h)p◦createf +-FUSION

(fOg)p ◦ (h + i) = (f ◦ hOg ◦ h)p +-ABSOR

The sum combinator is also a bifunctor in the category of horizontal delta lenses:

id + id = id +-FUNCTOR-ID

(f + g) ◦ (h + i) = f ◦ h + g ◦ i +-FUNCTOR-COMP

Bang Similarly to the projection lenses, it is also possible to define a ! combinator
that erases the shape of the source by returning the unit type lifted as a constant functor
1, and replaces each source with an empty value as follows:

∀f : 1A → FA. ! f : FA Q∆ 1A

get x = 1 get∆ = ⊥
put (1, x) d = x put∆ d = i1

create 1 = f 1 create∆ = ⊥

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 135

For create , the ! f horizontal delta lens applies the argument function f to reconstruct a
source value. We can also rephrase the state-based lens version of the bang uniqueness
law to horizontal delta lenses:

f = ! createf ⇔ f : FA Q∆ 1A ! -UNIQ

5.4 Recursion Patterns as Horizontal Delta Lenses

Although useful for a combinatorial language, the previous horizontal delta lens combi-
nators only propagate deltas over rigid shapes (in the sense that they process shapes
polymorphically without further detail) and do not perform any sort of shape alignment.
For mappings, updates may change the cardinality of the data (a container structure
such as a list may increase or decrease in length), but alignment can be reduced to the
special case of data alignment, with the shape of the update being copied to the result.
This problem becomes more general whenever lenses are allowed to restructure the
types, in particular recursive ones whose values have a more elastic shape: by changing
the number of recursive steps, an update can alter the shape of the view (and thus
the number of placeholders for data elements), requiring a non-trivial matching with
the original source shape. If this shape alignment problem is not addressed, then the
tendency of a positional shape alignment is to reflect these view modifications at the
“leaves” of the source shape, causing the precise positions at which the modifications
occur in the view shape to be ignored.

The goal of this section is to understand how we can use the delta information
to infer meaningful shape updates. However, propagating shape updates requires
knowing the behavior of the transformation, in order to establish correspondences
between source and view shapes. Instead of considering arbitrary reshaping lenses, we
introduce two regular structural recursion combinators that perform shape alignment:
catamorphisms (folds) that consume recursive sources, and anamorphisms (unfolds)
that produce recursive views.

5.4.1 Identifying and Propagating Shape Updates

Our proposal for shape alignment is to identify insertions and deletions at the “head” of
the view shape, and propagate them to corresponding insertions and deletions at the

136 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

“head” of the source shape. Consider, as an example, the following Haskell code for the
forward transformation of the lspine lens:

get lspine :: Tree a → [a]

get lspine Empty = []

get lspine (Node x l r) = x : get lspine l

This function traverses the input tree and, for each non-empty node, builds a list whose
head is the root element and whose tail is computed by recursively applying the trans-
formation to the left child of the tree. The “head” of a value of an arbitrary recursive
type can be considered as everything contained in its type constructors besides recur-
sive invocations, i.e., something with the same top-level shape but with the recursive
occurrences erased. For non-empty trees and lists, these heads coincide with the root
and head elements of a value.

A suitable state-based put lspine (v , s) d would then recursively match an updated
view list v with an original source tree s , consuming their respective heads at each
recursive step, but disregarding the view delta d . To avoid this positional behavior, we
propose to offset such default matching for insertions and deletions, using the view delta
to infer shape modifications. In general, when executing put , if none of the elements
at the “head” of the new view are related to elements in the original view, then we are
confident that they were created with the update and shall be propagated as an insertion
to the source. Conversely, if none of the elements at the “head” of the original view are
related to elements in the new view, then such “head” shall be deleted from the original
source before proceeding. Otherwise, we proceed positionally. Note that moving is
not an operation on shapes. For instance, if we swap the elements of a list [1, 2, 3] to
[3,2,1], the shapes of both lists are the same, and the move modifications captured by
the view delta shall be handled via data alignment.

For the lspine transformation, since each cons constructor (:) in the original list
came from a Node in the original tree, if we insert a new cons at the head of the
updated list, then we must insert a new Node at the head of the updated tree, with
any default right child since it will be ignored by get lspine . For insertions, we can
define put lspine (x : xs , t) = Node x (put lspine (xs , t)) Empty , with Empty as a
default right child. If we delete a cons from the original view, then we must delete
the corresponding Node from the original tree, leaving an additional choice on how to
merge the children of the deleted source node into a single tree. Proceeding recursively,
the left spine of the updated source tree will be copied from the updated view list and

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 137

right children will be recovered from the merged tree. For deletions, we can define
put lspine (xs ,Node x l r) = put lspine (xs , plus l r), where plus is any function that
merges left and right subtrees.

In the remainder of this section, we show how to formalize and generalize this
mechanism for arbitrary folds and unfolds.

5.4.2 Higher-order Functor Mapping

A higher-order functor maps natural transformations to natural transformations via
an operation ∀f : F →̇ G. F f : F F →̇ F G (MacQueen and Tofte, 1994). For our
class of regular higher-order functors, we can define a similar operation ∀f : F A →
G A. F f :F F A→ F G A for argument functions that are not natural transformations,
i.e., defined for a specific instantiation of type A and not polymorphically quantified for
all possible instantiations of A. Moreover, this operation can be lifted to a horizontal
delta lens ∀f : FA Q∆ GA. F f : F FA Q∆ F GA defined polytypically over the
structure of the higher-order functor, as follows:

∀f : FA Q∆ GA. F f : F FA Q∆ F GA

Id f = f

Par f = id

C f = id

(F �G) f = F f × G g

(F �G) f = F f + G f

Similarly to the calculus of positions, for the case of composition (F�G) f , we can not
use regular functor mapping F (G f) (as done before in Chapter 4 for functor mapping)
because the resulting shapes are not the same. Instead, we define auxiliary functions
that operate by induction over the structure of the left functor F and unroll functor
compositions according to the set of equations used above for calculating positions.
The same kind of auxiliary functions will be required for further polytypic definitions
over higher-order functions.

Note that, unlike our primitive horizontal delta lens functor mapping combinator,
this time the transformation occurs at the level of shapes and not at the data level (the
type A of elements is preserved), and no data alignment is due.

138 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

5.4.3 Catamorphism

A catamorphism recursively consumes source values, and at each recursive step gener-
ates a target value for each consumed source head. Given a horizontal delta lens algebra
f : F GA Q∆ GA, the positional catamorphism ([f])posF : µFA Q∆ GA can be defined as
the unique horizontal delta lens that satisfies the following equation:

∀f : F GA Q∆ GA. ([f])posF : µFA Q∆ GA

([f])posF = f ◦ F ([f])posF ◦ outF

The state-based components of this lens correspond to the state-based formulation using
recursion patterns presented in Chapter 4. As before, for the resulting horizontal delta
lens to be well-behaved we must assume that the respective anamorphisms are recursive,
i.e. terminating.

Although this definition receives and propagates deltas, it is purely positional and
does not use such information to perform shape alignment. In particular, putF ([f])posF

matches the view and source values positionally (according to the higher-order functor
mapping lens) and passes incomplete delta information to the f argument of the fold
due to the lossy behavior of the product horizontal delta lens.

For recursive source values, we can generically compute their head using the
expression getF ! ◦ outF : µF A→ F 1 A, where ! : F A → 1 A is the forward
transformation of the bang horizontal delta lens combinator. However, the view type is
not recursive in general and the notion of head of the view is dependent on the semantics
of the fold. In fact, what we need to compare are the elements of the view that would
be necessary to build a head in the source. This head can be computed by issuing the
create of the argument algebra and then erasing the recursive occurrences as before:
getF ! ◦ create f : G A→ F 1 A.

Equipped with these procedures to detect the head of source and view values,
we specify our horizontal delta lens catamorphism ([f])F : µFA Q∆ GA by copying
the behavior of ([f])posF for get and create, and redefining put to handle alignment
information as follows:

put ([f])F
(v , s) d =


grow (v, s) d if ρV 6= ⊥ ∧ (ρV ∩ δd) = ⊥

shrink (v, s) d if ρS 6= ⊥ ∧ (ρS ∩ ρd) = ⊥

putf ◦F ([f])F◦outF
(v, s) d otherwise

where V = createMf ◦ getMF !
S = get◦∆([f])F

◦ get∆F f

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 139

Here, the V and S relations are the corresponding deltas between the computed head
of the updated view and the (full) updated view and between the head of the original
view and the (full) original view, respectively. These deltas can be obtained just by
dualization of the respective state-based functions, and are illustrated (as dotted arrows)
in the following diagram:

G A get∆([f])F
''

G A

d 88

createf

��

µF A([f])F

gg

outF
��

F G A

create∆f

OO

getF !

��

F µF A

id

OO

getF !

��
F 1 A

get∆F !

OO

F 1 A

get∆F !

OO

In this diagram, the V delta relates elements at the head of the updated view of type
F 1 A with the elements of the updated view v : G A. If none of the positions in the
range of V are contained in the domain of the update delta d , i.e., the set of updated
view elements related to the original view, we insert the head of the view in the source
with grow . The S delta (between the head of the original view and the original view)
can be determined by composing the delta of the expression that calculates the head of
the source with the converse of the delta of the forward catamorphism that computes the
original view get ([f])F

s : G A from the original source s : µF A. This way, we select
only the values at the head of the source that are also at the head of the view. This
nuance is important to prevent the deletion of source elements that are abstracted by the
view and should be restored by put . Thus, if none of the positions in the range of S

are contained in the range of the update delta d , i.e., the set of original view elements
related to the updated view, we can safely delete the head of the source with shrink .

Another detail of our definition is that we verify if the V and S relations are empty.
Since our argument is based on data elements, if the head of a value does not contain
any elements (e.g., like an empty list constructor), what would lead to an empty delta
relation, we do not judge. The proof that our alignment-aware catamorphism delta lens
is well-behaved is detailed in Section B.3.5.

Insertion The head of the view can be isolated by invoking create f to produce a
value of type F G A. To propagate a newly created view head, we need a way to pair

140 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

each G A inside F G A with the original source of type µF A, to which we can apply
put ([f])F

recursively. In category theory, a functor is said strong if it is equipped with a
natural transformation σF : F A × B → F (A × B), denoted strength, that pairs the B

with each A inside the functor. In the literature, strength usually involves additional
conditions, namely:

F π1 ◦ σF = π1 σ-CANCEL

F assocr ◦ σF ◦ (σF × id) = σF ◦ assocr σ-ASSOC

This strength function can easily be lifted and defined polytypically for every regular
higher-order functor: σF : F F A × G A→ F (F⊗G) A.

Not taking deltas into account (as they can be computed by dualization of the state-
based transformations), the grow procedure can be specified as depicted in Figure 5.5.
Notice that, if the functor contains more than one recursive occurrence (for trees for
example), then σF will duplicate the original source for each recursive invocation of
put . This is because, when invoking σF at a recursive step, the catamorphism does not
know how to split the source so that each piece is related to the respective recursive
view. Instead, the duplicated sources will be later aligned recursively. For example,
unrelated source elements will be deleted by shrink . The actual implementation
of grow is inF ◦ σputF (d ◦ create∆f) ◦ (create f × id), where σputF is a polytypic
auxiliary definition that implements the specificationF put ([f])F

◦σF , with the necessary
propagation of deltas to the recursive invocations of put .

For each lens l : SA Q∆ VA, we define a σputF function that receives a delta and
pairs view values inside the functor with duplicated source values, invoking put l (with
the argument delta) to process recursive cases:

σputF : ∀(v , s) : F V A × SA. v ∆ get s → F S A

σputId (v , s) d = put l (v , s) d

σputC (v , s) d = v

σputPar (v , s) d = v

σputF �G ((x , y), s) d = (σputF (x , s) (d ◦ i1), σputG (y , s) (d ◦ i2))

σputF �G (i1 x , s) d = i1 (σputF (x , s) d)

σputF �G (i2 y , s) d = i2 (σputG (y , s) d)

The induced σput∆F horizontal delta is defined as follows:

σput∆F : ∀{(v , s) : F V A × SA}, d : v ∆ get s . (σputF (v , s) d) ∆ (v , s)

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 141

µF A F µF A
inFoo

F (G A × µF A)

F put([f])F

OO

G A × µF A
createf×id

//

grow

OO

F G A × µF A

σF

OO

Figure 5.5: Specification of grow for catamorphisms.

σput∆Id {(v , s)} d = put∆l {(v , s)} d

σput∆C {(v , s)} d = i1

σput∆Par {(v , s)} d = i1

σput∆F �G {((x , y), s)} d =

((i1 + id) ◦ σput∆F {(x , s)} (d ◦ i1)O(i2 + id) ◦ σput∆G {(y , s)} (d ◦ i2))

σput∆F �G {(i1 x , s)} d = σput∆F {(x , s)} d

σput∆F �G {(i2 y , s)} d = σput∆G {(y , s)} d

Deletion Again not taking deltas into account, the shrink procedure can be specified
as depicted in Figure 5.6. To propagate a deletion, we unfold the original source
value to expose its head to be erased by the auxiliary function reduceF , and then apply
put ([f])F

to the argument view and the reduced source. In the implementation, put ([f])F

is invoked with the delta get◦∆([f])F
◦ reduceF

◦
∆ ◦ get∆([f])F

◦ d that reflects the shape
changes performed by reduceF .

In order to erase the head, the function reduceF merges the recursive occurrences
of a functor into a single value and is defined polytypically as follows:

reduceF : F FA → FA

reduceId x = x

reduceC x = zero

reducePar x = zero

reduceF �G (x , y) = plus (reduceF x , reduceG y)

reduceF �G (i1 x) = reduceF x

reduceF �G (i2 x) = reduceF y

Here, we assume that the source type F A is a monoid-like algebraic structure with
a zero : F A element and a binary concatenation operation plus : F A × F A→ F A.

142 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

µF A G A × µF A
put([f])Foo

G A × µF A

shrink

OO

id×outF
//G A × F µF A

id×reduceF

OO

Figure 5.6: Specification of shrink for catamorphisms.

This allows to define reduceF just by folding the sequence of recursive occurrences
using these two operations. For types other than lists, there could be possibly more
than one such monoid-like structures. In the implementation of our point-free delta
lens language (Chapter 6), we provide default instances for many types, but users are
free to provide their own structures. By defining the type signatures of zero and plus

as polymorphic functions, we ensure that they are natural transformations and thus the
respective deltas can be computed using the semantic technique presented before.

Moreover, to guarantee that put terminates and the catamorphism lens is well-
behaved, we must require the composition reduceF ◦ outF : µF A → µF A to be a
well-founded relation (Bird and de Moor, 1997), in the sense that a source value is
always “reduced” to a strictly smaller value after applying reduceF .

Examples We can now encode the examples from the beginning of this chapter as
horizontal delta lenses. For instance, the lspine lens used in the fathernames example
can be defined as the following horizontal delta lens fold:

lspine : TreeA Q∆ []A
lspine = ([inList ◦ (id + id × π1

[]◦ !)])Tree

plusTree : Tree ⊗Tree →̇ Tree zeroTree : ∀A. Tree A

plusTree Empty r = r zeroTree = Empty

plusTree l r = l

When ran against the fathernames example, this lens produces the desired result. For
insertions, put lspine will generate a default empty list of right children, that when aligned
with any source tree will originate an empty right tree. For deletions, the given plus

function selects one of the child trees if the other is empty, or discards the right child
otherwise.

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 143

Note that although no deletion is performed by the view update, the σput procedure
for insertions will duplicate the original source tree, but the right-side duplicated tree
will be successfully marked as deleted by our backward semantics and disposed of by
the plus function. Also for the lspine example, we know that an insertion followed by
a deletion would lead to no effect on the source.

Since the state-based lspine lens is of the special form ([inG ◦ f])F and id + id ×
π1 : 1⊕A⊗ (Id⊗ Id) →̇ 1⊕A⊗ Id is a natural transformation, to prove that the lspine

delta lens is well-behaved we only need to prove that reduceF ◦ outF is well-founded,
what is trivial for the given zero and plus implementations.

In general, the choice of a monoid-like structure can be arbitrary and will only affect
the way some information is recovered from the original source. A good principle
in the design of such an algebraic structure is to safeguard that plus actually merges
two source values without introducing new or duplicate information, to somehow
ensure that reduce does indeed “reduce” the size of the source and satisfies the required
well-foundedness properties. Still, a particular structure might make more sense for
a particular lens. For example, as long as lspine drops the right children of a tree, it
makes more sense to ignore right values in the definition of plusTree ; if we instead chose
to merge both subtrees, right subtrees of the merged tree would eventually be recovered
by put and appear as right elements in the new source tree. Note that we do not actually
enforce the usual identity and associativity monoid laws, since non-monoidal binary
operators such as alternating merge would may also be plausible for particular lenses.

The filter_right lens from the initial females example can also be encoded as a
horizontal delta lens fold:

filter_right : (ListOpt A)B Q []B
filter_right = ([(inList •Oπ2) ◦ coassocl ◦ (id + coswap ◦ distl)])ListOpt

A

By running this lens against the females example, left (male) elements are now
restored properly. Here, the coassoc : (F⊕ (G⊕H))A Q∆ ((F⊕G)⊕H)A, coswap :

(F⊕G)A Q∆ (G⊕F)A and distl : ((F⊕G)⊗H)A Q∆ ((F⊗H)⊕ (G⊗H))A combina-
tors are horizontal delta lens isomorphisms.

In our language, a type F (G A) is different in shape from an isomorphic type
(F�G) A. For this reason, we have introduced a new ListOpt A B type (isomorphic
to [A + B]) to encode the shape of optional lists, despite a state-based filter_right

could be defined directly as a catamorphism over lists (similarly to the filter_left lens
from Chapter 4). To avoid introducing a new type and adapting the filter_right lens

144 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

to work over ListOpt instead of the standard list type, we could lift it to a horizontal
delta-based catamorphism over the fixed point µ(List � (A⊕ Id)), that is isomorphic
to the ListOpt A functor and represents the desired shape.

5.4.4 Anamorphism

Dually to catamorphisms, anamorphisms recursively construct view values. Given a
horizontal delta lens coalgebra f : FA Q∆ G FA, the positional anamorphism [[(f)]]posG :

FA Q∆ µGA can be defined as the unique horizontal delta lens that satisfies the
following equation:

∀f : FA Q∆ G FA. [[(f)]]posG : FA Q∆ µGA

[[(f)]]posG = inG ◦ G [[(f)]]posG ◦ f

Again, for this combinator to be a well-behaved delta lens, we require that the corre-
sponding point-free state-based functions yield recursive anamorphisms.

For anamorphisms, the view type is recursive and thus has a direct notion of head
given by getG ! ◦ outG :µG A→ G 1 A. Since this time the source type is not recursive
in general, its notion of head is the one dependent on the semantics of the unfold. Hence,
we need to consider the elements of the source that would be necessary to build a head
in the view. This head can be computed by applying the get of the argument coalgebra
to the source and erasing the recursive occurrences: getG ! ◦ getf : F A→ G 1 A.

Formally, we specify our horizontal delta lens anamorphism [[(f)]]G : FA Q∆ µGA by
reproducing [[(f)]]posG for get and create, and redefining put as follows:

put [[(f)]]G
(v , s) d =


grow (v, s) d if ρV 6= ⊥ ∧ (ρV ∩ δd) = ⊥

shrink (v, s) d if ρS 6= ⊥ ∧ (ρS ∩ ρd) = ⊥

putinG◦G [[(f)]]G◦f (v, s) d otherwise

where V = getMG !
S = get◦M[[(f)]]G

◦ getMf ◦ getMG !

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 145

Likewise catamorphisms, the V and S relations are defined in the following diagram:

µG A get∆[[(f)]]F
&&

µG A

d 77

outG
��

F A[[(f)]]F

ff

getf

��
G µG A

id

OO

getG !

��

G F A

get∆f

OO

getG !

��
G 1 A

get∆G !

OO

G 1 A

get∆G !

OO

The behavior of put [[(f)]]G
modulo these deltas is also similar. The V delta relates

elements at the head of the updated view with elements of the updated view v :µG A. If
none of the elements at the head of the updated view (in the range of V) are related to
elements of the original view (in the domain of the update delta d), we insert the head
of the view in the source using grow . The S delta (between the head of the original
view and the original view) can be determined by applying the converse of the delta of
the forward anamorphism, that computes the original view get [[(f)]]G

s : µG A from the
original source s : µF A, after the delta of the expression that calculates the head of the
source. Dually, if none of the elements at the head of the original view (in the range of
S) are related to elements of the updated view (in the range of the update delta d), we
delete the head of the corresponding source with shrink .

The proof that our anamorphism delta lens is well-behaved is similar to the one for
catamorphisms, assuming that the positional anamorphism lens is well-behaved and
that reduceF produces smaller source values.

Insertion The grow procedure is specified as depicted in Figure 5.7. The head
of the view is isolated by applying outG to produce a value of type G G A. As for
catamorphisms, we propagate this newly created head using the strength combinator
σF followed by applying put [[(f)]]G

recursively taking as argument the original delta d .
The recursively computed value of type G F A is then converted into a source value
with a new head using create f .

Deletion The shrink procedure can be defined as depicted in Figure 5.8. To expose
the head of the source, we invoke get f to produce a value of type G F A, whose
head can be erased by the reduceG function. We then apply put [[(f)]]G

to the argument

146 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

µG A × F A

grow

��

outG×id // G µG A × F A

σF
��

G (µG A × F A)

G put [[(f)]]G
��

F A G F A
createf

oo

Figure 5.7: Specification of grow for anamorphisms.

µG A × F A

shrink

��

id×get f // µG A × G F A

id×reduceF

��
F A µG A × F A

put [[(f)]]G

oo

Figure 5.8: Specification of shrink for anamorphisms.

view and the reduced source. In the implementation, put [[(f)]]G
is invoked with the

delta get◦∆[[(f)]]G
◦ reduceF

◦
∆ ◦ get◦∆f ◦ get∆[[(f)]]G

◦ d that reflects the shape changes
performed by reduceG . For the anamorphism lens to be well-behaved, we require
reduceG ◦ getf : F A→ F A to be well-founded.

Examples Since the recursive gene of lspine is a natural lens transformation, lspine

can be alternatively defined as the following horizontal delta lens anamorphism:

lspine : TreeA Q∆ []A
lspine = [[((id + id × π1

Empty◦ !) ◦ outTree)]]List

Despite producing similar results for our running example, this definition is more
intuitive in terms of deletion, because reduceF is applied to the base functor of the view
list (for which head deletion is intuitively defined) rather than to the base functor of the
source tree, for which mplus has to merge the two left and right child trees.

In general, it is better to specify any recursive horizontal delta lens whose gene is
(almost a) natural transformation as an anamorphism instead of as a catamorphism,
since the lens laws entail that the view base functor will always be smaller than the
source base functor, and thus have a tendency to contain a smaller number of recursive

5.4 RECURSION PATTERNS AS HORIZONTAL DELTA LENSES 147

invocations. This means that (1) insertion is more intuitive because σ will have to
duplicate the original source less times, and that (2) deletion is more intuitive because
getf will partially truncate the original source and reduce will have to merge a smaller
number of recursive children of the original source.

An example of an anamorphism lens whose gene is not a natural transformation is
the combinator that sieves a list to keep every second element:

sieve : (A→ A)→ []A Q∆ []A
sieve f = [[((id •O π2 + π2

f ◦π1) ◦ coassocl ◦ (id + distr ◦ (id × outList)) ◦ outList)]]List

Note that the gene of the anamorphism is not “almost a natural lens” as termed in Chap-
ter 4 (with regard to the base functor 1⊕A⊕ Id of the target type [A]) since it inspects
the recursive values of the source (by unfolding the source twice to reveal the first
two elements of a source list), even though the source type [A] is the same. Here, the
parameter function f is responsible for generating a default first element for each new
second element in the view. Imagine that we sieve a list [1, 2, 3, 4] of odd and even
numbers to get only the even ones [2, 4] (assumed to be in even positions of the source
list), and modify the view list to [0, 2, 6]. A state-based sieve pred : [Int] → [Int],
where pred is a function that returns the predecessor of a number, would then produce
the following result:

put sieve pred [0, 2, 6] [1, 2, 3, 4] = [1, 0, 3, 2, 5, 6]

In this case, the backward transformation copies the even numbers from the view
numbers and restores odd numbers positionally from the source. Using suitable deltas,
our sieve delta lens would behave as follows (with the deltas represented graphically):

let s = [1, 2, 3, 4]

in get sieve pred s = [2, 4] put sieve pred [0, 2, 6] s = [−1, 0, 1, 2, 3, 6]

This time, the backward transformation infers from the deltas that 0 has been inserted,
2 preserved and 4 modified to 6, and processes the preceding odd numbers accordingly:
since get produces a view number for each pair of source numbers, put will create
a new preceding odd number for insertions in the view and preserve the preceding
numbers for view numbers related through the delta.

Another example that combines a fold with an unfold is list concatenation, that can
be lifted to the following horizontal delta lens:

148 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

cat : ([]⊗ [])A Q∆ []A
cat = ([id O cons])NeList ◦ [[((π2

! + assocr) ◦ distl ◦ (outHL × id))]]NeList

Here, NeList is the higher-order base functor (List �Par)�Par � Id of the NeList

type. To understand the behavior of this lens, consider the following execution of the
positional cat lens from Chapter 4:

putcat [0, 1, 2, 3, 4] ([1, 2], [3, 4]) = ([0, 1], [2, 3, 4])

Although the size of the view list changes, the state-based backward transformation still
splits the view list in two according to the size of the original left list. A better solution
would be to track the insertions and deletions in the view that affect the size of the left
source list, as our delta lens would do:

let s = ([1, 2], [3, 4])

in getcat s = [1, 2, 3, 4] putcat [0, 1, 2, 3, 4] s = ([0, 1, 2], [3, 4])

In this example, the new 0 element has been inserted before the splitting position in the
view, and the put of our delta lens increments the size of the left source list.

5.5 Summary

The “holy grail” of bidirectional transformation approaches is to find solutions that
mitigate the ambiguity of target update translation, by producing minimal source updates
(and vice-versa). For the bidirectional framework of lenses and the application domain
of inductive data types, we identify that a smaller update requires not only to align data
elements, but also shapes.

In this chapter, we have lifted the point-free lens language from Chapter 4 to
a point-free delta lens language for building bidirectional transformations with an
explicit notion of shape and data over inductive data types. Our delta lens framework
instantiates the abstract framework of delta lenses first introduced by Diskin et al.
(2011a), meaning that lenses now propagate deltas to deltas and preserve additional
delta-based bidirectional round-tripping axioms. In particular, we have instrumented
the standard fold and unfold recursion patterns with mechanisms that use deltas to infer
and propagate edit operations on shapes, thus producing smaller source updates that
best reflect a certain view update. Thus far, we have considered insertion and deletion

5.5 SUMMARY 149

updates on shapes, that are sufficiently generic to express modifications on a wide range
of data types. Nevertheless, other more refined edit operations (like tree rotations)
might make sense for particular types and application scenarios, and our technique
could be instrumented to cover more edits in the future. The use of dependent types has
provided a more concise formalism that simplifies the existing delta-based bidirectional
theory and clarifies the connection between the state- and delta-based components of
the framework.

150 CHAPTER 5: GENERIC POINT-FREE DELTA LENSES

Chapter 6

The Multifocal Framework

Lenses, as a framework for data abstraction, can be of great value in scything through the
complexity of large software systems. However, writing a lens transformation typically
implies describing the concrete steps that convert values in a source schema to values
in a target schema, making it hard to express even conceptually simple transformations
over large schemas. In contrast, many XML-based languages allow writing structure-
shy programs that manipulate only specific parts of XML documents without having to
specify the behavior for the remaining structure.

This chapter describes the Multifocal framework for the specification, optimiza-
tion and execution of structure-shy two-level bidirectional lens transformations. The
framework is developed in Haskell and is constituted by three main components: a
core library of type-specific bidirectional lenses, a high-level library of type-generic
lens combinators that instantiate a well-known suite of combinators for strategic pro-
gramming (Visser, 2001; Lämmel and Visser, 2003) and are compiled to lower-level
lenses, and a point-free rewriting library that can be used to optimize the automatically-
generated lens transformations.

To demonstrate the practical application of the framework, we also propose the
particular Multifocal XML two-level bidirectional transformation language, providing
both strategic and specific XML transformers, and discuss particular examples involving
the generic evolution of recursive XML Schemas. XML transformations written in
Multifocal are translated into our library of two-level lens combinators, by converting
the source and target XML Schemas to equivalent algebraic data type representations.

151

152 CHAPTER 6: THE Multifocal FRAMEWORK

6.1 A Point-free Lens Library

The point-free style allows functional programmers to write functions that are free
of bound variables through composition of other functions. In this section, we re-
implement the core of the Pointless Haskell library (Cunha, 2005) for point-free pro-
gramming using recent language extensions such as type-indexed type families. Then,
we implement a Haskell library of point-free lenses on top, including liftings of most
point-free combinators presented in Chapter 2 and formalized as lenses in Chapter 4.
Our library also implements the point-free delta lenses from Chapter 5.

6.1.1 Basic Lenses

In Haskell, the type of lenses can be defined as a record of three functions: a forward
get function, a backward put function and a default create function.

data Lens c a = Lens {get :: c → a, put :: (a, c)→ c, create :: a → c}

The primordial lens combinators are identity, that simply copies the argument
value in both directions, and composition, that applies two lenses in sequence. Their
implementations follow the formal definitions from Chapter 41:

id_lns :: Lens c c

id_lns = Lens id fst id

(◦) :: Lens b a → Lens c b → Lens c a

(◦) f g = Lens (get f . get g) put ′ (create g . create f)

where put ′ = put g . (put f . (id >< get g) /\ snd)

Some of the point-free combinators used in these lens definitions, such as composition
(.), id and fst , are primitives of the Haskell language. For others, like >< and /\, their
Haskell definitions are available as part of the Pointless Haskell library (Cunha, 2005),
but are straightforward from their respective notation (like × and M) from Chapter 2.

Two other examples of lens combinators over products and sums are left projection
(fst_lns), that drops the second element of a concrete pair and accepts an argument

1In the Haskell implementation, we denote lens combinators by the _lns suffix to avoid overloading
with the homologous point-free functions. We distinguish infix point-free lens combinators from the
standard ones by pretty-printing them according to their mathematical notation.

6.1 A POINT-FREE LENS LIBRARY 153

function as a default value generator for the deleted component, and the either combina-
tor (O) that “conditionally” applies a lens based on the branching of the concrete value
and requires a predicate that chooses the creation of left or right default branches:

fst_lns :: (a → b)→ Lens (a, b) a

fst_lns f = Lens fst id (id /\ f)

(O) :: (c → Bool)→ Lens a c → Lens b c → Lens (Either a b) c

(O) p f g = Lens (get f \/ get g) put ′ create ′

where put ′ = (put f − | − put g) . distr

create ′ = (create f − | − create g) . (p?)

The remaining primitive lens combinators can be transcoded directly to Haskell
from their theoretical definitions from Chapter 4.

6.1.2 Recursive Lenses

Before implementing recursive lenses, we propose an encoding of functors that enables
a restricted notion of structural equivalence between user-defined types and their sums-
of-products representations, closely mimicking the theory.

Encoding functors and user-defined types Most inductive data types can be seen as
fixed points of polynomial functors (sums of products), encoded in Haskell as follows:

newtype Id x = Id {unId :: x }
newtype Const t x = Const {unConst :: t }
data (g ⊕ h) x = Inl (g x) | Inr (h x)

data (g ⊗ h) x = Prod (g x) (h x)

newtype (g � h) x = Comp {unComp :: g (h x)}

Therefore, for an inductive type a, we need to represent its base functor F a. We
establish this correspondence using type-indexed type families (Schrijvers et al., 2007;
Chakravarty et al., 2005), a recent extension to the Haskell type system supported by
the Glasgow Haskell Compiler (GHC). Developed with type-level programming in
mind, type families are type constructors that represent sets of types. Set members
are aggregated according to the type parameters passed to the type family constructor,
called type indices: family constructors can have different representation types for

154 CHAPTER 6: THE Multifocal FRAMEWORK

different type indices. We can define a type family that when applied to a type returns
its base functor, as exemplified for lists:

type family F a :: ∗ → ∗
type instance F [a] = Const One ⊕Const a ⊗ Id

Here, the Haskell type One models the categorical unit type possessing one single
value.

Moreover, when applying a functor to a type, we want to get an isomorphic sum-
of-products type capable of being processed with our original point-free combinators.
Since type equivalence in Haskell is not structural but name-based, we define a Rep f a

type family that, given a functor f and a type a , returns the equivalent “flattened” type
that results from applying the functor to the argument type. This solution is more
elegant and concise than the implicit coercion type classes used in the PolyP (Jansson
and Jeuring, 1997) and Pointless Haskell (Cunha, 2005) libraries for polytypic and
point-free programming:

type family Rep (f :: ∗ → ∗) a :: ∗
type instance Rep Id a = a

type instance Rep (g ⊗ h) a = (Rep g a,Rep h a)

...

Since Rep f is a functor if and only if f is a functor, we can now define our
own Functor type class (that substitutes the already existent Functor class provided
in the Haskell prelude) for mapping functions over functors and zipping functors
(required later for our recursive lens combinators). The corresponding instances of
fmap are trivial to define, and the instances of fzip can be extrapolated from their formal
definitions presented in Chapter 4:

class Functor (f :: ∗ → ∗) where

fmap :: (µ f)→ (x → y)→ Rep f x → Rep f y

fzip :: (µ f)→ (x → y)→ (Rep f x ,Rep f y)→ Rep f (x , y)

The additional µ f parameter encodes the fixed point of the functor f and is required by
the compiler as an annotation of the type of the functor. In Haskell, it can be defined as
a recursive type that applies the argument functor to itself:

newtype Functor f ⇒ µ f = In {ouT :: Rep f (µ f)}

6.1 A POINT-FREE LENS LIBRARY 155

It is useful to define polytypic map and zip functions that work over the base functor
of an argument type annotation:

pmap :: Functor (F a)⇒ a → (x → y)→ Rep (F a) x → Rep (F a) y

pmap (a :: a) f = fmap (⊥ :: µ (F a)) f

pzip :: Functor (F a)⇒ a → (x → y)→ (Rep f x ,Rep f y)→ Rep f (x , y)

pzip (a :: a) f = fzip (⊥ :: µ (F a)) f

Here, ⊥ represents the undefined value that is a member of every type in the category
of Haskell programs (see the discussion in Section 7.1). Nevertheless, it is only used as
a type annotation for the Haskell compiler, and the fmap and fzip are non-strict in their
first argument; since Haskell is a lazy language, the value will never be evaluated.

Associated with each user-defined data type a, we have two unique functions inn
(because in is a Haskell keyword for let expressions) and out that are each other inverse
and witness the isomorphism between a and the fixed point of its base functor F a.
They allow us to encode and inspect values of the given type, respectively. For example,
lists have the following instance:

class Mu a where

inn :: Rep (F a) a → a

out :: a → Rep (F a) a

instance Mu [a] where

inn (Left) = []

inn (Right (x , xs)) = x : xs

out [] = Left ⊥
out (x : xs) = Right (x , xs)

Here, instead of using the Haskell standard unit type (), we define the unit type as a
datatype One with no constructors and ⊥ as its sole value. For a discussion on this
encoding see the implementation of the Pointless Haskell library in (Cunha, 2005,
Chapter 6).

Encoding recursive lenses We now have the required machinery to encode the fold
and unfold recursion patterns for arbitrary inductive types. Like the formal notation for
recursion patterns, that are annotated with a subscript functor to which the argument
function should be instantiated, their encodings require an explicit annotation of the
recursive type:

156 CHAPTER 6: THE Multifocal FRAMEWORK

cata :: (Mu a,Functor (F a))⇒ a → (Rep (F a) b → b)→ a → b

cata a f = f . pmap a (cata a f) . out

ana :: (Mu b,Functor (F b))⇒ b → (a → Rep (F b) a)→ a → b

ana b f = inn . pmap b (ana b f) . f

Lens combinators are also defined directly from their formal definitions presented
in Chapter 4. For example, we encode the lens fold combinator as follows:

cata_lns :: (Mu a,Functor (F a))⇒ a → (Lens (F a b) b)→ Lens a b

cata_lns a l = Lens get ′ put ′ create ′

where get ′ = cata a (get l)

put ′ = let g = put l . (id >< pmap a get ′) /\ π2

in ana a (pzip a create ′ . g . (id >< out))

create ′ = ana a (create l)

It is now possible to write Haskell recursive programs in a truly point-free style. For
instance, some of the lenses over lists presented in Chapter 4 can be directly transcribed
to Haskell as follows:

length_lns :: a → Lens [a] Nat

length_lns a = cata_lns ⊥ (id_lns + snd_lns ((pnt a) . bang))

map_lns :: Lens c a → Lens [c] [a]

map_lns f = cata_lns ⊥ (id_lns + f × id_lns)

Here, pnt and bang are point-free combinators denoting points · and bang !, while ×
and + are the product and sum lens combinators.

6.1.3 Delta lenses

Similarly to regular state-based lenses, a horizontal delta lens (Chapter 5) can be
encoded in Haskell as a record of six functions: the three functions for state-based
lenses plus three additional horizontal deltas:

data DLens s a v b = DLens {
get :: s a → v b

, get
▲

:: s a → Delta (v b) (s a)

, put :: (v b, s a)→ Delta (v b) (v b)→ s a

6.2 A STRATEGIC LENS LIBRARY 157

, put
▲

:: (v b, s a)→ Delta (v b) (v b)→ Delta (s a) (v b, s a)

, create :: v b → s a

, create▲ :: v b → Delta (s a) (v b)}

The state-based functions transform between polymorphic Haskell source and target
types s and v , applied to data elements of types a and b. As dependent functions,
the horizontal deltas get

▲
, put

▲
and create▲ receive the same input values as state-

based transformations, and return deltas from output to input positions. Deltas (partial
relations) are encoded as sets of pairs. Since Haskell is a non-dependently typed
language, we encode the types of positions in source and view values as plain integers:

type Delta a b = Rel Int Int

type Rel a b = Set (a, b)

As an example, the embedding of a horizontal delta lens into a normal lens, by
resorting to a difference operation that returns a delta between the modified and original
view values, can be implemented as follows:

type Diff v = Shapely v ⇒ v → v → Delta v v

embed_lns :: Shapely v ⇒ Diff (v b)→ DLens s a v b → Lens (s a) (v b)

embed_lns diff l = Lens (get l) put ′ (create l)

where put ′ (v , s) = put l (v , s) (diff v (get l s))

The Shapely type class implements the shapely type operations for polymorphic induc-
tive data types (we use the name data_ because data is a reserved Haskell keyword):

class Shapely t where

shape :: t a → t One

data_ :: t a → Rel Int a

recover :: (t One, Rel Int a)→ t a

6.2 A Strategic Lens Library

Modeling real-world problems in a functional language typically leads to a large set
of recursive data types, each with many different constructors. That is the case, for
example, when developing language processing tools, where grammars are represented

158 CHAPTER 6: THE Multifocal FRAMEWORK

using a different data type for each non-terminal and a different constructor for each
production rule. Similarly, schema-aware XML processing usually involves mapping
a huge schema to an equivalent data type, with each of the many elements mapped
to a different type. Such proliferation of data types makes it hard to implement even
conceptually simple functions (or lenses), that manipulate a very small subset of the data
constructors. To illustrate this problem, remember the XML schema from Figure 1.3
modeling a movie database with information about several shows and actors. A part of
this schema could be represented by the hereunder Haskell data type. In Haskell, left-
nested products and sums correspond to xs:sequence and xs:choice elements in
XML Schema notation. Primitives include base types, such as the unit type 1, integers
Int or strings String , and lists [A] of values of type A that model XML sequences
(represented in XML Schema as unbounded maxOccurs repetitions). User-defined data
types model XML elements and attributes:

data Imdb = Imdb [Either Movie Series] [Actor]

data Movie = Movie Year Title [Review] Director Boxoffice

data Series = Series Year Title [Review] [Season]

data Actor = Actor Name [Played]

data Name = Name String

data Played = Played Year Title Role [Award]

data Role = Role String

data Award = Award Name Result

data Comment = Comment String

...

Suppose one also wants to define a lens to collect all names of awards won by a
certain actor. Below is a possible definition of this lens using the combinators from the
previous section:

awardnames :: Lens Actor [Name]

awardnames = map_lns (snd_lns dresult ◦ out_lns) ◦ concat_lns

◦ map_lns (snd_lns drole ◦ snd_lns dtitle ◦ snd_lns dyear ◦ out_lns)

◦ snd_lns dname ◦ out_lns

where (dresult , drole) = (pnt (Result "") . bang, pnt (Role "") . bang)

(dtitle, dyear) = (pnt (Title "") . bang, pnt (Year 0) . bang)

dname = pnt (Name "") . bang

6.2 A STRATEGIC LENS LIBRARY 159

Even this rather simple definition is filled with boilerplate code, whose only purpose is
to perform a standard traversal of the Actor data type to find names to collect. Apart
from aesthetical reasons, this kind of boilerplate has some major drawbacks: (1) it
makes code understanding rather difficult, since the only interesting functions are lost
amid bucketloads of uninteresting code, including in our case default parameters for
the backward direction of the lens; (2) and it rapidly becomes a maintenance problem,
since each schema evolution implies changes to many functions that are only concerned
with parts of the schema not affected by the evolution.

Many generic strategic programming libraries have been proposed to address this
issue for functional programs. Most of them allow the user to specify the behavior just
for the interesting bits of the structure, and provide traversal combinators to encode the
remaining boilerplate. One of the most successful libraries is the conveniently named
“Scrap you Boilerplate” (SYB), first introduced by Lämmel and Peyton Jones (2003) and
subsequently extended with additional functionalities (Lämmel and Peyton Jones, 2005).
Using this library, the forward direction of the awardnames lens can be redefined as
the following generic query:

awardnames :: Actor → [Name]

awardnames = everything (++) (mkQ [] awname)

where awname (Award name result) = [name]

The everything combinator traverses a data structure in a bottom-up fashion, apply-
ing its argument generic query to all nodes and collecting the results using the given
append operation. The mkQ combinator builds a generic query from a type-specific
one: given an empty value of type b and a function f :: b → r , it behaves like f for all
values of type b and returns the empty value otherwise. Besides being much easier to
understand what the query does, its definition will stay the same even if the Actor data
type changes.

The same rationale applies to type-level transformations. Imagine that we want to
delete all actor roles, according to the following lens transformation:

deleteroles :: Lens Actor NewActor

deleteroles = inn_lns ◦ (id_lns × map_lns played) ◦ out_lns

where played = inn_lns ◦ (id_lns × (id_lns × role)) ◦ out_lns

role = snd_lns (pnt (Role "") . bang)

data NewActor = NewActor Name [NewPlayed]

160 CHAPTER 6: THE Multifocal FRAMEWORK

data NewPlayed = NewPlayed Year Title [Award]

Again, we have to write a transformation that traverses the source schema until it finds
roles to delete. Also, this time we have to encode the result types a priori, since Haskell
is a typed language and the lens transformation must be defined for specific source and
target types. By developing a two-level transformation framework in the style of (Cunha
et al., 2006a), we could overcome both limitations and specify a transformation like the
following:

deleteroles :: Type → Type

deleteroles = everywhereT (tryT (atT "Role" eraseT))

When applied to a representation of the Actor data type, this two-level transformation
between arbitrary schema representations, written in our pseudo two-level language,
would return a dynamically generated NewActor data type with the new structure
and a corresponding lens transformation between both types. Here, everywhereT

is a type-level combinator that traverses the argument type and applies its argument
transformation to all subtypes, deleting those with name "Role". The remaining
combinators will be later introduced and explained.

In this section, we discuss solutions for the above examples in the context of
strategic bidirectional lenses. In particular, we construct a language of strategic two-
level bidirectional transformations for schema abstraction, whose underlying value-
level transformations are total well-behaved lenses. To tackle the awardnames and
deleteroles examples, our proposed language will enable the specification of two-level
abstraction transformations: as generic value-level queries that collect values of a
specific type inside a source database; and as generic type traversals that apply type-
level transformations at arbitrary levels inside a schema. Unlike (Cunha et al., 2006a),
our two-level language is tailored for data abstraction rather than for data refinement,
and supports the traversal and transformation of recursive types.

6.2.1 Representing Types and Expressions

In order to enable the type-safe rewriting of types and lenses (for the execution of two-
level lens transformations and their subsequent optimization), we need representations
of types, functions and lenses at the value level. For this purpose, instead of the shallow

embedding used in our lens library from the previous section, we make use of a deep

6.2 A STRATEGIC LENS LIBRARY 161

embedding (Wildmoser and Nipkow, 2004) of types and point-free expressions, where
the objects and arrows of our lens language are encoded as Haskell data types.

As proposed by Cunha and Visser (2011), our representations of types and functors
use generalized algebraic data types (GADTs) (Jones et al., 2006):

data Type a where

Int :: Type Int

One :: Type One

...

Prod :: Type a → Type b → Type (a, b)

Either :: Type a → Type b → Type (Either a b)

List :: Type a → Type [a]

Data :: (Mu a,Functor (F a))⇒ String → Fctr (F a)→ Type a

Fun :: Type a → Type b → Type (a → b)

Lns :: Type a → Type b → Type (Lens a b)

data Fctr (f :: ∗ → ∗) where

I :: Fctr Id -- Identity
L :: Fctr [] -- List functor
K :: Type c → Fctr (Const c) -- Constant
(}) :: Fctr f → Fctr g → Fctr (f ⊗ g) -- Product
(|) :: Fctr f → Fctr g → Fctr (f ⊕ g) -- Sum
(⟐) :: Fctr f → Fctr g → Fctr (f � g) -- Application

These definitions provide type-safe representations for base types, products, sums, lists,
user-defined types, functions, lenses, and polynomial functors (extended with the list
type functor)2. Note how the a parameter of the Type a GADT constrains the type
representation to values of type a. For example, the value Prod Int Int represents
the type (Int , Int). For user-defined types, the Fctr value in the definition of Data is
not arbitrary, and we use the based functor of the user-defined type a. For example,
Data "Nat" (K One| I) is the representation of the type of natural numbers. As a
ubiquitous structure in functional programming and XML programming, it is useful in
practice to treat the type of lists as a primitive instead of representing it as a user-defined
type with the base functor K One|K a} I. The data type presented in the beginning
of this section to model the XML Schema from Figure 1.3 can be represented as

2It is easy to generalize this encoding to support representations of polymorphic data types and regular
bifunctors, by introducing a new constructor for type functors in Fctr and a new BiFctr GADT.

162 CHAPTER 6: THE Multifocal FRAMEWORK

Data "imdb" ((L⟐ (K (Data "movie" fm)|K (Data "series" fs)))

} (L⟐K (Data "actor" fa)))

where the variables fm ,fs and fa denote the base functors of the movie, series and
actor elements.

We also define a function rep that applies a functor to a type, returning a flat type
representation:

rep :: Fctr f → Type a → Type (Rep f a)

rep I a = a

rep (f } g) a = Prod (rep f a) (rep g a)

rep (f | g) a = Either (rep f a) (rep g a)

...

Point-free expressions can also be represented in a type-safe manner using a GADT:

data Pf f where

Id :: Pf (c → c)

Fst :: Pf ((a, b)→ a)

Bang :: Pf (a → One)

...

IdLns :: Pf (Lens c c)

CompLns :: Type b → Pf (Lens b a)→ Pf (Lens c b)→ Pf (Lns c a)

FstLns :: Pf (a → b)→ Pf (Lens (a, b) a)

CataLns :: (Mu a,Functor (F a))

⇒ Pf (Lens (Rep (F a) b) b)→ Pf (Lens a b)

MapLns :: Pf (Lens a b)→ Pf (Lens [a] [b])

...

Note that the inhabitants of type Pf f are the point-free representations of both unidi-
rectional functions and bidirectional lenses. Some typical operations over lists such as
mapping are also treated as primitive lenses.

One consequence of using a GADT to encode point-free expressions is the ability
to define an evaluation function. For example, the evaluation of the π1

f lens calls its
definition from our lens library and depends on the evaluation of its default function f :

eval :: Type a → Pf a → a

eval (Lns (Prod a b)) (FstLns f) = fst_lns (eval (Fun a b) f)

...

6.2 A STRATEGIC LENS LIBRARY 163

Moreover, a GADT allows to simulate a reflexion mechanism that provides the
ability to define a type equality function, and is nowadays a classical example of the
usefulness of GADTs (Jones et al., 2006):

data Equal a b where Eq :: Equal a a

teq :: Type a → Type b → Maybe (Equal a b)

teq Int Int = return Eq

teq (Prod a b) (Prod c d) = do {Eq ← teq a c; Eq ← teq b d ; return Eq }
...

teq = Nothing

The constructor Eq of the Equal GADT can be seen as a proof that the types a and b

are indeed equal.

6.2.2 Combinators for Two-level Lenses

In our framework, two-level data transformations are formalized in terms of lenses and
can be modeled in Haskell as sequences of type-changing rewrite rules that replace one
data type with another (Cunha et al., 2006a).

Encapsulating lenses as rewrite rules A lens defines a particular abstract view of a
more concrete type, as defined below:

data View c where

View :: Pf (Lens c a)→ Type a → View c

When encoding lenses as rewrite rules, it is essential that they are type-preserving to
guarantee type-safe rewriting, but views are type-changing in nature (since they ignore
some details from the original format). To resolve this tension, they are masqueraded
as type-preserving ones inside the View constructor, but similar functions can be
implemented to, after rewriting, release them out of their type-preserving shell and
obtain the corresponding type-changing bidirectional transformations. Note that only
the concrete type c escapes from the View c context, while the abstract type a remains
encapsulated and is existentially quantified. Also, we do not keep a lens transformation
Lens c a but a representation of a lens Pf (Lens c a), to allow later inspection and
optimization.

164 CHAPTER 6: THE Multifocal FRAMEWORK

A rule generalizes a view for any input type. It expresses that a two-level transfor-
mation step is a partial function taking a type into a view of that type:

type RuleT = ∀c. Type c → RuleM (View c)

RuleM is a stateful monad that keeps a context of applied rules and dynamically
generated types and is an instance of the MonadPlus Haskell standard type class, thus
modeling partiality in rule application: return denotes successful rule application;
failure is signaled with mzero; and mplus encodes optional rule application.

Strategic combinators for two-level lenses The core of our rewrite system is built
using strategic term rewriting (Lämmel, 2003), where the combination of a standard
set of basic rules allows the simple design of flexible rewriting strategies in a com-
positional style. Some standard strategic combinators for identity (nopT), sequential
composition (�) and left-biased choice (‖) are defined below and, derived from these,
other combinators such as optional rule application (tryT) and repetition (manyT) can
be encoded:

nopT :: RuleT

nopT x = return (View IdLns x)

(�), (‖) :: RuleT → RuleT → RuleT

(r � s) a = do View f b ← r a

View g c ← s b

return (View (CompLns b g f) c)

(r ‖ s) x = r x ‘mplus ‘ s x

tryT ,manyT :: RuleT → RuleT

tryT r = r ‖ nopT

manyT r = tryT (r �manyT r)

While this small set of combinators suffices for applying transformations at a single
level, combinators that descend into the structure of types are more challenging to define.
Like (Lämmel and Peyton Jones, 2003) and other strategic programming languages,
instead of defining generic traversals by induction on the structure of types, we define a
small set of traversal combinators. One such combinator that traverses the functorial
structure of types is allT , by applying an argument rule to all immediate children of a
data type:

6.2 A STRATEGIC LENS LIBRARY 165

allT :: RuleT → RuleT

allT r One = return (View IdLns One)

allT r (List a) = do View f b ← r a

return (View (MapLns f) (List b))

allT r t@(Data s f) = do

ViewF l g ← allF r f

new ← newData s g

return (View (CataLns (CompLns (rep g new) InnLns (l new))) new)

...

allF :: RuleT → RuleF

allF r I = return (ViewF (λt → IdLns) I)

allF r L = return (ViewF (λt → IdLns) L)

allF r (K a) = do View l b ← r a

return (ViewF (λt → l) (K b))

allF r (f } g) = do ViewF l1 h ← allF r f

ViewF l2 i ← allF r g

return (ViewF (λt → ProdLns (l1 t) (l2 t)) (h} i)

...

The behavior of allT for user-defined types is the most interesting: it invokes the
auxiliary rule allF that propagates a rule application down to the constants of the base
functor of the data type, where it applies the argument rule, and returns a natural lens
transformation as a rewrite rule RuleF on functor representations; then, it constructs a
bottom-up fold lens that recursively applies the lens transformation to all children of
the recursive type. Note that such recursive fold lens is always well-behaved due to its
particular form (Chapter 4). A natural lens transformation defines a view of a functor,
and is encapsulated by a type ViewF :

type NatLens f g = ∀a. Type a → Pf (Lens (Rep f a) (Rep g a))

data ViewF f where

ViewF :: (Functor f ,Functor g)⇒ NatLens f g → Fctr g → ViewF f

type RuleF = ∀f . Fctr f → RuleM (ViewF f)

As long as the application of a rule may change the structure of a type, we need
to be able to dynamically construct new types during rewriting. For this purpose, the
monadic function newData :: String → Fctr f → RuleM (Type (µ f)) receives a

166 CHAPTER 6: THE Multifocal FRAMEWORK

type name and a functor representation and returns a new unique type representation.
Although not shown in the code of allT , if the base functor is not modified we return
the original type. The RuleM monad is responsible for keeping track of new types and
preserving name uniqueness. Also, it allows newData to avoid generating duplicate
types whenever another new type with the same name and functor already exists. Newly
generated types must also be added to our type representation GADT as fixed points of
functors:

data Type a where

...

NewData :: Functor f ⇒ String → Fctr f → Type (µ f)

Note how, unlike user-defined data types, a new type is not an instance of the Mu class,
because there exists no corresponding data type in the context of the transformation.
While the Data constructor allows users to perform rewriting over user-defined types,
the NewData constructor provides the necessary support for representing the results of
such transformations.

Using allT , we can define the derived everywhereT combinator that traverses a
type representation in a bottom-up fashion, applying the given rule to all its descendants:

everywhereT :: RuleT → RuleT

everywhereT r = allT (everywhereT r)� r

Another strategic type traversal is onceT , that applies a given rule exactly once
somewhere inside a type representation at an arbitrary depth, by traversing the type in a
top-down approach:

onceT :: RuleT → RuleT

onceT r ‚ = mzero

onceT r (List a) = r (List a) ‘mplus ‘ (do

View l b ← onceT r a

return (View (MapLns f) (List b))

onceT r a@(Data s f) = r a ‘mplus ‘ (do

ViewF l b ← onceF r f

new ← newData s g

return (View (AnaLns (CompLns (rep f a) (l a) OutLns)) new)

...

6.2 A STRATEGIC LENS LIBRARY 167

onceF :: RuleT → RuleF

onceF r I = mzero

onceF r L = do View l ga ← r (rep L ‚)

FRep g ← inferFctr ‚ ga

return (ViewF (λt → l) g)

onceF r (f } g) =

do View l ha ← r (rep (f } g) ‚)

FRep h ← inferFctr ‚ ha

return (ViewF (λt → l) h)

‘mplus ‘ do ViewF l h ← onceF r f

return (ViewF (λt → ProdLns (l t) IdLns) (h} g))

‘mplus ‘ do ViewF l i ← onceF r g

return (ViewF (λt → ProdLns IdLns (l t)) (f } i))

...

The onceT traversal stops as soon as its argument rule can be applied successfully. This
means that, for user-defined types, it does not necessarily descend into the constants of
the base functor, but applies the rule anywhere inside the functor representation. This
more intricate behavior is crucial to enable the application of type rewriting rules at
particular positions inside user-defined types that are not constants of the base functor
of the type. This will be used, for example, to identify lists of child elements in our
application scenarios from Section 6.4. To be able to apply normal type rules inside
a functor, the auxiliary rule onceF flattens the functor by applying it to a special type
marker ‚ that denotes a kind of uninstantiated type variable:

data Type a where

...

‚ :: Type a

When the argument rule can be successfully applied, it infers a new functor repre-
sentation from the target type using ‚ to remember the recursive invocations. Such
type-functor unification is implemented by the procedure inferFctr : MonadPlus m ⇒
Type a → Type b → m (FctrRep a b). Here, the FctrRep a b wrapper encapsulates
a representation of a functor f together with a proof that f applied to the marker type a

is actually equal to the flattened type b3:
3In Haskell, type contexts can include equality constraints (Schrijvers et al., 2007) of the form t1 ∼ t2

which entail that the types t1 and t2 must be equal after reduction, i.e., application of type functions.

168 CHAPTER 6: THE Multifocal FRAMEWORK

data FctrRep a b where

FRep :: (Functor f ,Rep f a ∼ b)⇒ Fctr f → FctrRep a b

For recursive types, the resulting lens performs a top-down traversal (unfold) that
applies the value-level transformations of the argument rule once for each recursive
element. Again, note that this recursive unfold lens is always well-behaved due to its
shape (Chapter 4).

The outermostT traversal performs top-down exhaustive rule application and is
defined at the cost of onceT :

outermostT :: RuleT → RuleT

outermostT r = manyT (onceT r)

Local combinators for two-level lenses To control the application of certain rules
when using generic traversal combinators, it is useful to identify locations inside type
representations. For that purpose, we define the whenT combinator that applies an
argument rule whenever a generic type-level predicate is satisfied, or fails otherwise:

type PredicateT = ∀a. Type a → Bool

whenT :: PredicateT → RuleT → RuleT

whenT p r a = do {guard (p a); r a }

These type-level predicates can be seen as patterns that represent specific type structures.
As an example, we can define the atP predicate (and the corresponding atT combinator)
that succeeds when the name of the current type matches a given name:

atP :: String → PredicateT

atP name (Data n f) = sameName name n

atP name = False

atT :: String → RuleT → RuleT

atT name r = whenT (atP name) r

Here, the sameName function checks if two names are equal according to our repre-
sentation. Due to the proliferation of dynamically generated types imposed by some of
our strategic combinators, we assume that different types always have unique identifier
names (managed by the RuleM monad) but may represent similar element names (think
of the encoding of two distinct XML elements with the same name).

6.2 A STRATEGIC LENS LIBRARY 169

Other combinators for processing user-defined types inspired by Focal (Foster et al.,
2007) are: hoistT that unpacks a user-defined type by applying out at the value-level;
plungeT that constructs a new (non-recursive) user-defined type by applying in at the
value-level; and renameT that renames an existing user-defined type, issuing the id

lens. Notice that, for recursive types, hoistT followed by plungeT is different from
renameT since there is no general method to “tie the recursive knot”. Despite the latter
would simply rename the type, the former would unpack the recursive type once and
return a new non-recursive top-level type with the same name.

Abstraction combinators for two-level lenses Our library of two-level lenses also
supports specific abstraction combinators. To delete part of a schema, we simply call
eraseT at the appropriate location: it deletes the current top-level type, by replacing it
with the unit type:

eraseT :: RuleT

eraseT a = return (View (BangLns (Pnt (defvalue a))) One)

At the value level, eraseT applies the ! f lens, where f :: One → a is a function
that generates a default value of the erased type a. For this purpose, we introduce a
function defvalue :: Type a → a that generates a default value for an inductive type
representation and define f = defvalue a.

So far, our combinators build generic transformations that describe the explicit
changes that are performed on the source type. An alternative way to specify generic
programs is to perform queries that traverse arbitrary structures to collect values of a
specific type, as the everything combinator presented at the beginning of this section.
A generic query returning values of type r can be encoded in Haskell as a function
with type Q r = ∀a. Type a → a → r . A class of such functions will be presented
in Section 6.3. We incorporate generic queries as two-level bidirectional rewrite rules
in two steps: we first specialize the query for the specific input type to which it is being
applied, and then try to lift the specialized point-free function into a point-free lens:

liftQ :: Type r → Pf (Q r)→ RuleT

liftQ r q a = do let f = reduce optimize_query (Fun a r) (ApplyQ a q)

lns ← lensify (Fun a r) f

return (View lns r)

170 CHAPTER 6: THE Multifocal FRAMEWORK

In this code, the ApplyQ point-free combinator converts a generic query into a regular
function by applying it to a specific type, and the optimize_query strategy specializes
the generic point-free function to a non-generic point-free function. More details on the
specialization and optimization of point-free expressions will be provided later in Sec-
tion 6.3. To lift the resulting functions into lenses, the lensify combinator checks if their
point-free expressions are defined using only the point-free lens combinators from Chap-
ter 4, otherwise rule application fails. For lenses requiring additional parameters such
as π1,π2, ! and f O g , default values and left-biased choices are assumed.

Given a lens transformation between specific types, it can be lifted to a two-level
rewrite rule as follows:

liftLns :: Type c → Type a → Pf (Lens c a)→ RuleT

liftLns c a lns t = do Eq ← teq c t

return (View lns b)

To be able to apply the lens, the rule must test if the input type t matches the concrete
type c of the lens. This combinator is particularly useful for extending the set of primi-
tive two-level combinators with user-defined lenses. It also allows users to write more
refined alignment-aware code for specific pieces of a larger two-level transformation,
using the delta lenses from Chapter 5.

Unleashing the value-level lenses So far, we have camouflaged type-changing rewrite
strategies as type-preserving transformations by using the View constructor. Conse-
quently, we cannot use the resulting lenses directly (unless we know the target types
a priori) because the target type is statically undefined, and is only available after
executing the type-level transformation. To overcome this issue, we export the resulting
view type and the corresponding value-level lens to a new Haskell module that can be
compiled and executed independently:

generateHaskell :: [FilePath]→ Type a → RuleT → IO ()

The generateHaskell function receives a list of input Haskell modules to import (where
the original source types shall be defined), a source type representation and a two-
level transformation, and writes as output to a new Haskell module, containing an
optimized lens transformation (by applying the rewrite system from the next section)
and dynamically generated data type declarations (and conforming instances) for all the
elements of the target type.

6.3 A POINT-FREE REWRITING LIBRARY 171

6.3 A Point-free Rewriting Library

A known disadvantage of strategic programs is their worse performance in comparison
to analogous non-strategic ones. For example, Mitchell and Runciman (2007) have
reported that the SYB implementation of a standard set of benchmark functions runs 7
times slower in average than the non-strategic implementation. Part of this performance
loss is due to the run-time checks needed to determine at each node whether to apply
specific or generic behavior. The remaining is due to structural reasons inherent to this
style: the traversal combinators must blindly traverse the whole data structure, even if a
certain branch does not mention types where the specific behavior applies.

Similarly, after executing a two-level transformation, the composed value-level
transformations still traverse whole input data structures. The solution used in the
2LT framework (Visser, 2008) was to develop a rewrite system for the optimization of
the value-level point-free functions using algebraic point-free laws (Cunha and Visser,
2007). After rewriting, the resulting transformations work directly between the source
and target types, by fusing and cutting redundant traversals, and are significantly more
efficient. A similar rewrite system was used to optimize generic value-level functions,
by adding laws for the specialization of generic functions over specific types into
non-optimized point-free definitions (Cunha and Visser, 2011).

However, the major drawback of both approaches was the lack of support for user-
defined recursive types. In this section, we extend this point-free rewrite system to
also cover arbitrary recursive data types. As particular contributions, we show how to
specialize generic traversal combinators for recursive types using well-known recursion
patterns and propose a technique to mechanize the challenging fusion laws for recursion
patterns, that traditionally require a “guessing” step.

Moreover, we extend the system to support the rewriting of point-free lenses. Of
course, optimization could be attempted independently at the three components of
a lens (as in the 2LT framework (Visser, 2008)), since they are also defined in the
point-free style, but this would lead to a much more expensive optimization of the three
components separately, allied to the fact that the complexity of the put function prevents
the automatic spotting of many optimization opportunities. We ended up with a mixed
approach: the bulk of optimizations is performed directly at the lens level (namely,
all fusions involving recursion patterns), with some minor optimizations involving the
unpacking of “opaque” lens combinators performed later at each component separately.

172 CHAPTER 6: THE Multifocal FRAMEWORK

6.3.1 Specializing Generic Queries

Generic value-level programs come in two flavors: type-preserving transformations that
preserve the type of the input and type-unifying queries that return values of a specific
type. In this thesis, we will focus on the latter. Generic queries, that traverse arbitrary
data structures to collect values of a specific type, constitute typical examples of
transformations that abstract a source type to keep only particular concrete information,
and are a good candidate high-level language for expressing generic structure-shy
lens programs. In addition to alleviating the usual inefficiency issue that plagues
generic programs, the specialization and subsequent optimization of generic queries
is instrumental for their successful bidirectionalization into lenses. Remembering the
liftQ two-level combinator from Section 6.2, we convert a generic query into a lens by
first specializing it from its high-level form into a point-free expression, that can be
further simplified using the point-free calculus, and then try to syntactically match the
optimized point-free expression with our language of point-free lenses from Chapter 4.
In Section 6.4, we will use this same technique to lensify XPath queries. Conversely,
type-preserving programs hardly constitute good examples of lens transformations. For
completeness, the specialization for this class of programs can be found in (Cunha and
Pacheco, 2011).

The following set of combinators captures the essence of generic type-unifying
queries:

∅ : Q R -- empty result
(∪) : Q R → Q R → Q R -- union of results
gmapQ : Q R → Q R -- fold over children
everything : Q R → Q R -- fold over every node
mkQA : (A→ R)→ Q R -- creation
apQA : Q R → (A→ R) -- composition

As defined above, Q R represents the type of generic queries with result type R. To
simplify the specialization laws, we will assume that R is a monoid, with a zero : R

element and an associative plus : R × R → R operator. In practice, this makes little
difference since most typical result types, namely lists and integers, are indeed monoids.
In the SYB library, the type Q r is defined as ∀a. Data a ⇒ a → r . Type classes
like Data are extensively used in SYB to infer type representations for data types.
Among others, these are necessary in the definition of mkQ to determine where the

6.3 A POINT-FREE REWRITING LIBRARY 173

apQA ∅ = zero◦ ! ∅-APPLY

apQA (f ∪ g) = plus ◦ (apQA f M apQA g) ∪-APPLY

apQA (gmapQ f) = zero◦ ! , if A base type

apQA×B (gmapQ f) = plus ◦ (apQA f × apQB f)

apQA+B (gmapQ f) = apQA f O apQB f

apQµF (gmapQ f) = apQ′F µF f ◦ outF


gmapQ -APPLY

apQA (everything f) = apQA (f ∪ gmapQ (everything f)) everything -APPLY

apQA (mkQA f) = f

apQA (mkQB f) = zero◦ ! , if A ı B

 mkQ-APPLY

apQ′F A f = fplusF, if A ≡ R

apQ′F A f = fplusF ◦ F apQA f , if A ı R

 FUNCTOR-APPLY

Figure 6.1: Laws for the specialization of generic queries.

type-specific transformation should be applied, and the heavy use of type-classes to
infer type representations is in fact a large part of SYB’s inefficiency. To factor out
this penalty and simplify the presentation, instead of type classes we will parameterize
mkQ with an explicit type representation. Besides everything , that traverses a data
structure in a bottom-up fashion to apply a query to all nodes while collecting the results
using the plus operation, gmapQ collects the results of applying a query to all direct
children, ∪ sums the results of two queries, and ∅ denotes the query that always returns
zero. To apply a generic query to a particular type we have the explicit combinator apQ.
As an example, the awardnames generic query from the previous section can now be
redefined as follows:

awardnames :: Actor → [Name]

awardnames = apQActor (everything (mkQAward awname))

where awname (Award name result) = [name]

Figure 6.1 presents the laws used to specialize type-unifying combinators into point-
free (assuming that R denotes the result type). Specialization proceeds by pushing down
the apQ combinator until it gets consumed by the mkQ-APPLY law. Although not
generic, the definitions produced by this specialization are very inefficient because they
still traverse the whole data structure. However, using point-free program calculation

174 CHAPTER 6: THE Multifocal FRAMEWORK

laws they can be optimized in order to eliminate redundant traversals. The auxiliary
apQ′ combinator, used by gmapQ for user-defined types, behaves like apQ but applies
the argument query inside a functor. The fplus function generalizes the plus monoid
operation and folds an arbitrary regular functor into a monoid result, as follows:

fplusF : F R → R

fplus Id = id

fplusA = zero◦ !

fplusF⊗G = plus ◦ (fplusF × fplusG)

fplusF⊕G = fplusFO fplusG

fplusF�G = fplusF ◦ F fplusG

fplusT = ([fplusB R])B R

Notice that the everything -APPLY law describes the recursive definition of the everything

traversal combinator using gmapQ and ∪. Since the 2LT framework (Visser, 2008) only
handled non-recursive user-defined data types, this law did not pose any termination
problems. However, it cannot be used for recursive types because it would lead to
an infinite expansion of the definition, due to successive expansions of everything in
recursive occurrences of the type.

The key to avoid infinite expansions is to specialize traversal combinators using an
alternative definition based on recursion patterns. When applied to an inductive type,
the bottom-up everything traversal will be specialized into a paramorphism over that
type:

apQµF (everything f) =

〈|plus ◦ (apQ′
F ÛR (everything f) × apQµF f) ◦ (F π1M inF ◦ F π2)|〉

F

The behavior of this paramorphism is better understood with the help of the following
diagram:

µF
outF //

〈|·|〉F
��

F µF
F (id M id) // F (µF × µF)

F (〈|·|〉F× id)

��
R R × R

plus
oo F R × µF

apQ′
F ÛR (everything f)×apQµF f

oo F (R × µF)
F π1 M inF◦F π2

oo

The intent of the function apQ′
F ÛR (everything f) is to apply the query to all content

of the functor, apart from its recursive occurrences (which were already processed

6.3 A POINT-FREE REWRITING LIBRARY 175

recursively by the paramorphism itself). This behavior is achieved by adding the
following law to the set presented in Figure 6.1:

apQÛA f = zero◦ ! rec-APPLY

This law guarantees that a typed marked with a curved line is ignored by the apQ
combinator. For example, for lists of type A the expression apQ′

F ÛR (everything f)

would be instantiated to apQ′
(1⊕A⊗ Id) ÛR (everything f), which is equivalent after

simplification to (zero◦ !)O apQA (everything f)◦π1. Note that apQ′
Id ÛR f = zero◦ !

since R ı ÙR.
After recursion, the input value is reconstructed using inF in order to feed it to the

generic query. Simultaneously, the query is applied to the non-recursive type contents,
and finally both are put together with the monoid plus operator.

To exemplify the specialization of a generic query over a recursive type, consider
the following example where f = mkQAward awname : Q [Name] and F = ListAward

(implementation-wise we consider a special case for lists):

apQ[Award] (everything f)

= {everything -APPLY}
〈|plus ◦ (apQ′

F [̇Name]
(everything f) × apQ[Award] f) ◦ (F π1M inF ◦ F π2)|〉

F

= {mkQ-APPLY; FUNCTOR-APPLY; rec-APPLY; plus -ZERO;×− CANCEL}
〈|(apQ1 (everything f)O plus ◦ (apQAward (everything f)× id)) ◦ F π1|〉F
= {everything -APPLY;∪-APPLY; gmapQ -APPLY; plus -ZERO}

apQAward (gmapQ (everything f))

= { ...}
zero◦ !

〈|(apQ1 f O plus ◦ (plus ◦ (apQAward f M zero◦ !)× id)) ◦ F π1|〉F
= {mkQ-APPLY; plus -ZERO}
〈|(zero◦ ! O plus ◦ (awname × id)) ◦ F π1|〉F
= {〈| · |〉 − CATA}

([zero◦ ! O plus ◦ (awname × id)])F

As expected, the result is empty if f is applied to a type that does not contain awards:

apQ[Comment] (everything f)

= { ...}

176 CHAPTER 6: THE Multifocal FRAMEWORK

([(zero◦ ! O plus ◦ (apQComment f × id))])ListComment

= {mkQ-APPLY}
([zero◦ ! O π2])ListComment

= {([·])-ZERO}
(zero◦ ! O π2) ◦ (1⊕Comment ⊗ Id) (zero◦ !) = zero◦ !

⇔{FUNCTOR-DEF; +-ABSOR;×− DEF;×− CANCEL}
zero◦ ! O zero◦ ! ◦ π2 = zero◦ !

⇔{ ! − FUSION; +-ZERO}
TRUE

zero◦ !

6.3.2 Mechanizing Fusion

The main difference between equational reasoning and term rewriting (Baader and
Nipkow, 1998) is that bidirectional equations of the form f = g are adapted into
unidirectional rewrite rules of the form f ; g (read f leads to g), indicating that a term
f can be substituted by a term g , but not otherwise. For the goal of simplification, the
general idea is to substitute terms by simpler terms (for most cases). In our point-free
rewrite system, this corresponds to viewing the point-free equational laws presented
throughout this thesis as rules oriented from left-to-right.

When rewriting transformations over recursive types, the most effective optimiza-
tions are often enabled by the fusion laws for recursion patterns, like ([·])-FUSION

and [[(·)]]-FUSION, that allow collapsing successive data traversals into a single one.
However, implementing the full power of these laws in an algebraic rewrite system is a
challenging task, since it implies “guessing” the algebra (or coalgebra) of the resulting
recursion pattern. To be more specific, remember the fold fusion law:

f ◦ ([g])F = ([h])F⇐ f ◦ g = h ◦ F f

Reading this law as a rewrite rule, in order to perform the reduction f ◦ ([g])F; ([h])F,
one must compute a function h such that f ◦ g = h ◦ F f holds. For this reason, fusion
laws for specific operations over lists or the following instance of the fold fusion law
used in (Cunha and Pacheco, 2011) are especially useful because they avoid the hard

6.3 A POINT-FREE REWRITING LIBRARY 177

guessing step:

([f])F ◦ ([inF ◦ g])F = ([f ◦ g])F ⇔ F ([f])F ◦ g = g ◦ F ([f])F

Unfortunately, we cannot always avoid the need to use general fusion, and thus some
technique must be implemented in order to mechanize it. This research topic has
received some attention in the past: one of the most successful implementations is the
MAG system (Sittampalam and de Moor, 2003), which views the guessing step as a
higher-order matching problem. However, MAG is not fully automatic and thus not
suitable for our optimization system: the user must have some idea of the steps of the
proof to provide sufficient hints to proceed with the derivation.

We reduce the hard guessing step to a simple rewriting problem that, although not
as general as MAG, is fully automatic and works in practice for many examples. In
the above fold fusion law, if the converse of f could be computed as f ◦, then h could
be trivially defined as f ◦ g ◦ F f ◦. Of course, this is just an alternative formulation of
the guessing step and useless per se. However, if f ◦ is left opaque (just denoting the
tagging of the expression f), and by applying our standard rewrite system, temporarily
augmented with the rule f ◦ f ◦; id , we manage to get rid of f ◦, then we get the desired
algebra. This idea is embodied in the following rewrite rule, where we test that f ◦ does
not occur in the normal form of f ◦ g ◦ F f ◦:

f ◦ ([g])F; ([h])F⇐ f ◦ g ◦ F f ◦
∗; h ∧ f ◦ 6∈ h ([·])-FUSION

Our technique is in a way similar to the point-wise fusion algorithm proposed by Sheard
and Fegaras (1993). The same technique can be used for mechanizing laws over
anamorphisms and paramorphisms, with rules f ◦ ◦ f ; id and f ◦ f ◦; id , respectively:

[[(g)]]F ◦ f ; [[(h)]]F⇐F f ◦ ◦ g ◦ f
∗; h ∧ f ◦ 6∈ h [[(·)]]-FUSION

f ◦ 〈|g |〉F; 〈|h|〉F⇐ f ◦ g ◦ F (f ◦ × id)
∗; h ∧ f ◦ 6∈ h 〈| · |〉-FUSION

〈|f |〉F; ([g])F⇐ f ◦ F π1
◦ ∗; g ∧ π1

◦ 6∈ g 〈| · |〉-CATA

For an example of this technique, consider the following trace demonstrating the op-
timization of a composed lens over lists (indentation in the trace indicates the rewriting
of side-conditions):

length ◦ filter_left

178 CHAPTER 6: THE Multifocal FRAMEWORK

; {filter_left − DEF; ([·])-FUSION; +-FUNCTOR-COMP; +-FUNCTOR-ID}
length ◦ (inListA •O π2

b◦ !) ◦ coassocl ◦ (id + distl) ◦ (id + id × length◦))

; {+-FUNCTOR-COMP; +-FUNCTOR-ID−1; distl − NAT}
length ◦ (inListA •O π2

b◦ !) ◦ coassocl

◦ (id + (id × length◦ + id × length◦)(π1×put length◦)◦distp,(π1×put length◦)◦distp)

◦ (id + distl)

; {coassocl − NAT; +− ABSOR}
length ◦ ((inListA ◦ (id + id × length◦) •O π2

b◦ ! ◦ (id × length◦)) ◦ coassocl

◦ (id + distl)

; { +−FUSION; length-DEF; ([·])− CANCEL; +-FUNCTOR-COMP

; ×−FUNCTOR-COMP}
(inNat ◦ (id + π2

! ◦ (id × length ◦ length◦)) •O length ◦ π2
b◦ ! ◦ (id × length◦))

◦ coassocl ◦ (id + distl)

; {× − FUNCTOR-COMP; length ◦ length◦; id }
(inNat ◦ (id + π2

!) •O length ◦ π2
b◦ ! ◦ (id × length◦)) ◦ coassocl ◦ (id + distl)

; {π2 − NAT; length ◦ length◦; id }
create id ◦ b◦ ! ◦ get length◦

; {definition of create; ! − UNIQ}
b◦ !

(inNat ◦ (id + π2
!) •O π2

b◦ !) ◦ coassocl ◦ (id + distl)

([(inNat ◦ (id + π2
!) •O π2

b◦ !) ◦ coassocl ◦ (id + distl)])ListA+B

To make the presentation clear, in this trace we mention the inverse of some rules (de-
noting the respective laws oriented from right-to-left). Obviously, to ensure termination,
these rules are not encoded as such in our rewrite system. Instead, we have generalized
versions that cover additional cases such as the following for distl -NAT (the definitions
of x and y can be easily computed, but are omitted to simplify the presentation):

distl ◦ (id × f); (id × f + id × f)x ,y ◦ distl

distl ◦ ((f + g) ◦ h × i); (f × i + g × i)x ,y ◦ distl ◦ (h × id)

6.3.3 Encoding a Point-free Rewrite System

A straightforward method to optimize the generic programs presented in this chapter and
the lenses from Chapter 4 would be to specify the point-free laws described in this thesis

6.3 A POINT-FREE REWRITING LIBRARY 179

as GHC rewrite rules (Jones et al., 2001), and allow their use by the GHC compiler.
However, such an approach provides little control over the rewrite strategy and is not
capable of implementing laws such as gmapQ -APPLY, ! -UNIQ or ([·])-FUSION, since
it does not support type-directed rewriting nor side-conditions. In order to harness
the full power of our algebraic laws, we instead recover a successful type-preserving,
type-directed rewrite system for the transformation of point-free programs (Cunha and
Visser, 2011) and extend it to support recursive types and bidirectional lenses.

Point-free rewrite system and rules In our implementation, point-free rewrite rules
are represented by monadic type-preserving functions that receive a type representation
and a point-free expression and return a new expression of the same type:

type Rule = ∀f . Type f → Pf f → RewriteM (Pf f)

The RewriteM monad fulfills the same task of the RuleM for two-level transformations:
the monadic function success updates the RewriteM monad to keep trace of successful
reductions, while failure is signaled with mzero. The extra type representation passed as
an argument to the rule allows it to make type-based rewriting decisions. For example,
we can encode the ! -UNIQ law for lenses as follows:

bang_uniq_lns :: Rule

bang_uniq_lns (Lns) (BangLns f) = mzero

bang_uniq_lns (Lns a One) l = do

let createl = createof (Lns a One) l

g ← optimise_fun (Fun One a) createl

success "!-Uniq-Lns" (BangLns g)

bang_uniq_lns = mzero

The first case of this rule avoids a rewriting loop (application of ! -UNIQ to ! it-
self. The third catch-all case indicates that the rule fails for any other input. The
second case reveals the two-layered architecture of our rewrite system: the strategy
optimise_fun simplifies function representations, of the form Pf (a → b), and the
strategy optimise_lens rewrites lens representations, of the form Pf (Lens a b). To
mediate between these two classes, the procedures getof ,createof and putof take the
representation of a lens and return the representations of the corresponding get ,put

and create functions. As a general methodology, whenever a unidirectional function is
created inside a lens rule, we apply optimise_fun to simplify it.

180 CHAPTER 6: THE Multifocal FRAMEWORK

A more intricate rule involving side-conditions is the encoding of 〈| · |〉-CATA,
instrumental for a successful conversion of specialized generic queries into lenses (since
paramorphisms perform implicit duplication and are not supported by our lens language,
despite many cases degenerate into catamorphisms that we support):

para_cata :: Rule

para_cata (Fun a@(Data fctr) b) (Para f) = do

let (fb, fba) = (rep fctr b, rep fctr (Prod b a))

g ′ = Comp fba f (Fmap fctr (Fun b (Prod b a)) (Conv Fst))

g ← optimise_fun (Fun fb b) g ′

guard (not (findConv (Pf (Fun fb b)) g))

success "para-Cata" (Cata g)

para_cata = mzero

Put quickly, the rule composes the argument of the paramorphism with the converse of
π1 and simplifies the composed function (considering the special rule for eliminating
converses). After the intermediate rewriting step, the rule uses findConv to check if
the resulting expression no longer contains temporary converses, and if successful it
returns the simplified point-free expression as the argument of a catamorphism. This
method is more general than pattern matching directly on the expression f ◦ F π1.

Our point-free rewrite system is built by re-instantiating a standard set of type-
preserving strategic combinators (Lämmel, 2003). Namely, the combinators = , �
nop, try, once and outermost encode sequential composition, choice, identity, optional
top-level rule application, single rule application at an arbitrary depth and exhaustive
top-down rule application. Using these strategic combinators, we can construct our
three main strategies: optimize_query for the specialization of type-unifying generic
programs into point-free functions; and optimize_fun and optimize_lens for the sim-
plification and optimization of point-free expressions. The last is defined as follows:

optimize_lens = outermost opt = rec

where opt = id_nat_lns � bang_uniq_lns � ...

rec = try (once fuse = optimize_lens)

fuse = cata_fusion_lns � ana_fusion_lns � ...

This strategy exhaustively applies the set of rewrite rules for lenses described across
this thesis. Some of these rules (particularly fusion rules) are evidently more expensive,

6.4 Multifocal: A TRANSFORMATION LANGUAGE FOR XML SCHEMAS 181

XML File
(.xml)

XML Schema
(.xsd)

XML File
(.xml)

Multifocal File
(.2lt)

XML Schema
(.xsd)Evaluate

XML File
(.xml)

Bidirectional Lens
Executable

Forward

Backward XML File
(.xml)

Figure 6.2: Architecture of the Multifocal framework.

due to the intermediate rewriting of side-conditions, and are deferred inside the strategy
until no other rule can be applied.

6.4 Multifocal: A Strategic Bidirectional Transforma-
tion Language for XML Schemas

The previous sections have described our Haskell libraries for the specification, execu-
tion and optimization of two-level lens transformations over algebraic data types. In
this section, we provide an overview of the Multifocal language and the corresponding
framework for the two-level transformation of XML Schemas.

The general architecture of our framework is illustrated in Figure 6.2. A two-level
transformation defined as a Multifocal program is executed in two stages: first, it is
translated into our strategic lens library and evaluated as a type-level transformation
by applying it to a source XML Schema, producing a target XML Schema and a
bidirectional lens; second, the lens is compiled into a Haskell executable file that can
be used to propagate updates between XML documents conforming to the source and
target schemas. In our scenario, optimization is done at the second stage: we can
optimize the value-level lenses once for each input schema and generate optimized
executables that efficiently propagate updates between XML documents. We discuss
particular examples involving the generic evolution of recursive XML Schemas, and
compare their performance gains over non-optimized definitions.

182 CHAPTER 6: THE Multifocal FRAMEWORK

6.4.1 Language

Our two-level XML transformation language is defined by embedding the strategic lens
combinators from Section 6.2 for the transformation of XML Schemas, together with
specific XML transformers. The full syntax of Multifocal is defined as follows:

strat ::= nop | strat » strat | strat || strat | many strat | try strat

| all strat | once strat | everywhere strat | outermost strat

| at ’"’ tag ’"’ strat | when ’"’ tag ’"’ strat

| hoist | plunge ’"’ tag ’"’ | rename ’"’ tag ’"’

| erase | select ’"’ xpath ’"’

The strategic combinators (in the first two lines) simply apply the Haskell combinators
from Section 6.2 over translated schema representations. The intuition for strategic
traversals over XML Schemas is to descend into child elements in the sense of XPATH

traversals. For example, the all combinator applies a transformation to all immediate
children of the current schema element (for the imdb element from Figure 1.3, these
would be all movie, series and actor elements).

The at combinator applies an argument rule if the name of the current element
matches a given XML element tag. As in XPath, we will consider that XML node
names preceded by an ampersat “@” denote attributes. On the other hand, when takes
the name of an XML Schema element and performs the following pattern matching:
if the given element name is defined as a top-level element in the source schema and
its structure matches the structure of the current element (by converting its structure
into type-level predicate that is passed to whenT), then it applies the argument rule;
otherwise, rule application fails. The structure of the top-level element is converted
into a type-level predicate by partially applying teq to the its type representation.
Polymorphic types are encoded by extending our type representations with unbounded
type variables and adapting teq to handle variable matching.

Other tag-based combinators inspired by Focal (Foster et al., 2007) are: hoist
that untags the current element, plunge that names a new XML element and rename
that renames the current element.

As a language for defining views of XML Schemas, Multifocal also supports
specific abstraction combinators. We can delete part of a schema by calling erase
at the appropriate location. A well-known feature of XML query languages like
XPath is that they allow writing generic queries that traverse arbitrary documents to

6.4 Multifocal: A TRANSFORMATION LANGUAGE FOR XML SCHEMAS 183

select particular nodes from XML documents without having to exhaustively specify
intermediate element tags. To apply an XPath query to a schema, we invoke the
select combinator: it internally converts the XPath expression into a point-free
generic query that abstracts the schema into the desired result type; and invokes the
liftQ strategy that attempts to bidirectionalize the generic query into a lens.

6.4.2 Interface

We now unveil the implementation of the Multifocal framework. The embedding of
the Multifocal language in our framework is supported by front-ends that translate
XML Schemas and XML documents into Haskell types and values, and vice-versa. As
exemplified in Section 6.2, these front-ends map XML Schemas to equivalent type-safe
representations. A more technical description of similar XML-Haskell front-ends can
be found in (Berdaguer et al., 2007).

Two-level transformations written in Multifocal are translated into our core library
of strategic lens combinators (Section 6.2) that operate on Haskell type representations.
After translating the source XML Schema into a Haskell type representation, the
framework applies the type-level transformation to produce as output a target type and
a lens representation as Haskell values. From these, it generates a target XML Schema
and a Haskell executable file containing the lens transformation and the data type
declarations that represent all the source and target XML elements. The main function
of this file parses XML documents complying to the schemas, converts them into
internal Haskell values, runs the lens transformation either in the forward or backward
direction to propagate source-to-target or target-to-source updates, and finishes by
pretty-printing an updated XML document.

Conversion of XPath queries As done in (Cunha and Visser, 2011; Ferreira and
Pacheco, 2007), we convert XPath queries into generic point-free programs of type
Q [∗] that return sequences of dynamic values. Since XPath result sets are untyped,
∗ works as a generic type wrapper and allows the encapsulation of multiple values
of different types to be returned by the generic query (e.g., values of different XML
elements with the same name but different base types). Using this conversion, followed
by a successful “lensification” with lensify (that attempts to unwrap result values of
type ∗ when they are known to have the same type), our interpreter can specialize XPath
queries into lenses over recursive XML schemas.

184 CHAPTER 6: THE Multifocal FRAMEWORK

π1
! : A × 1 Q A π2

! : 1 × A Q A -- Products
id O nil : [A] + 1 Q [A] nil O id : 1 + [A] Q [A] -- Sums
filter_left : [A + 1] Q [A] filter_right : [1 + A] Q [A] -- Lists
id •O id : A + A Q A concat : [[A]] Q [A] -- Ambiguous types

Figure 6.3: Rules for the normalization of XML Schema representations.

Schema normalization To keep a minimal suite of combinators, our language sup-
ports abstractions through the erase combinator, that deletes elements locally and
thus leaves “dangling” ones in the target schema. However, these empty elements
are unintended and may yield XML Schemas that are deemed ambiguous by many
XML processors. For example, applying a transformation that erases series inside
imdb elements to the IMDb schema from Figure 1.3 would result in a (flattened) list
representation List (Either (Data "movie" fm) One). Such dangling unit types
have no representation in the XML side and must be deleted from the target schema
representation. Such deletion is performed by a normalize procedure that removes
these and other ambiguities, by exhaustively applying the lens transformations from Fig-
ure 6.3. Normalization is silently applied by extending the semantics of the all and
once traversals (denoted by J·K) so that they apply normalize after rewriting:

Jall rK = allT JrK� normalize

Jonce rK = onceT JrK� normalize

Lens optimization Although the lens transformations generated by our framework
are instantiated for particular source and target schemas, they still contain many re-
dundant computations and traverse the whole structures, as a consequence of being a
two-level transformation. To improve their efficiency, we employ the rewriting library
from Section 6.3 for the optimization of point-free lenses. supporting powerful laws for
fusing and cutting redundant traversals. After rewriting, the resulting transformations
work directly between the source and target types and are significantly more efficient,
as demonstrated below. In our framework, we provide users with the option to op-
timize the generated bidirectional programs at the time of generation of the Haskell
bidirectional executable, if they intend to repeatedly propagate updates between XML
documents conforming to the same schemas. This could be the case, for example, when
the schemas represent the configuration of a live system that replies to frequent requests.

6.4 Multifocal: A TRANSFORMATION LANGUAGE FOR XML SCHEMAS 185

In such cases, the once-a-time penalty of an additional optimization phase for a specific
schema is amortized by a larger number of executions.

6.4.3 Application Scenarios

We now present two XML evolution scenarios and compare the performance of the
lenses resulting from the execution of the two-level transformations with their automati-
cally optimized definitions.

The first example consists in summarizing the information about movies and actors
stored in the IMDb schema from Figure 1.3, according to the following Multifocal

transformation:

everywhere (try (at "series" erase))
>> everywhere (try (at "movie" (
outermost (when "reviews" (
select "count(//comment)" >> plunge "@popularity"))

>> outermost (when "boxoffices" (
select "sum(//@value)" >> plunge "@profit")))))

>> everywhere (try (at "actor" (
outermost (at "played" (
select "award/@name" >> all (rename "awname"))))))

This transformation performs the following steps:

1. Delete all series elements by applying an erase (constrained by at) every-
where in the source schema;

2. For each movie, replace its reviews by a popularity attribute counting
the number of comments and replace its boxoffice elements with a profit
attribute summing the total value elements. These attributes are calculated
using XPath queries (constrained by when) and tagged with plunge;

3. For each actor, keep his name and compute a list of award names using
another XPath query. The name elements in the result sequence are renamed to
awname by applying rename within the all traversal.

In this transformation, the reviews and boxoffices names used by the when com-
binator denote top-level XML Schema elements (Figure 6.4) that must be defined in the
source XML Schema. They match the type representations List (Data "review" fr)

and List (Data "boxoffice" fb), for arbitrary functors fr and fb, i.e., lists of

186 CHAPTER 6: THE Multifocal FRAMEWORK

<xs:group name="reviews"><xs:sequence>
<xs:element name="review" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence></xsd:group>
<xs:group name="boxoffices"><xs:sequence>

<xs:element name="boxoffice" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence></xs:group>

Figure 6.4: XML Schema top-level elements modeling specific type patterns.

awname

imdb
* *

*
titleyear profit

 movie actor

popularity director name

Figure 6.5: A view of the movie database schema from Figure 1.3.

company

*

name

dept

employee

+*

person salary

name address

manager

Figure 6.6: A company hierarchized pay-
roll XML schema.

*

*

company

name managername

dept

branch

Figure 6.7: A view of the company
schema.

elements named review and boxoffice, respectively. The resulting schema is
depicted in Figure 6.5.

A classical schema used to demonstrate strategic programming systems is the so
called “paradise benchmark” (Lämmel and Peyton Jones, 2003). Suppose one has a
recursive XML Schema to model a company with several departments, each having
a name, a manager and a collection of employees or sub-departments, illustrated
in Figure 6.6. Our second evolution example consists in creating a view of this schema
according to the following transformation:

everywhere (try (at "manager" (
all (select "(//name)[1]") >> rename "managername")))

>> everywhere (try (at "employee" erase))
>> once (at "dept" (hoist >> outermost (at "dept" (

6.4 Multifocal: A TRANSFORMATION LANGUAGE FOR XML SCHEMAS 187

Figure 6.8: Benchmark results for the IMDb example.

Figure 6.9: Benchmark results for the paradise example.

select "name" >> rename "branch")) >> plunge "dept"))

For each top-level department, this transformations keeps only the names of managers
(renamed to managername), deletes all employees and collects the names of direct
sub-departments renamed to branch. The resulting non-recursive schema is depicted
in Figure 6.7. There are some details worth noticing. First, it is easier to keep only
manager names using a generic query instead of a transformation that would need to
specify how to drop the remaining structure. The XPath filter “[1]” guarantees a sole
result if multiple names existed under managers. Second, since dept is a recursive
type, we unpack its top-level recursive structure once using hoist to be able to process
sub-branches, and create a new non-recursive dept element with plunge.

Performance Analysis Unfortunately, as discussed in Section 6.3, the lenses resulting
from the above two-level transformations are not very efficient. For instance, for the
IMdb example the traversals over series, movies and actors are independent and

188 CHAPTER 6: THE Multifocal FRAMEWORK

can be done in parallel. Also, the transformations of reviews and boxoffices and
the extra (hidden) normalizing step that filters out unit types (originating from erased
series elements) can be fused into a single traversal. For the paradise example, all the
three steps and the extra normalization step (for erased employee elements) can be
fused into a single traversal. Also, the first two steps, that traverse all department values
recursively due to the semantics of all (invoked by everywhere) for recursive types,
are deemed redundant for sub-departments by the last step.

All these optimizations can be performed by an optional lens optimization phase.
We have measured space and time consumption of the lenses generated by our two
examples, and the results are presented in Figure 6.8 and Figure 6.9. Most of a
lens’ inefficiency comes from the complex synchronizing behavior of its put function.
Therefore, to quantify the speedup achieved by the optimizations, we have compared
the runtime behavior of put functions for non-optimized (specification) and
optimized lens definitions (optimized). Note that the lens expressions corresponding
to XPath queries are already optimized in the non-optimized lens, since their successful
“lensification” depends on their specialization. To factor out the cost of parsing and
pretty-printing XML documents from and to our internal Haskell representation, we
have tested the generated put functions of the lenses with pre-compiled input databases
of increasing size (measured in MBytes needed to store their Haskell definitions),
randomly generated with the QuickCheck testing suite (Claessen and Hughes, 2000).
We compiled each function using GHC 7.2.2 with optimization flag O2. As expected,
the original specification performs much worse than the optimized lens, and the loss
factor grows with the database size. Considering the biggest sample, the loss factors
are of 3.7 in time and 4.1 in space for the IMDb example and of 9.4 in time and 13.4
in space for the paradise example. The more significant results (and the worse overall
performance) for the paradise example are justified by the elimination of the recursive
traversals over sub-departments.

To better quantify the degree of our optimizations, we should also include in our
benchmark a comparison with an handwritten definition. However, it is extremely
complex to hand-code the put functions of the lenses used in our examples, let alone
efficient versions. For that purpose, we consider a simple example of a lens that counts
the number of women in a list of people containing names and gender, defined in our
point-free lens language as follows:

type Person = (Name,Gender) type Name = String

6.5 SUMMARY 189

Figure 6.10: Benchmark results for the women example.

data Gender = Male | Female

women : [Person] Q Nat

women = length ◦ filter_left ◦map (outGender ◦ π2
"Eve"◦ !)

The benchmark results for this example are presented in Figure 6.10. Below the
optimized lens, we introduce another measure for the output of a second optimization
phase performed on the point-free definition of the put function (optimized pf).
Even for this simple example, the optimized put allocates nearly half the memory
and performs very close to an handwritten definition (handwritten), both in time
and space. This additional speedup reported in optimized pf is mainly due to the
optimization of expressions involving “opaque” lens isomorphisms, such as assocl or
distl .

6.5 Summary

This chapter proposed Multifocal, a strategic two-level bidirectional transformation
language for XML Schema evolution with document-level migrations based on bidirec-
tional lenses. By using strategic programming techniques, these coupled transformations
can be specified in a concise and generic way, mimicking the typical coding pattern
of XML transformation languages such as XSLT, that allow to easily specify how to
modify only selected nodes via specific templates. When applied to input schemas,
our schema-level transformations produce new schemas, as well as bidirectional lens
transformations that propagate updates between old and new documents. In the Multifo-

cal framework, we release such bidirectional transformations as independent programs

190 CHAPTER 6: THE Multifocal FRAMEWORK

that can be used to translate updates for particular source and target schemas. We also
provide users with an optional optimization phase that improves the efficiency of the
generated lens programs for intensive usage scenarios.

At the core of this framework, we have developed a library of point-free lenses
between inductive data types (supporting both state-based and delta-based lenses), a
library of two-level strategic lenses for the evolution of arbitrary inductive data type
representations, and a library for the automated rewriting of point-free lenses and for
the specialization of generic queries over recursive types.

Our framework has been fully implemented in Haskell, and is available through
the Hackage package repository (http://hackage.haskell.org) under the
name multifocal. The three core Haskell libraries are available under the names
pointless-lenses, pointless-2lt and pointless-rewrite, honoring
a common joke about the point-free style.

http://hackage.haskell.org

Chapter 7

Conclusion

This dissertation discusses the design and implementation of the Multifocal framework
for defining generic views of XML Schemas and algebraic data type representations.
In response to the research challenges posed in Chapter 1, our framework is: (1) two-
level, in the sense that each transformation, for a given source schema, provides a
view schema and data conversion functions between documents that conform to the
schemas; (2) bidirectional, by supporting both forward and backward document-level
functions, obeying a strong bidirectional semantics that is based on total well-behaved
lenses and formalizes the schema-level abstractions; (3) and suited to the automatic
optimization of the lens transformations resulting from the evaluation of the two-
level stage, underpinned by a rich algebraic calculus of point-free lenses. Within the
development of the Multifocal framework, our main contributions are:

• A point-free lens language (Chapter 4). We showed that most of the standard
point-free combinators can be lifted to well-behaved lenses. To express generic
lenses over arbitrary inductive data types, we identified precise termination
conditions required to lift recursion patterns to well-behaved lenses. We believe
that, using suitable techniques, these conditions are easier to verify than the ones
stated in (Foster et al., 2007) concerning general recursion. In Chapter 6, we
implemented this lens language as a Haskell library to aid the construction of
functional bidirectional programs by composition.

• An algebraic theory of point-free lenses (Chapter 4). In particular, we studied
that most algebraic laws characterizing the point-free combinators can also be
lifted to lenses. This theory allows to reason directly about lenses defined in our

191

192 CHAPTER 7: CONCLUSION

point-free language and permits to write conventional proofs at the lens level,
using only their forward point-free specification. To prove the usefulness of this
calculus, we employed it at the kernel of an automatic optimization library for
point-free lenses, thus mitigating the inefficiency of bidirectional transformations
while preserving the simplicity and elegance of a combinatorial approach. The
implementation of this library (Chapter 6) extends a previous point-free rewrite
system (Cunha and Visser, 2011) to support lenses. A key result of our theory
was that uniqueness (and therefore fusion) laws also holds for lens recursion
patterns. We proposed a technique to mechanize the challenging fusion laws.

• A point-free language of alignment-aware delta lenses (Chapter 5). This language
was constructed by recasting the point-free combinators as delta lenses with an
explicit notion of shape and data, whose transformations process not only states
but also deltas representing the issued updates. We made use of such deltas
to refine the positional behavior of our original lenses, namely by identifying
mapping lenses that only modify data and by instrumenting the recursion pattern
combinators with alignment mechanisms that infer and propagate edit operations
on shapes. The resulting lenses perform better than the previous ones due to
the delta information, in the sense that they produce smaller source updates for
certain view updates. Moreover, they are able to solve alignment for intricate
reshaping scenarios not considered before. An implementation of this delta lenses
language, using a simple minimal edit sequence differencing algorithm (Tichy,
1984), is distributed as part of our Haskell lens programming library (Chapter 6).

• A Haskell library of strategic two-level lenses (Chapter 6). The combinators
provided by this language can be used to encode generic views over arbitrary
inductive data types, allowing users to specify only the particular evolution steps
that modify the structure of the original type. As generic programming idioms,
our library supports both: generic value-level queries that collect values of a
specific type; and strategic type traversals that apply type-level transformations
at arbitrary levels inside a type. The value-level semantics of the two-level
combinators was defined according to our point-free lens language.

• The Multifocal XML transformation language (Chapter 6). This language can be
used to write structure-shy two-level transformations between XML Schemas in
a concise and compositional way, by combining flexible generic strategies with

7.1 FINAL REMARKS 193

specific XML transformers. Coupled XML transformations written in Multifocal

are translated into our Haskell library, by converting the source and target XML
Schemas to equivalent algebraic data type representations. When applied to an
input XML Schema, a Multifocal program produces a new XML Schema, as
well as a bidirectional lens compiled to a Haskell executable file that propagates
updates between XML documents conforming to old and new schemas. We
demonstrated the practical application of the Multifocal language by using it
to describe the evolution of two particular XML Schemas. In particular, we
showed that an automatic optimization phase greatly improves the efficiency of
the generated lens transformations.

Another contribution of this thesis is a detailed picture of the state of the art of the
field of bidirectional transformations, with particular emphasis on lenses. In Chapter 3,
we presented a taxonomy for the classification of the most relevant features found in
bidirectional transformation frameworks, and surveyed the most influential papers in the
field by instantiating them in our taxonomy. Hopefully, this revision can help situating
the work developed in this thesis among the vast number of existing bidirectional
approaches, and be used as a reference for readers who are not experts in bidirectional
transformations and wish to acquire a broad knowledge on the field.

7.1 Final Remarks

Our research on an algebra of point-free lenses was carried out in the SET category,
where all functions are total and data types for finite and infinite data structures con-
stitute two separate worlds. However, lazy functional languages like Haskell are not
so well-defined and permit partial and arbitrary recursive functions, which reveals
some discrepancies between our theoretical semantic domain and our practical Haskell
implementation. In order to define (terminating) hylomorphisms and be able to build
recursive lenses, we have restricted ourselves the notion of a recursive anamorphism that
builds a value of an inductive types and is always a total and terminating function. In
practice this implies that, apart from some particularly identified cases, developers must
prove precise termination conditions to guarantee that user-defined recursive lenses
are well-behaved. Note that, nevertheless, all lenses underlying Multifocal transforma-
tions fall into such particular class and therefore are guaranteed to be terminating, and
consequently well-behaved. An interesting solution would be to link our library with

194 CHAPTER 7: CONCLUSION

existing static termination checkers like (Sereni, 2007). Although an elegant relational
definition of well-foundedness is well-known (Bird and de Moor, 1997), and (Back-
house and Doornbos, 2001; Capretta et al., 2006) report studies towards a calculus of
well-founded relations, the proofs of termination for particular coalgebras except trivial
ones using these theories are still highly manual and require a significant amount of
creative input from the programmer. A more challenging but engaging path (at least
for a not-disinterested point-free advocate) would be to investigate agile mechanizable
techniques to support a static termination checker based on the relational calculus, like-
wise our point-free automatic optimization tool. In the semantic domain of most lazy
functional languages, partial functions and non-terminating functions are modeled by
introducing a least bottom element ⊥A, for each type A. The calculational counterpart
of such additional structure is that many algebraic laws have to either be relaxed to
work only modulo bottoms or consider extra strictness side conditions ensuring the
preservation of bottoms.

The bidirectional scheme assumed in this thesis is that of total well-behaved lenses.
This formulation provides strong semantic properties and guarantees that all source
and target updates can be successfully propagated, but our choice of a standard (and
decidable) type system, implemented in functional languages like Haskell, has restricted
the class of lens programs supported by Multifocal to that of perfect data abstractions.
That said, some data transformations like data insertion and value-level filtering are not
supported, unlike in other bidirectional approaches. Nevertheless, most of our results
and techniques are not bound to total well-behaved lenses and could be generalized
to other bidirectional formulations supporting a wider class of transformations. This
would require, however, some tradeoff with the remaining defining features of the
bidirectional framework.

Regarding our point-free delta lens language, now and then we have disclosed
the algebraic laws that rule some of our combinators. In general, it is reasonable to
assume that the algebraic laws from Chapter 4 are preserved in the delta lens world,
with the natural exception being the combinators that have a more refined delta-based
backward semantics. For example, in Chapter 5 we refrained from expressing fusion
laws for delta lens recursion patterns, because these would involve side conditions
stating that the fused lens is compatible with the shape alignment procedures. Explicit
shape programming also introduced the↔· -NAT naturality law entailing that sequences
of mapping and restructuring lenses can be shifted to separate groups and fused together

7.2 FUTURE WORK 195

into a single mapping-restructuring pair. Unfortunately, when embedded as state-based
lenses and combined with regular point-free lenses, our point-free delta lenses do not
enjoy interesting algebraic laws. This is because the semantics of the resulting lenses
is directly dependent on the differencing procedures used to infer the view-update
deltas, and the interaction of these differencing functions with the lenses must be
taken into account by the algebraic laws. An example of this side effect is the MAP-
DIFF-COMP law found in Section 5.3.2. It remains as an open interesting topic to
investigate formulations of hybrid state-based and delta lenses with nice combined
algebraic properties.

All the tools and libraries developed in this thesis have been implemented in Haskell,
and make heavy use of advanced functional programming features such as GADTs and
type-indexed type families to support the embedding of our domain-specific transforma-
tion languages. Although being able to inherit the type system and high-level features
of Haskell is advantageous for developing our prototype framework, their extensive use
may hinder the overall efficiency of the resulting framework. Another disadvantage
is that some limitations of the Haskell language make it difficult to encode certain
theoretically simple features such as n-ary polymorphic data types and true structural
type equivalence. A dedicated implementation, with its own type system, would require
significantly more effort but could provide a native support for such features.

7.2 Future Work

The work developed in this dissertation suggests several open directions that can be
explored in future work. We enunciate some of them in this section.

Multifocal Framework. Although Multifocal already supports interesting XML
transformation scenarios, the expressiveness of the underlying bidirectional transforma-
tions is naturally limited by the language of point-free lenses in use. In future work,
we plan to extend our language to support more XPath features and to leverage the
underlying bidirectional scheme to other bidirectional formulations supporting different
kinds of transformations that do not impose an abstraction data flow.

Currently, the Multifocal language does not support alignment-aware lenses. Natu-
rally, a valid solution would be to include a backdoor for applying “black box” user-
defined lenses at a particular location, as in the underlying Haskell library. A more

196 CHAPTER 7: CONCLUSION

interesting solution would be to provide language-based techniques in the style of (Bar-
bosa et al., 2010) to annotate generic two-level programs with alignment information
without compromising their structure-shyness. In this context, we are investigating the
“deltification” of ordinary point-free lenses through the processing of annotations in
the input XML Schemas such as xs:key to identify reorderable chunks in the source
document and guide the translation of view updates.

Multifocal proposes a way of replacing three unidirectional XML transformations (a
schema-level transformation and two transformations between XML documents) with
a single two-level bidirectional transformation. In order to bridge the gap to standard
XML transformation tools, translations from XSLT-like idioms to Multifocal should be
developed. A successful integration would also encompass a comparative study on the
usefulness, expressiveness and efficiency of Multifocal transformations.

Invariants. In our language of point-free lenses, the non-existence of splits and
injections triggered the definition of several plumbing isomorphism combinators to
regain some expressiveness. In order to alleviate this problem, we are considering to
extend our lens framework with invariants that capture the exact domain and range
of the transformations, so that any transformation written in a point-free functional
language can be lifted to a total well-behaved lens between particular domains. A first
effort towards this is reported in (Macedo et al., 2012), by considering a language of
point-free lenses with invariants whose backward transformations generate all possible
source updates satisfying the lens laws and the source/target invariants. However, a
suitable mechanism to choose from such various solutions (and more refined lens laws
as discussed below) is still imperative for a more practical application. We also intend
to investigate other approaches to derive backward transformations that are correct by
construction and satisfy the respective invariants.

Bidirectional Properties. In general, all bidirectional approaches try to convey a
combination of properties and semantics that ensure some degree of reasonability on the
behavior of bidirectional transformations. Ideally, this reasonable behavior should be
postulated by a Principle of Least Change (Meertens, 1998), entailing that updates are
as small as possible, but unfortunately it is hard to formalize and to find such minimal
updates in practice.

Therefore, the traditional bidirectional properties only establish “first principles”
and still leave a lot of room for unpredictable and sometimes unreasonable behavior.

7.2 FUTURE WORK 197

Even for operation-based frameworks, the more refined bidirectional properties simply
entail round-tripping modulo updates and also do not impose any quality measure on
update translation. For instance, our delta-based lens laws guarantee that deltas are
correctly propagated alongside transformations, but not that all (possible) alignment
information is preserved. In the future, this should be solved with the proposal of new
generic laws that better characterize reasonable and minimal behavior, for particular
application domains.

Equally important is to discover flexible mechanisms to derive suitable backward
transformations satisfying a more refined set of reasonable update translation properties.
Even according to such criteria, update translation is inherently ambiguous. To disam-
biguate, Keller (1986) runs a dialog with the developer of the forward transformation
to collect sufficient information to make the backward transformation deterministic
at forward definition time. An interesting research topic would be to study related
language-based techniques to allow users to control such non-deterministic choices at
the time of defining the bidirectional transformations.

Design Space. Not less important than other topics is the still pressing need in the
community for a complete, precise and self-contained survey on the design space of
bidirectional transformations. Although our taxonomy and state of the art from Chap-
ter 3 contribute positively towards such a goal, there is still a lot of room to explore in
such design space.

On the one side, our taxonomy and classification point to some “holes” in the design
space corresponding to hitherto combinations of features. An interesting question is
to discover which of those are impossible or meaningless and which are promising
opportunities that have simply not been instantiated yet. Additionally, our taxonomy
could be extended with more axes and features characterizing other bidirectional design
features, for example, to assess the support for particular verification or implementation
capabilities of the different approaches.

As discussed above, the usual bidirectional properties guaranteed by most frame-
works do not seriously constrain the behavior of the permitted transformations, making
it harder to compare the effectiveness of two bidirectional frameworks based solely on
their supported properties. In the continuation of (Czarnecki et al., 2009), this problem
could be alleviated by developing a suite of paradigmatic “benchmark scenarios” for
each application domain, so that users can compare the behavior of different frameworks

198 CHAPTER 7: CONCLUSION

within that domain.
Finally, it is essential for a classification effort to be validated and consolidated

according to input from the envisaged community. We believe that the accuracy and
completeness of our survey could be greatly improved by enrolling the bidirectional
transformation community. Such debate could be proposed to take place in future
scientific forums in the followup of previous events such as the GRACE International

Meeting on Bidirectional Transformations, the Dagstuhl Seminar on Bidirectional

Transformations or the First International Workshop on Bidirectional Transformations.

Appendix A

Additional Point-free Laws and Proofs

A.1 Functional Point-free Laws and Proofs

Basic Laws

f ◦ h = g ◦ h ⇐ f = g LEIBNIZ

(f × g) ◦ (h M i) = f ◦ h M g ◦ i ×-ABSOR

(f M g) = (h M i) ⇔ f = h ∧ g = i ×-EQUAL

(f O g) ◦ (h + i) = f ◦ h O g ◦ i +-ABSOR

(f O g) = (h O i) ⇔ f = h ∧ g = i +-EQUAL

Isomorphism Laws

swap = π2Mπ1 swap-DEF

(f × g) ◦ swap = swap ◦ (g × f) swap-NAT

swap ◦ swap = id swap-ISO

assocl = (id × π1)M(π2 ◦ π2) assocl -DEF

((f × g)× h) ◦ assocl = assocl ◦ (f × (g × h)) assocl -NAT

assocr = (π1 ◦ π1)M(π2 × id) assocr -DEF

(f × (g × h)) ◦ assocr = assocr ◦ ((f × g)× h) assocr -NAT

assocl ◦ assocr = id ∧ assocr ◦ assocl = id assocl -assocr -ISO

coswap = i2O i1 coswap-DEF

199

200 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

(f + g) ◦ coswap = coswap ◦ (g + f) coswap-NAT

coswap ◦ coswap = id coswap-ISO

coassocl = (i1 ◦ i1)O(i2 + id) coassocl -DEF

coassocl ◦ (f + (g + h)) = ((f + g) + h) ◦ coassocl coassocl -NAT

coassocr = (id + i1)O(i2 ◦ i2) coassocr -DEF

coassocr ◦ ((f + g) + h) = (f + (g + h)) ◦ coassocr coassocr -NAT

coassocl ◦ coassocr = id ∧ coassocr ◦ coassocl = id coassocl -coassocr -ISO

distl = ap ◦ ((i1O i2)× id) distl -DEF

distl ◦ ((f + g)× h) = (f × h + g × h) ◦ distl distl -NAT

distl ◦ (i1 × id) = i1 ∧ distl ◦ (i2 × id) = i2 distl -CANCEL

(id O id) ◦ distl = (id O id)× id distl -id -CANCEL

(π1 + π1) ◦ distl = π1 distl -π1-CANCEL

(π2Oπ2) ◦ distl = π2 distl -π2-CANCEL

undistl = (i1 × id)O(i2 × id) undistl -DEF

distl ◦ undistl = id ∧ undistl ◦ distl = id distl -undistl -ISO

distr = (swap + swap) ◦ distl ◦ swap distr -DEF

distr ◦ (f × (g + h)) = (f × g + f × h) ◦ distr distr -NAT

distr ◦ (id × i1) = i1 ∧ distr ◦ (id × i2) = i2 distr -CANCEL

(id O id) ◦ distr = id × (id O id) distr -id -CANCEL

(π1Oπ1) ◦ distr = π1 distr -π1-CANCEL

(π2 + π2) ◦ distr = π2 distr -π2-CANCEL

undistr = (id × i1)O(id × i2) undistr -DEF

distr ◦ undistr = id ∧ undistr ◦ distr = id distr -undistr -ISO

Shapely Type Laws

shape ◦ recover = π1 ∧ data ◦ recover = π2 recover -CANCEL

F f ◦ recover = recover ◦ (id × f •) recover -DATA

η ◦ recover = recover ◦ (η ◦ π1M ◦̂ ◦ (π2M
←−n ◦ π1)) recover -SHAPE

shape ◦ F f = shape shape-DATA

A.1 FUNCTIONAL POINT-FREE LAWS AND PROOFS 201

shape ◦ η = η ◦ shape shape-SHAPE

data ◦ F f = f • ◦ data data-DATA

data ◦ η = ◦̂ ◦ (dataM←−η) data-SHAPE

←−η ◦ shape =←−η ←· -SHAPE

←−π1 = i1◦ ! ←· -FST

←−
id = id◦ ! ←· -ID

←−−
f ◦ g = ◦̂ ◦ (←−g M

←−
f ◦ g) ←· -COMP

←−−−
f M g = Ô ◦ (

←−
f M←−g) ←· -SPLIT

Monoid Laws

plus ◦ (zero◦ ! M f) = f ∧ plus ◦ (f M zero◦ !) = f plus -ZERO

zero◦ ! O zero◦ ! = zero◦ ! +-ZERO

([f])F = zero◦ ! ⇐ f ◦ F zero◦ ! = zero◦ ! ([·])-ZERO

Functor Laws

B π1 π1 ◦ bzipB f g = π1 bzip-CANCEL

bzipB f g ◦ (B h i MB j k) = B (h M j) (i M k) bzip-SPLIT

bzipB f g ◦ (B h i × id) = B (h × id) (i × id) ◦ bzipB (f ◦ h) (g ◦ i) bzip-NAT

σF : F A × B → F (A × B)

σId = id

σA = π1

σF⊗G = (σF ◦ (π1 × id)MσG ◦ (π2 × id))

σF⊕G = (σF + σG) ◦ distl

σF�G = F σG ◦ σF

σT = [[(σB ◦ (outB A × id))]]B (A×B)



σ-DEF

202 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

σB : B A B × C → B (A × C) (B × C)

σId = id

σPar = id

σA = π1

σF ⊗7G = (σF ◦ (π1 × id)MσG ◦ (π2 × id))

σF ⊕7G = (σF + σG) ◦ distl

σF �7B = F σB ◦ σF



σ-DEF

Proof (fzip-CANCEL).

Id π1 ◦ fzipId f

= {fzip-DEF; id − NAT}
π1

C π1 ◦ fzipC f

= {fzip-DEF; id − NAT}
π1

(F⊗G) π1 ◦ fzipF⊗G f

= {fzip-DEF}
(F π1 × G π1) ◦ (fzipF f × fzipG f) ◦ distp
= {×− FUNCTOR-COMP; fzip − CANCEL}
(π1 × π1) ◦ distp
= {distp − DEF;×-ABSOR;×− CANCEL}
π1 ◦ π1Mπ2 ◦ π1

= {×− FUSION;×− REFLEX; id − NAT}
π1

(F⊕G) π1 ◦ fzipF⊕G f

= {fzip-DEF}
(F π1 + G π1) ◦ (fzipF f OF (id M f) ◦ π1 + G (id M f) ◦ π1O fzipG f) ◦ dists
= {+− FUNCTOR-COMP; +-ABSOR}
(F π1 ◦ fzipF f OF π1 ◦ F (id M f) ◦ π1 + G π1 ◦ G (id M f) ◦ π1OG π1 ◦ fzipG)

A.1 FUNCTIONAL POINT-FREE LAWS AND PROOFS 203

◦ dists
= {fzip − CANCEL; FUNCTOR-COMP}
(π1OF (π1 ◦ (id M f)) ◦ π1 + G (π1 ◦ (id M f)) ◦ π1Oπ1) ◦ dists
= {FUNCTOR-ID}
((π1Oπ1) + (π1Oπ1)) ◦ dists
= {dists − DEF; distr − π1-CANCEL}
(π1 + π1) ◦ distl
= {distl − π1-CANCEL}
π1

(F�G) π1 ◦ fzipF�G f

= {FUNCTOR-DEF; fzip-DEF}
F (G π1) ◦ F (fzipG f) ◦ fzipF (G f)

= {FUNCTOR-COMP; fzip − CANCEL}
F π1 ◦ fzipF (G f)

= {fzip − CANCEL}
π1

T π1 ◦ [[(bzipB f (T f) ◦ (outB A × outB C))]]B (A×C) = π1

⇔{MAP − DEF; [[[·, ·]]]− UNIQ}
inB A ◦ B π1 id ◦ B id π1 ◦ bzipB f (T f) ◦ (outB A × outB C) = π1

⇔{BIFUNCTOR-COMP; bzip − CANCEL}
inB A ◦ π1 ◦ (outB A × outB C) = π1

⇔{×− DEF;×− CANCEL}
inB A ◦ outB A ◦ π1 = π1

⇔{in− out − ISO}
TRUE

Recursive Laws

[[[g , h]]]F = g ◦ F [[[g , h]]]F ◦ h [[[·, ·]]]-CANCEL

g ◦ [[[h, i]]]F ◦ j = [[[k , l]]]F ⇐ g ◦ h = k ◦ F g ∧ i ◦ j = F j ◦ l [[[·, ·]]]-FUSION

204 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

Lens Laws

put ◦ (id M create) = create CREATEPUT

put ◦ (π1M put) = put PUTTWICE

Proof (CREATEPUT).

put ◦ (id M create)

= {CREATEGET}
put ◦ (get ◦ create M create)

= {id − NAT;×− FUSION}
put ◦ (get M id) ◦ create
= {GETPUT; id − NAT}
create

Proof (PUTTWICE).

put ◦ (π1M put)

= {PUTGET}
put ◦ (get ◦ put M put)

= {id − NAT;×− FUSION}
put ◦ (get M id) ◦ put
= {GETPUT; id − NAT}
put

A.2 Relational Point-free Laws and Proofs

id ◦ R = R = R ◦ id id -NAT

R ◦ (S ◦ T) = (R ◦ S) ◦ T ◦-ASSOC

A.2 RELATIONAL POINT-FREE LAWS AND PROOFS 205

π1 ◦ (RMS) = R ◦ δS ∧ π2 ◦ (RMS) = S ◦ δR ×-CANCEL

(RMS) ◦ T = R ◦ T MS ◦ T ⇐ R ◦ T ◦ T ◦ ⊆ R ∨ S ◦ T ◦ T ◦ ⊆ S ×-FUSION

R × S = R ◦ π1MS ◦ π2 ×-DEF

(R × S) ◦ (T MU) = R ◦ T MS ◦U ×-ABSOR

(R × S) ◦ (T ×U) = R ◦ T × S ◦U ×-FUNCTOR-COMP

(ROS) ◦ i1 = R ∧ (ROS) ◦ i2 = S +-CANCEL

U ◦ (ROS) = U ◦ ROU ◦ S +-FUSION

R + S = i1 ◦ RO i2 ◦ S +-DEF

(ROS) ◦ (T + U) = R ◦ T OS ◦U +-ABSOR

(R + S) ◦ (T + U) = R ◦ T + S ◦U +-FUNCTOR-COMP

R◦◦ = R ·◦-INV

(R ◦ S)◦ = S ◦ ◦ R◦ ·◦-COMP

(R ∪ S)◦ = R◦ ∪ S ◦ ∧ (R ∩ S)◦ = R◦ ∩ S ◦ ·◦-DIST

(R × S)◦ = R◦ × S ◦ ·◦-PROD

(R + S)◦ = R◦ + S ◦ ·◦-SUM

⊥ ∪ R = R = R ∪ ⊥ ⊥-NEUTRAL

⊥ ∩ R = ⊥ = R ∩ ⊥ ⊥-ABSOR

⊥ ◦ R = ⊥ = R ◦ ⊥ ⊥-FUSION

R ◦ (S ∪ T) = R ◦ S ∪ R ◦ T ∧ (S ∪ T) ◦ R = S ◦ R ∪ T ◦ R ∪-FUSION

R ◦ (S ∩ T) ⊆ R ◦ S ∩ R ◦ T ∧ (S ∩ T) ◦ R ⊆ S ◦ T ∩ T ◦ R ∩-FUSION

(R ∪ S) ∩ T = (R ∩ T) ∪ (S ∩ T)

T ∩ (R ∪ S) = (T ∩ R) ∪ (T ∩ S)

 ∪-DIST

(R ∩ S) ∪ T = (R ∪ T) ∩ (S ∪ T)

T ∪ (R ∩ S) = (T ∪ R) ∩ (T ∪ S)

 ∩-DIST

Φ ⊆ id Φ-DEF

Φ ◦Ψ = Φ ∩ Ψ Φ-COMP

Φ ◦ Φ = Φ Φ-REFL

Φ◦ = Φ Φ-CONV

(ROS) ◦ Φ? ◦ T = (R ◦ T OS ◦ T) ◦ (T ◦ ◦ Φ ◦ T ∩ id)? ?-FUSION

206 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

(ROR) ◦ Φ? = R ?-CANCEL

id? = i1 ?-TRUE

⊥? = i2 ?-FALSE

! ◦ R = ! ⇐ ⊥ ⊂ R ! -FUSION

[>] = id [·]-TOP

[⊥] = ⊥ [·]-BOT

π1 ◦ [R] = (id MR)◦ ∧ π2 ◦ [R] = (R◦M id)◦ [·]-CANCEL

[π2 ◦ Φ ◦ π1
◦] = Φ [·]-COR

∈1B ◦ B f g = f ◦ ∈1B ∈1-NAT

∈2B ◦ B f g = g ◦ ∈2B ∈2-NAT

∈F ◦ σF = ∈F × id ∈-STRENGTH

∈1B ◦ σB = ∈1B × id ∈1-STRENGTH

∈2B ◦ σB = ∈2B × id ∈2-STRENGTH

Proof (∈-STRENGTH).

∈Id ◦ σId
= {∈ − DEF;σ-DEF}
id ◦ id
= {id − NAT;×− REFLEX}
id × id

= {∈ − DEF}
∈Id × id

∈A ◦ σA

= {∈ − DEF;σ-DEF}
⊥ ◦ π1

= {⊥-FUSION}
⊥
= {⊥-ABSOR;⊥-FUSION;M−DEF}
π1
◦ ◦ ⊥ ◦ π1 ∩ π2

◦ ◦ π2

A.2 RELATIONAL POINT-FREE LAWS AND PROOFS 207

= {M−DEF;×-DEF}
⊥ × id

= {∈ − DEF}
∈A × id

∈F⊗G ◦ σF⊗G

= {∈ − DEF;σ-DEF}
(∈F ◦ π1 ∪ ∈G ◦ π2) ◦ (σF ◦ (π1 × id)MσG ◦ (π2 × id))

= {∪-FUSION;×− CANCEL}
∈F ◦ σF ◦ (π1 × id) ∪ ∈G ◦ σG ◦ (π2 × id)

= {∈-STRENGTH}
(∈F × id) ◦ (π1 × id) ∪ (∈G × id) ◦ (π2 × id)

= {×-FUNCTOR-COMP}
(∈F ◦ π1 × id) ∪ (∈G ◦ π2 × id)

= {×-DEF}
(∈F ◦ π1 ◦ π1M id ◦ π2) ∪ (∈G ◦ π2 ◦ π1M id ◦ π2)

= {M−DEF;∩-DIST;∪-FUSION}
(∈F ◦ π1 ◦ π1 ∪ ∈G ◦ π2 ◦ π1)M id ◦ π2

= {∪-FUSION;×-DEF}
(∈F ◦ π1 ∪ ∈G ◦ π2)× id

= {∈ − DEF}
∈F⊗G × id

∈F⊕G ◦ σF⊕G

= {∈ − DEF;σ-DEF}
(∈FO∈G) ◦ (σF + σG) ◦ distl
= {+-ABSOR}
(∈F ◦ σFO∈G ◦ σG) ◦ distl
= {∈-STRENGTH}
((∈F × id)O(∈G × id)) ◦ distl
= {+-ABSOR; distl ◦ ((R + S)× T) = (R × T + S × T) ◦ distl }
(id O id) ◦ distl ◦ ((∈F + ∈G)× id)

= {distl − id -CANCEL}
((id O id)× id) ◦ ((∈F + ∈G)× id)

= {×-FUNCTOR-COMP; +-ABSOR}

208 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

(∈FO∈G)× id

= {∈ − DEF}
∈F⊕G × id

∈F�G ◦ σF�G

= {∈ − DEF;σ-DEF}
∈G ◦ ∈F ◦ F σG ◦ σF
= {∈ − NAT}
∈G ◦ σG ◦ ∈F ◦ σF
= {∈-STRENGTH}
(∈G × id) ◦ (∈F × id)

= {×-FUNCTOR-COMP}
(∈F ◦ ∈G)× id

= {∈ − DEF}
∈F�G × id

∈T ◦ σT = ∈T × id

⇔{R = S⇔R ⊆ S ∧ S ⊆ R}
∈T ◦ σT ⊆ ∈T × id

⇔{×-DEF;×− UNIV}
π1 ◦ ∈T ◦ σT ⊆ π1 ◦ (∈T × id) ∧ π2 ◦ ∈T ◦ σT ⊆ π2 ◦ (∈T × id)

⇔{∈− NAT;σ-CANCEL;π2 ◦ ∈T ◦ σT = π2 ◦ (∈T × id);×-CANCEL; δπ2 = id }
TRUE

∈T × id ⊆ ∈T ◦ σT

⇔{id -NAT;×− REFLEX;×-FUSION}
π2 ◦ (∈T ◦ σT) ◦ (∈T ◦ σT)◦ ⊆ π2

⇔{R ◦ f ◦ ⊆ S⇔R ⊆ S ◦ f ; ·◦-COMP}
π2 ◦ (∈T ◦ σT) ◦ (π2 ◦ ∈T ◦ σT)◦ ⊆ id

⇔{π2 ◦ ∈T ◦ σT = π2 ◦ (∈T × id);×-CANCEL; }
π2 ◦ δ(∈T ◦ π1) ◦ (π2 ◦ δ(∈T ◦ π1))◦ ⊆ id

⇔{·◦-COMP; Φ-CONV; Φ-REFL}
π2 ◦ δ(∈T ◦ π1) ◦ π2

◦ ⊆ id

⇔{R ◦ f ◦ ⊆ S⇔R ⊆ S ◦ f ; Φ-DEF}
TRUE

∈T × id ⊆ (π1 ◦ ∈T ◦ σT Mπ2 ◦ ∈T ◦ σT)

A.2 RELATIONAL POINT-FREE LAWS AND PROOFS 209

⇔{×− UNIV}
π1 ◦ (∈T × id) ⊆ π1 ◦ ∈T ◦ σT ∧ π2 ◦ (∈T × id) ⊆ π2 ◦ ∈T ◦ σT

⇔{∈− NAT;σ-CANCEL;π2 ◦ ∈T ◦ σT = π2 ◦ (∈T × id);×-CANCEL; δπ2 = id }
TRUE

TRUE

Consider two entire relational catamorphisms XA = ([i1 ◦ ∈1B ∪ ∈2B ∪ i2◦ !])B A and

YA = ([i1 ◦ π2 ◦ ∈1B ∪ ∈2B ∪ i2◦ !])B A:

π2 ◦ ∈T ◦ σT

= {∈ − DEF;R ◦ i1◦ = i1
◦ ◦ (R + S)}

i1
◦ ◦ (π2 + id) ◦XA×B ◦ σT = π2 ◦ (∈T × id)

= {assumption :(π2 + id) ◦XA×B = YA×B }
(π2 + id) ◦XA×B = YA×B

⇐{([·])-FUSION}
(π2 + id) ◦ (i1 ◦ ∈1B ∪ ∈2B ∪ i2◦ !)

= (i1 ◦ π2 ◦ ∈1B ∪ ∈2B ∪ i2◦ !) ◦ B id (π2 + id)

⇔{∪-FUSION}
(π2 + id) ◦ i1 ◦ ∈1B ∪ (π2 + id) ◦ ∈2B ∪ (π2 + id) ◦ i2◦ !

= i1 ◦ π2 ◦ ∈1B ◦ B id (π2 + id) ∪ ∈2B ◦ B id (π2 + id) ∪ i2◦ !

◦ B id (π2 + id)

⇔{+-DEF; +-CANCEL;∈1-NAT; BIFUNCTOR-ID;∈2-NAT; ! − FUSION}
TRUE

i1
◦ ◦YA×B ◦ σT

= {assumption :YA×B ◦ σT = (π2 + π1) ◦ distl ◦ (XA × id)}
YA×B ◦ σT = (π2 + π1) ◦ distl ◦ (XA × id)

⇔{σ-DEF; [[[·, ·]]]-UNIQ}
(i1 ◦ π2 ◦ ∈1B ∪ ∈2B ∪ i2◦ !) ◦ B id ((π2 + π1) ◦ distl ◦ (XA × id))

◦ σB ◦ (outB A × id)

= (π2 + π1) ◦ distl ◦ (XA × id)

⇔{∪-FUSION; BIFUNCTOR-COMP;∈1-NAT;∈2-NAT; ! -FUSION}
i1 ◦ π2 ◦ ∈1B ◦ B id (XA × id) ◦ σB ◦ (outB A × id)

∪ (π2 + π1) ◦ distl ◦ ∈2B ◦ B id (XA × id) ◦ σB ◦ (outB A × id) ∪ i2◦ !

= (π2 + π1) ◦ distl ◦ (XA × id)

⇔{B id (R × id) ◦ σB = σB ◦ (B id R × id);×-FUNCTOR-COMP

;∈1-STRENGTH;∈2-STRENGTH}
i1 ◦ π2 ◦ (∈1B ◦ B id XA ◦ outB A × id)

210 CHAPTER A: ADDITIONAL POINT-FREE LAWS AND PROOFS

∪ (π2 + π1) ◦ distl ◦ (∈2B ◦ B id XA ◦ outB A × id) ∪ i2◦ !

= (π2 + π1) ◦ distl ◦ (XA × id)

⇔{in− out − ISO; ([·])-CANCEL;∪-FUSION;×-FUNCTOR-COMP; distl -CANCEL}
i1 ◦ π2 ◦ (∈1B ◦ B id XA ◦ outB A × id)

∪ (π2 + π1) ◦ distl ◦ (∈2B ◦ B id XA ◦ outB A × id) ∪ i2◦ !

= (π2 + π1) ◦ i1 ◦ (∈1B ◦ B id X ◦ outB A × id)

∪ (π2 + π1) ◦ distl ◦ (∈2B ◦ B id X ◦ outB A × id)

∪ (π2 + π1) ◦ i2 ◦ (! ◦ B id X ◦ outB A × id)

⇔{+− DEF; +− CANCEL;×-CANCEL; ! -FUSION}
TRUE

i1
◦ ◦ (π2 + π1) ◦ distl ◦ (XA × id)

= {R ◦ i1◦ = i1
◦ ◦ (R + S); distl -CANCEL; ·◦-COMP; ·◦-PROD}

π2 ◦ (i1
◦ × id) ◦ distl◦ ◦ distl ◦ (XA × id)

= {distl − undistl -ISO;×-FUNCTOR-COMP;∈ − DEF}
π2 ◦ (∈T × id)

Appendix B

Additional Lens Laws and Proofs

B.1 State-based Lens Laws

((f × g)× h) ◦ assocl = assocl ◦ (f × (g × h)) assocl -NAT

π1
f ◦π2 ◦ assocl = id × π1

f

(π1
f × id) ◦ assocl = id × π2

f

 assocl -π1-CANCEL

π2
f ◦ assocl = π2

π2◦f ◦ π2
π1◦f ◦π2

(π2
f × id) ◦ assocl = π2

f ◦π1

 assocl -π2-CANCEL

(f × (g × h)) ◦ assocr = assocr ◦ ((f × g)× h) assocr -NAT

π1
f ◦ assocr = π1

π1◦f ◦ π1
π2◦f ◦π1

(id × π1
f) ◦ assocr = π1

f ◦π2

 assocr -π1-CANCEL

π2
f ◦π1 ◦ assocr = π2

f × id

(id × π2
f) ◦ assocr = π1

f × id

 assocr -π2-CANCEL

assocl ◦ assocr = id ∧ assocr ◦ assocl = id assocl -assocr -ISO

coassocl ◦ (f + (g + h)) = ((f + g) + h) ◦ coassocl coassocl -NAT

((f O g)p O h)q ◦ coassocl = (f O (g O h)q)∧̂◦(p M q) coassocl -CANCEL

coassocr ◦ ((f + g) + h) = (f + (g + h)) ◦ coassocr coassocr -NAT

(f O (g O h)p)q ◦ coassocr = ((f O g)q O h)∧̂◦(p M q) coassocr -CANCEL

coassocl ◦ coassocr = id coassocl -coassocr -ISO

211

212 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

B.2 State-based Lens Proofs

B.2.1 Composition

Proof (f ◦ g is a well-behaved lens).

get f ◦g ◦ create f ◦g

= {definition of get ; definition of create }
getf ◦ getg ◦ createg ◦ createf
= {CREATEGET}
id

get f ◦g ◦ put f ◦g

= {definition of get ; definition of put }
getf ◦ getg ◦ putg ◦ (putf ◦ (id × getg)Mπ2)

= {PUTGET;×− CANCEL}
getf ◦ putf ◦ (id × getg)
= {PUTGET;×− DEF;×− CANCEL; id − NAT}
π1

put f ◦g ◦ (get f ◦g M id)

= {definition of put ; definition of get }
putg ◦ (putf ◦ (id × getg)Mπ2) ◦ (getf ◦ getg M id)

= {×− FUSION;×-ABSOR}
putg ◦ (putf ◦ (getf M id) ◦ getg M id)

= {GETPUT}
putg ◦ (id ◦ getg M id)

= {id − NAT; GETPUT}
id

B.2.2 Catamorphisms

Proof (put ([f])F
is a recursive anamorphism).

B.2 STATE-BASED LENS PROOFS 213

To prove that the put of our catamorphism lens terminates, we will reformulate it by

tupling the forward transformation get ([f])F
: µF → A with a curried backward transformation

put ′([f])F
: µF→ A→ µF, such that:

put ′([f])F
= put ([f])F

◦ swap

The Mutu Tupling Theorem, devised by Fokkinga (1989), allows to combine two different

function traversing the same data structure (in a particular regular way) into a single catamor-

phism that traverses the data structure only once:

f M g = ([h M i])F ⇐

f = h ◦ F (f M g) ◦ outF

g = i ◦ F (f M g) ◦ outF
MUTUTUPLING

We can show that get ([f])F
and put ′([f])F

can be tupled into the following catamorphism:

get ([f])F
M put ′([f])F

: µF→ A × (A→ µF)

get ([f])F
M put ′([f])F

= ([(getf ◦ π1M aux) ◦ (F π1MF π2)])
F

where aux = inF ◦ F (ap ◦ swap O create) ◦ zipF ◦ (putf × id) ◦ assocl ◦ swap. Here,

zipF : F A × F B → F (A × B + A) is a polymorphic function that exposes the causes for

the non-naturality of fzipF f , such that:

F (id O(id M f)) ◦ zipF = fzipF f fzip-ZIP

zipF ◦ (F f × F g) = F (f × g + f) ◦ zipF zip-NAT

We write the following proof:

get ([f])F
M put ′([f])F

= ([(getf ◦ π1M aux) ◦ (F π1MF π2)])
F

⇔{×− UNIQ; MUTUTUPLING}
get ([f])F

= π1 ◦ (getf ◦ π1M aux) ◦ (F π1MF π2) ◦ F (get ([f])F
M put ′([f])F

) ◦ outF
⇔{×− CANCEL; FUNCTOR-COMP;×− CANCEL}
get ([f])F

= getf ◦ F get ([f])F
◦ outF

⇔{in− out − ISO; ([·])− CANCEL}
TRUE

put ′([f])F
= π2 ◦ (getf ◦ π1M aux) ◦ (F π1MF π2) ◦ F (get ([f])F

M put ′([f])F
) ◦ outF

⇔{×− CANCEL; EXP-FUSION; EXP-UNIQ; EXP-CANCEL}
put ([f])F

◦ swap = aux ◦ ((F π1MF π2) ◦ F (get ([f])F
M put ′([f])F

) ◦ outF × id)

214 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

⇔{×− FUSION; FUNCTOR-COMP;×− CANCEL}
put ([f])F

◦ swap = aux ◦ ((F get ([f])F
MF put ′([f])F

) ◦ outF × id)

⇐{swap − NAT; assocl -DEF;×− FUSION;×− FUNCTOR-COMP

;×− CANCEL; LEIBNIZ}
put ([f])F

= inF ◦ F (ap ◦ swap O create([f])F
) ◦ zipF

◦ (putf ◦ (id × F get ([f])F
)MF put ′([f])F

◦ π2) ◦ (id × outF)

⇐{definition of put ([f])F
; in− out − ISO; [[(·)]]− CANCEL;×− FUNCTOR-COMP

; LEIBNIZ}
inF ◦ F put ([f])F

◦ fzipF create([f])F

= inF ◦ F (ap ◦ swap O create([f])F
) ◦ zipF ◦ (id × F put ′([f])F

)

⇔{fzip-ZIP; +− FUSION; CREATEPUT; FUNCTOR-ID; zip-NAT}
inF ◦ F (put ([f])F

O create([f])F
)

= inF ◦ F (ap ◦ swap O create([f])F
) ◦ F (id × put ′([f])F

+ id)

⇔{FUNCTOR-COMP; +-ABSOR; swap − NAT; EXP-CANCEL; swap − ISO}
TRUE

TRUE

Now, we can redefine put ([f])F
as the expression ˆput ′([f])F

◦ swap, with put ′([f])F
= π1 ◦

([(getf ◦ π1M aux) ◦ (F π1MF π2)])
F
. Since a catamorphism is always a terminating function,

put ([f])F
also terminates.

Proof (([f])F is a well-behaved lens).

get ([f])F
◦ create([f])F

= id

⇔{definition of get ; definition of create }
([getf])

F
◦ [[(createf)]]F = id

⇐{[[[·, ·]]]− SPLIT; [[[·, ·]]]− UNIQ}
getf ◦ F id ◦ createf = id

⇔{FUNCTOR-ID; id − NAT; CREATEGET}
TRUE

get ([f])F
◦ put ([f])F

= π1

⇔{definition of get ; definition of put }
([getf])

F
◦ [[(fzipF create([f])F

◦ (putf ◦ (id × F get)Mπ2) ◦ (id × outF))]]
F

= π1

⇐{[[[·, ·]]]− SPLIT; [[[·, ·]]]− UNIQ}

B.2 STATE-BASED LENS PROOFS 215

getf ◦ F π1 ◦ fzipF create([f])F
◦ (putf ◦ (id × F get)Mπ2) ◦ (id × outF) = π1

⇔{fzip − CANCEL;×− CANCEL; PUTGET}
π1 ◦ (id × F get) ◦ (id × outF) = π1

⇔{×− FUNCTOR-COMP;×− DEF;×− CANCEL}
TRUE

put ([f])F
◦ (get ([f])F

M id) = id

⇔{definition of put ; [[(·)]]− REFLEX}
[[(fzipF create([f])F

◦ (putf ◦ (id × F get)Mπ2) ◦ (id × outF))]]
µF
◦ (get M id)

= [[(outF)]]F

⇐{[[(·)]]− FUSION}
fzipF create([f])F

◦ (putf ◦ (id × F get)Mπ2) ◦ (id × outF) ◦ (get M id)

= F (get M id) ◦ outF
⇔{×-ABSOR;×− FUSION;×-ABSOR;×− CANCEL}
fzipF create([f])F

◦ (putf ◦ (get MF get ◦ outF)M outF) = F (get M id) ◦ outF
⇔{in− out − ISO; ([·])− CANCEL;×− FUSION}
fzipF create([f])F

◦ (putf (getf M id) ◦ F get ◦ outFM outF)

= F (get M id) ◦ outF
⇔{GETPUT; id − NAT;×− FUSION}
fzipF create([f])F

◦ (F get M id) ◦ outF = F (get M id) ◦ outF
⇔{fzip − SPLIT}
TRUE

Proof (([·])-UNIQ).

createf = create([g])F

⇔{definition of create }
createf = [[(createg)]]F
⇔{[[(·)]]− UNIQ}
outF ◦ createf = F createf ◦ createg
⇔{definition of create }
createinF

◦ createf = createF f ◦ createg
⇔{definition of create }
create f ◦inF

= createg◦F f

216 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

putf = put ([g])F

⇔{definition of put }
putf = [[(fzipF create([g])F

◦ (putg ◦ (id × F get ([g])F
)Mπ2) ◦ (id × outF))]]

F

⇔{[[(·)]]− UNIQ}
outF ◦ putf
= F putf ◦ fzipF create([g])F

◦ (putg ◦ (id × F get ([g])F
)Mπ2) ◦ (id × outF)

⇔{getf = get ([g])F
; createf = create([g])F

}
outF ◦ putf
= F putf ◦ fzipF createf ◦ (putg ◦ (id × F getf)Mπ2) ◦ (id × outF)

⇔{fzip-PUT; definition of get }
outF ◦ putf = putF f ◦ (putg ◦ (id × getF f)Mπ2) ◦ (id × outF)

⇔{definition of put ;×− REFLEX}
outF ◦ putf = putg◦F f ◦ (id × outF)

⇔{in− out − ISO;×− FUNCTOR-COMP; LEIBNIZ}
outF ◦ putf ◦ (id × inF) = putg◦F f

⇔{×− CANCEL; definition of put }
put inF

◦ (putf ◦ (id × inF)Mπ2) = putg◦F f

⇔{definition of get ; definition of put }
put f ◦inF

= putg◦F f

B.2.3 Anamorphisms

Proof (put [[(f)]]G
is a recursive hylomorphism).

To prove that the put of our anamorphism lens terminates, we will reformulate it using an

alternative version put ′[[(f)]]G
:µG × A+µG→ A that exposes the causes for the non-naturality

of fzipG f by partitioning it into a polymorphic function zipG and the application of f inside

the functor G. Formally, we write:

put ′[[(f)]]G
= [[[putf O create [[(f)]]G

, zipG ◦ (outG × getf)Mπ2 + id]]]
G⊗A⊕µG

Since zipF : F A × F B → F (A × B +A) is polymorphic on A and B , we can prove the

following property ruling its interaction with membership:

∈F ◦ zipF ⊆ (id Oπ1)◦ ◦ (∈F × ∈F) ∈-ZIP

B.2 STATE-BASED LENS PROOFS 217

Informally, this law says that any pair (a, b) that is a member of the zipped F-structure is

so that a is a member of the left F-structure and b is a member of the right F-structure (and

similarly for lone a values).

After writing the auxiliary proof

put ′[[(f)]]G
= put [[(f)]]G

O create [[(f)]]G

⇔{definition of put ′[[(f)]]G
; [[[·, ·]]]− UNIQ}

(putf O create [[(f)]]G
) ◦ ((G⊗A⊕µG) (put [[(f)]]G

O create [[(f)]]G
))

◦ (zipG ◦ (outG × getf)Mπ2 + id) = put [[(f)]]G
O create [[(f)]]G

⇔{FUNCTOR-DEF; +− FUNCTOR-COMP;×-ABSOR}
(putf O create [[(f)]]G

) ◦ (G (put [[(f)]]G
O create [[(f)]]G

) ◦ zipG ◦ (outG × getf)Mπ2 + id)

= put [[(f)]]G
O create [[(f)]]G

⇔{+-ABSOR; +-EQUAL}
putf ◦ (G (put [[(f)]]G

O create [[(f)]]G
) ◦ zipG ◦ (outG × getf)Mπ2) = put [[(f)]]G

⇔{definition of put [[(f)]]G
; [[[·, ·]]]-CANCEL}

putf ◦ (G (put [[(f)]]G
O create [[(f)]]G

) ◦ zipG ◦ (outG × getf)Mπ2)

= putf ◦ (G⊗A) put [[(f)]]G
◦ (fzipG create [[(f)]]G

◦ (outG × getf)Mπ2)

⇔{FUNCTOR-DEF;×-ABSOR; fzip-ZIP}
putf ◦ (G (put [[(f)]]G

O create [[(f)]]G
) ◦ zipG ◦ (outG × getf)Mπ2)

= putf ◦ (G put [[(f)]]G
◦ G (id O(id M create [[(f)]]G

)) ◦ zipG ◦ (outG × getf)Mπ2)

⇔{FUNCTOR-COMP; +− FUSION; CREATEPUT}
TRUE

, we can trivially show the following equivalence:

put [[(f)]]G
= put ′[[(f)]]G

◦ i1
⇔{put ′[[(f)]]G

= put [[(f)]]G
O create [[(f)]]G

; +− CANCEL}
TRUE

Now, proving that put [[(f)]]G
is a recursive hylomorphism amounts to proving that put ′[[(f)]]G

◦
i1 terminates. More specifically, we need to prove that the respective anamorphism is recur-

sive:

[[(zipG ◦ (outG × getf)Mπ2 + id)]]
G⊗A⊕µG recursive

≡ {[[(g)]]F recursive⇔∈F ◦ g well− founded}
∈G⊗A⊕µG ◦ (zipG ◦ (outG × getf)Mπ2 + id) well− founded

≡ {∈ − DEF}

218 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

((∈G ◦ π1 ∪ ⊥ ◦ π2)O⊥) ◦ (zipG ◦ (outG × getf)Mπ2 + id) well− founded

≡ {O−DEF;∪-FUSION;⊥-FUSION;⊥-NEUTRAL}
∈G ◦ π1 ◦ i1◦ ◦ (zipG ◦ (outG × getf)Mπ2 + id) well− founded

≡ {i1◦ ◦ (R + S) = R ◦ i1◦;×− CANCEL}
∈G ◦ (zipG ◦ (outG × getf)) ◦ i1◦ well− founded

⇐{∈-ZIP;×-FUNCTOR-COMP;S ⊆ R ∧ R well− founded⇒ S well− founded}
(id Oπ1)◦ ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦ well− founded

≡ {O−DEF; ·◦-DIST; ·◦-COMP; ·◦-INV}
(i1 ∪ i2 ◦ π1) ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦ well− founded

≡ {∪-FUSION}
i1 ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦ ∪ i2 ◦ ∈G ◦ outG ◦ π1 ◦ i1◦ well− founded

⇐{R,S well− founded ∧ R ◦ S ⊆ R ⇒ R ∪ S well− founded}
i1 ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦ well− founded

⇔{outG recursive; getf recursive; [[(g)]]F recursive⇔∈F ◦ g well− founded}
TRUE

i2 ◦ ∈G ◦ outG ◦ π1 ◦ i1◦ well− founded

⇔{outG recursive; [[(g)]]F recursive⇔∈F ◦ g well− founded}
TRUE

i1 ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦ ◦ i2 ◦ ∈G ◦ outG ◦ π1 ◦ i1◦

⊆ i1 ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦

⇔{i1◦ ◦ i2 = ⊥;⊥-FUSION}
⊥ ⊆ i1 ◦ (∈G ◦ outG × ∈G ◦ getf) ◦ i1◦

⇔{⊥ ⊆ R}
TRUE

TRUE

Proof ([[(f)]]G is a well-behaved lens).

get [[(f)]]G
◦ create [[(f)]]G

= id

⇔{definition of get ; [[(·)]]− REFLEX}
[[(getf)]]

G
◦ create [[(f)]]G

= [[(outG)]]G

⇐{[[(·)]]− FUSION}
getf ◦ create [[(f)]]G

= G create [[(f)]]G
◦ outG

⇔{definition of create; ([·])− CANCEL}

B.2 STATE-BASED LENS PROOFS 219

getf ◦ createf ◦ G create [[(f)]]G
◦ outG = G create [[(f)]]G

◦ outG
⇐{LEIBNIZ}
getf ◦ createf = id

⇔{CREATEGET}
TRUE

get [[(f)]]G
◦ put [[(f)]]G

= {definition of get }
[[(getf)]]

G
◦ put [[(f)]]G

= { [[(·)]]− FUSION; definition of put }
getf ◦ [[[putf , fzipG create [[(f)]]G

◦ (outG × getf)Mπ2]]]
G⊗A

= G put ◦ h

⇔{[[[·, ·]]]-CANCEL}
getf ◦ putf ◦ (G⊗A) put ◦ (fzipG create [[(f)]]G

◦ (outG × getf)Mπ2)

= G put ◦ h
⇔{PUTGET;×− FUNCTOR-COMP}
π1 ◦ (G put ◦ fzipG create [[(f)]]G

◦ (outG × getf)Mπ2) = G put ◦ h
⇔{×− CANCEL}
G put ◦ fzipG create [[(f)]]G

◦ (outG × getf)

= G put ◦ fzipG create [[(f)]]G
◦ (outG × getf)

[[(fzipG create [[(f)]]G
◦ (outG × getf))]]

G

= { [[(·)]]− FUSION}
G π1 ◦ fzipG create [[(f)]]G

◦ (outG × getf) = outG ◦ π1

⇔{fzip − CANCEL;×− CANCEL}
outG ◦ π1 = outG ◦ π1

[[(outG)]]G ◦ π1

= { [[(·)]]− REFLEX}
π1

put [[(f)]]G
◦ (get [[(f)]]G

M id)

= {definition of put }
[[[putf , (fzipG create [[(f)]]G

◦ (id × getf)Mπ2) ◦ (outG × id)]]]
G⊗A

◦ (get [[(f)]]G
M id)

= { [[[·, ·]]]-FUSION}
(fzipG create [[(f)]]G

◦ (id × getf)Mπ2) ◦ (outG × id) ◦ (get [[(f)]]G
M id)

= (G⊗A) (get [[(f)]]G
M id) ◦ (getf M id)

⇔{×-ABSOR;×-ABSOR;×− CANCEL}

220 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

fzipG create [[(f)]]G
◦ (outG ◦ get [[(f)]]G

M getf)M id

= (G (get [[(f)]]G
M id)× id) ◦ (getf M id)

⇔{[[(·)]]− CANCEL;×− FUSION}
fzipG create [[(f)]]G

◦ (G get [[(f)]]G
M id) ◦ getf M id

= (G (get [[(f)]]G
M id)× id) ◦ (getf M id)

⇔{fzip − SPLIT;×-ABSOR}
(G (get [[(f)]]G

M id) ◦ get [[(f)]]G
M id) = (G (get [[(f)]]G

M id) ◦ getf M id)

[[[putf , getf M id]]]
G⊗A

= id

= { [[[·, ·]]]− UNIQ; GETPUT}
id

Proof ([[(·)]]-UNIQ).

createf = create [[(g)]]G

⇔{definition of create }
createf = ([createg])G
⇔{([·])− UNIQ}
createf ◦ inG = createg ◦ G createf

⇔{definition of create }
createf ◦ createoutG = createg ◦ createG f

⇔{definition of create }
createoutG◦f = createG f ◦g

putf = put [[(g)]]G

⇔{definition of put }
putf = [[[putg, fzipG create [[(g)]]G

◦ (outG × getg)Mπ2]]]
G⊗A

⇔{[[[·, ·]]]− UNIQ}
putf = putg ◦ (G⊗A) putf ◦ (fzipG create [[(g)]]G

◦ (outG × getg)Mπ2)

⇔{FUNCTOR-DEF;×-ABSOR}
putf = putg ◦ (G putf ◦ fzipF create [[(g)]]G

◦ (outG × getg)Mπ2)

⇔{createf = create [[(g)]]G
}

putf = putg ◦ (G putf ◦ fzipG createf ◦ (outG × getg)Mπ2)

⇔{fzip-PUT;×− FUNCTOR-COMP;×− CANCEL}
putf = putg ◦ (putG f ◦ (id × getg) ◦ (outG × id)Mπ2 ◦ (outG × id))

B.2 STATE-BASED LENS PROOFS 221

⇔{×− FUSION; definition of put }
putf = putG f ◦g ◦ (outG × id)

⇔{in− out − ISO;×− FUNCTOR-COMP; LEIBNIZ}
putf ◦ (inG × id) = putG f ◦g

⇔{×− DEF;×− CANCEL; definition of put }
putf ◦ (putoutG ◦ (id × getf)Mπ2) = putG f ◦g

⇔{definition of put }
putoutG◦f = putG f ◦g

B.2.4 Natural Transformations

Proof (([inG ◦ f])F is a well-behaved lens ⇐ getf : F →̇ G).

To write this proof (without having to separately prove that the anamorphisms are recur-

sive), we only need to redo the auxiliary proofs without resorting to the [[[·, ·]]]-UNIQ law (that

requires the anamorphisms to be recursive).

get ([inG◦f])F
◦ create([inG◦f])F

= id

⇔{definition of get ; ([·])− [[(·)]]-SHIFT}
[[(getf ◦ outF)]]

F
◦ create([inG◦f])F

= id

⇔{[[(·)]]− REFLEX; [[(·)]]− FUSION}
getf ◦ outF ◦ create([inG◦f])F

= G create([inG◦f])F
◦ outG

⇔{definition of create; [[(·)]]− CANCEL}
getf ◦ F create([inG◦f])F

◦ createf ◦ outG = G create([inG◦f])F
◦ outG

⇔{η − NAT; CREATEGET}
G create([inG◦f])F

◦ outG = G create([inG◦f])F
◦ outG

TRUE

get ([inG◦f])F
◦ put ([inG◦f])F

= π1

⇔{definition of get ; ([·])− [[(·)]]-SHIFT}
[[(getf ◦ outF)]]

G
◦ put ([inG◦f])F

= π1

⇔{[[(·)]]− FUSION}
getf ◦ outF ◦ put ([inG◦f])F

= G put ([inG◦f])F
◦ h

⇔{definition of put ; [[(·)]]− CANCEL; η − NAT}
G put ([inG◦f])F

◦ getf ◦ fzipF create([inG◦f])F

222 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

◦ (putf ◦ (id × F get ([inG◦f])F
)Mπ2) ◦ (outG × outF)

= G put ([inG◦f])F
◦ getf ◦ fzipF create([inG◦f])F

◦ (putf ◦ (id × F get ([inG◦f])F
)Mπ2) ◦ (outG × outF)

[[(getf ◦ fzipF create([inG◦f])F
◦ (putf ◦ (id × F get ([inG◦f])F

)Mπ2) ◦ (outG × outF))]]
G

= π1

⇔{[[(·)]]− UNIQ; η − NAT}
getf ◦ F π1 ◦ fzipF create([inG◦f])F

◦ (putf ◦ (id × F get ([inG◦f])F
)Mπ2)

◦ (outG × outF) = outG ◦ π1

⇔{fzip − CANCEL;×− CANCEL}
getf ◦ putf ◦ (id × F get ([inG◦f])F

) ◦ (outG × outF) = outG ◦ π1

⇔{PUTGET;×− DEF; id − NAT;×− CANCEL}
π1 ◦ (outG × outF) = outG ◦ π1

⇔{×− DEF; id − NAT;×− CANCEL}
outG ◦ π1 = outG ◦ π1

Proof ([[(f ◦ outF)]]G is a well-behaved lens ⇐ getf : F →̇ G).

To write this proof, we only need to prove that the forward anamorphism [(getf ◦ outF)]
G

is recursive. Given that getf is a natural transformation and outF is a recursive F-coalgebra,

then the G-coalgebra getf ◦ outF is recursive (Capretta et al., 2006, Proposition 10.(b)).

B.3 Horizontal Delta Lens Proofs

B.3.1 Horizontal Delta Lens

Proof (Theorem 8).

get
▲

(put
▲
d)

= {definition of get
▲
}

get
▲

((get∆ ◦ dOid) ◦ put∆ d)

= {definition of put
▲
}

get◦∆ ◦ (get∆ ◦ dOid) ◦ put∆ d ◦ get∆
= {PUTGETM; +-CANCEL}

B.3 HORIZONTAL DELTA LENS PROOFS 223

get◦∆ ◦ get∆ ◦ d
= {R entire and injective⇔R◦ ◦ R = id }
d

put
▲
id

= {definition of put
▲
}

(get∆ ◦ idOid) ◦ put∆ id

= {id -NAT; GETPUTM}
id

B.3.2 Composition

Proof (f ◦ g is a well-behaved horizontal delta lens).

get f ◦g (create f ◦g v)

= {definition of get ; definition of create }
getf (getg (createg (createf v)))

= {CREATEGET}
v

create∆f ◦g ◦ get∆f ◦g

= {definition of create∆; definition of get∆}
create∆f ◦ create∆g ◦ get∆g ◦ get∆f

= {CREATEGETM}
id

get f ◦g (put f ◦g (v , s) d)

= {definition of get ; definition of put }
getf (getg (putg (putf (v , getg s) d , s) ((get∆f ◦ dOid) ◦ put∆f d)))

= {PUTGET}
getf (putf (v , getg s) d)

= {PUTGET}
v

224 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

put∆f ◦g d ◦ get∆f ◦g

= {definition of put∆; definition of get∆}
((id + get∆g) ◦ put∆f dOi2) ◦ put∆g ((get∆f ◦ dOid) ◦ put∆f d) ◦ get∆g ◦ get∆f

= {PUTGETM}
((id + get∆g) ◦ put∆f dOi2) ◦ i1 ◦ get∆f

= {+-CANCEL; PUTGETM}
(id + get∆g) ◦ i1
= {+-DEF; +-CANCEL}
i1

put f ◦g (get f ◦g s, s) id

= {definition of put ; definition of get }
putg (putf (getf (getg s), getg s) id , s) ((get∆f ◦ idOid) ◦ put∆f id)

= {id -NAT; GETPUTM}
putg (putf (getf (getg s), getg s) id , s) id

= {GETPUT}
putg (getg s, s) id

= {GETPUT}
s

(get∆f ◦gOid) ◦ put∆f ◦g id

= {definition of get∆; definition of put∆}
(get∆g ◦ get∆fOid) ◦ ((id + get∆g) ◦ put∆f idOi2)

◦ put∆g ((get∆f ◦ idOid) ◦ put∆f id)

= {id -NAT; GETPUTM}
(get∆g ◦ get∆fOid) ◦ ((id + get∆g) ◦ put∆f idOi2) ◦ put∆g id

= {+-FUSION; +-ABSOR; +-CANCEL}
((get∆g ◦ get∆fOget∆g) ◦ put∆f idOid) ◦ put∆g id

= {id -NAT; +-FUSION}
(get∆g ◦ (get∆fOid) ◦ put∆f idOid) ◦ put∆g id

= {GETPUTM; id -NAT}
(get∆gOid) ◦ put∆g id

= {GETPUTM}
id

B.3 HORIZONTAL DELTA LENS PROOFS 225

B.3.3 Mapping

Proof (T f is a well-behaved horizontal delta lens).

getT f (createT f v)

= {definition of get ; definition of create }
T getf (T createf v)

= {FUNCTOR-COMP; CREATEGET; FUNCTOR-ID}
v

create∆T f ◦ get∆T f

= {definition of create∆; definition of get∆}
id ◦ id
= {id − NAT}
id

getT f (putT f (v , s) d)

= {definition of get ; definition of put }
T getf (recover (shape v , dput ∪ dcreate))

= {recover -DATA}
recover (shape v , getf ◦ (dput ∪ dcreate))

= {∪-FUSION}
getf ◦ dput
= {definition of dput }
getf ◦ putf ◦ (data vMdata s ◦ d)

= {PUTGET;×-CANCEL}
data v

getf ◦ dcreate
= {definition of dcreate }
getf ◦ createf ◦ data v ◦ (id − δdput)
= {CREATEGET}
data v ◦ (id − δdput)

recover (shape v , data v ∪ data v ◦ (id − δdput))
= {getf total⇒ δdput = δ(getf ◦ dput)}
recover (shape v , data v ∪ data v ◦ (id − δ(data v)))

226 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

= {R ◦ (id − δR) = ⊥;⊥-NEUTRAL}
recover (shape v , data v)

= {recover -ISO}
v

put∆T f d ◦ get∆T f

= {definition of get∆; definition of put∆}
i1 ◦ id
= {id − NAT}
i1

putT f (getT f s, s) id

= {definition of put ; definition of get }
dput

= {definition of dput ; definition of get }
putf ◦ (data ((T getf) s)Mdata s ◦ id)

= {id − NAT; data-DATA}
putf ◦ (getf ◦ data sMdata s)

= {×-FUSION ◦ GETPUT}
data s

dcreate

= {definition of dcreate }
createf ◦ data (get s) ◦ (id − δdput)

= {dput total⇒ id − δdput = ⊥}
createf ◦ data (get s) ◦ ⊥

= {⊥-FUSION}
⊥

recover (shape ((T getf) s), data s ∪ ⊥)

= {⊥-NEUTRAL}
recover (shape ((T getf) s), data s)

= {shape-DATA; recover -ISO}
s

(get∆T fOid) ◦ put∆T f id

= {definition of get∆; definition of put∆}

B.3 HORIZONTAL DELTA LENS PROOFS 227

(idOid) ◦ i1
= {+− CANCEL}
id

B.3.4 Reshaping

Proof (←→η is a well-behaved horizontal delta lens).

get←→η (create←→η v)

= {definition of get ; definition of create }
getη (createη v)

= {CREATEGET}
v

create∆←→η {v } ◦ get∆←→η {create←→η v }
= {definition of create∆; definition of get∆; definition of get }
←−−−−
createη v ◦

←−−
getη (create←→η v)

= {←· -COMP}
←−−−−−−−−−
getη ◦ createη v
= {CREATEGET;←· -ID}
id

get←→η (put←→η (v , s) d)

= {definition of get ; definition of put }
getη (putη (v , s))

= {PUTGET}
v

put∆←→η {(v , s)} ◦ get∆←→η {put←→η (v , s) d }
= {definition of put∆; definition of get∆; definition of put }
←−−
putη (v , s) ◦←−−getη (putη (v , s))

= {←· -COMP}
←−−−−−−−
getη ◦ putη (v , s)

228 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

= {PUTGET}
←−π1 (v , s)

= {←· -FST}
i1

put←→η (get←→η s, s) id

= {definition of put ; definition of get }
putη (getη s, s)

= {GETPUT}
s

(get∆←→η {s }Oid) ◦ put∆←→η {(get←→η s, s)} id = id

= {definition of get∆; definition of put∆}
(
←−−
getη sOid) ◦←−−putη (get←→η s, s)

= {←· -ID;←· -SPLIT}
←−−−−−−
(getηMid) s ◦←−−putη (get←→η s, s)

= {←· -COMP; }
←−−−−−−−−−−−−
putη ◦ (getηMid) s

= {GETPUT;←· -ID}
id

B.3.5 Catamorphisms

Proof (([f])F is a well-behaved horizontal delta lens ⇐
([f])posF is well-behaved

reduceF ◦ outF is well-founded
).

To prove that the catamorphism horizontal delta lens is well-behaved, we must first prove

that the respective backward transformations are terminating functions. For create([f])F
, this is

a direct consequence of the positional ([f])posF being well-behaved. Ignoring the deltas, we can

redefine put ([f])F
as the following anamorphism (the ifshrink and ifgrow predicates represent

our delta-based tests to identify view insertions and deletions):

[[((growcoalg O(shrinkcoalg O poscoalg) ◦ ifshrink?) ◦ ifgrow?)]]Id �F
growcoalg = i2 ◦ σF ◦ (createf × id)

B.3 HORIZONTAL DELTA LENS PROOFS 229

shrinkcoalg = i1 ◦ (id × reduceF ◦ outF)

poscoalg = i2 ◦ fzipF create([f])F
◦ (putf ◦ (id ×F get ([f])F

)Mπ2) ◦ (id × outF)

Proving that this anamorphism is recursive amounts to showing that the accessibility rela-

tions for the three cases are well-founded. If each of the cases produces a strictly smaller

view-source pair such that view or the source decreases, then if follows that the combined

accessibility relation is also well-founded.

For insertions (growcoalg), the corresponding coalgebra always consumes the view and the

proof that its accessibility relation is well-founded can be done as follows:

∈Id �F ◦ i2 ◦ σF ◦ (createf × id) well− founded

⇔{∈− DEF; +-CANCEL}
∈F ◦ σF ◦ (createf × id) well− founded

⇔{∈-STRENGTH;×-FUNCTOR-COMP}
(∈F ◦ createf × id) well− founded

⇔{create([f])F
terminates⇔∈F ◦ createf well− founded}

TRUE

For deletions (shrinkcoalg), the intuition is that reduceF always produces a smaller source.

However, since this is not guaranteed by the monoid properties, we require that the correspond-

ing accessibility relation reduceF ◦ outF is well-founded.

For the positional case (poscoalg), the coalgebra may either consume the view or the source

or both. The proof that its accessibility relation is well-founded comes directly from the fact

that the positional catamorphism horizontal delta lens ([f])posF is well-behaved.

After proving that put ([f])F
terminates, we can write the proofs of the horizontal delta lens

laws using standard structural induction:

get ([f])F
(create([f])F

v)

= {definition of get ; definition of create }
get ([f])posF

(create([f])posF
v)

= {([f])posF well− behaved; CREATEGET}
v

create∆([f])F
◦ get∆([f])F

= {definition of create∆; definition of get∆}
create∆([f])posF

◦ get∆([f])posF

= {([f])posF well− behaved; CREATEGETM}
id

230 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

get ([f])F
(put ([f])F

(v , s) d) = v

⇔{definition of put ; expand cases}
get ([f])F

(grow (v , s) d) = v

⇔{definition of get ; definition of grow }
getf (F get ([f])F

(outF (inF (σputF (createf v , s) (d ◦ create∆f))))) = v

⇔{in− out − ISO; inductive step;F get ([f])F
(σputF (v , s) d) = v }

getf (createf v) = v

⇔{CREATEGET}
TRUE

get ([f])F
(shrink (v , s) d) = v

⇔{definition of shrink ; dV = get◦∆([f])F
◦ reduceF◦∆ ◦ get∆([f])F

◦ d }

get ([f])F
(put ([f])F

(v , reduceF (outF s)) dV) = v

⇔{inductive step}
TRUE

get ([f])F
(put f ◦F ([f])F◦outF (v , s) d) = v

⇔{definition of get }
get f ◦F ([f])F◦outF (put f ◦F ([f])F◦outF (v , s) d) = v

{ ...; inductive step; PUTGET}
TRUE

TRUE

put∆([f])F
d ◦ get∆([f])F

= i1

⇔{definition of put∆; expand cases}
grow∆ d ◦ get∆([f])F

= i1

⇔{definition of grow∆; definition of get∆}
(create∆f + id) ◦ σput∆F (d ◦ create∆f) ◦ id ◦ get∆F ([f])F

◦ get∆f = i1

⇔{id -NAT; inductive step;σput∆F d ◦ get∆F ([f])F
= i1}

(create∆f + id) ◦ i1 ◦ get∆f = i1

⇔{+-DEF; +-CANCEL}
create∆f ◦ get∆f = i1

⇔{CREATEGETM}
TRUE

shrink∆ d ◦ get∆([f])F
= i1

⇔{definition of shrink∆}
(id + id) ◦ (id + reduce∆F) ◦ put∆([f])F

◦ get∆([f])F
= i1

B.3 HORIZONTAL DELTA LENS PROOFS 231

⇔{+− REFLEX; inductive step}
(id + reduce∆F) ◦ i1
⇔{+-CANCEL}
i1

put∆f ◦F ([f])F◦outF
◦ get∆([f])F

= i1

⇔{definition of get∆}
put∆f ◦F ([f])F◦outF

◦ get∆f ◦F ([f])F◦outF
= i1

⇔{...; inductive step; PUTGETM}
i1

TRUE

put ([f])F
(get ([f])F

s, s) id = s

⇔{definition of put ; expand cases}
ρV 6= ⊥ ∧ (ρV ∩ ρid) = ⊥ ⇒ grow (get ([f])F

s, s) id = s

⇔{ρid = id ; Φ-COMP; id -NAT}
ρV 6= ⊥ ∧ ρV = ⊥ ⇒ grow (get ([f])F

s, s) id = s

⇔{contradiction}
FALSE ⇒ grow (get ([f])F

s, s) id = s

⇔{logic implication}
TRUE

ρS 6= ⊥ ∧ (ρS ∩ δid) = ⊥ ⇒ shrink (get ([f])F
s, s) id = s

⇔{δid = id ; Φ-COMP; id -NAT}
ρS 6= ⊥ ∧ ρS = ⊥ ⇒ shrink (get ([f])F

s, s) id = s

⇔{contradiction}
FALSE ⇒ shrink (get ([f])F

s, s) id = s

⇔{logic implication}
TRUE

otherwise⇒ put f ◦F ([f])F◦outF (get ([f])F
s, s) id = s

⇔{definition of get }
otherwise⇒ put f ◦F ([f])F◦outF (get f ◦F ([f])F◦outF s, s) id = s

⇔{...; inductive step; GETPUT}
otherwise⇒ TRUE

⇔{logic implication}
TRUE

TRUE

232 CHAPTER B: ADDITIONAL LENS LAWS AND PROOFS

(get∆([f])F
Oid) ◦ put∆([f])F

id = id

⇔{definition of put∆; expand cases}
ρV 6= ⊥ ∧ (ρV ∩ ρid) = ⊥ ⇒ (get∆([f])F

Oid) ◦ grow∆ id = id

⇔{ρid = id ; Φ-COMP; id -NAT; contradiction}
FALSE ⇒ (get∆([f])F

Oid) ◦ grow∆ id = id

⇔{logic implication}
TRUE

ρS 6= ⊥ ∧ (ρS ∩ δid) = ⊥ ⇒ (get∆([f])F
Oid) ◦ shrink∆ id = id

⇔{δid = id ; Φ-COMP; id -NAT; contradiction}
FALSE ⇒ (get∆([f])F

Oid) ◦ shrink∆ id = id

⇔{logic implication}
TRUE

otherwise⇒ (get∆([f])F
Oid) ◦ put∆f ◦F ([f])F◦outF

id = id

⇔{definition of get∆; ...; inductive step; GETPUTM}
otherwise⇒ TRUE

⇔{logic implication}
TRUE

TRUE

Bibliography

M. Abbott, T. Altenkirch, and N. Ghani. Containers: constructing strictly positive types.
Theoretical Computer Science, 342(1):3–27, 2005.

M. Antkiewicz and K. Czarnecki. Design space of heterogeneous synchronization. In
Proceedings of the 2nd International Summer School on Generative and Transforma-

tional Techniques in Software Engineering (GTTSE 2007), volume 5235 of Lecture

Notes in Computer Science, pages 3–46. Springer-Verlag, 2008.

F. Atanassow and J. Jeuring. Customizing an XML-Haskell data binding with type
isomorphism inference in Generic Haskell. Science of Computer Programming, 65
(2):72–107, 2007.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

R. Backhouse and H. Doornbos. Mathematics of recursive program construction.
Manuscript available at http://www.cs.nott.ac.uk/rcb/MPC/papers,
2001.

J. Backus. Can programming be liberated from the von Neumann style?: a functional
style and its algebra of programs. Communications of the ACM, 21(8):613–641,
1978.

F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Transactions

on Database Systems, 6(4):557–575, 1981.

D. M. J. Barbosa, J. Cretin, J. N. Foster, M. Greenberg, and B. C. Pierce. Matching
lenses: alignment and view update. In Proceedings of the 15th ACM SIGPLAN

International Conference on Functional Programming (ICFP 2010), pages 193–204.
ACM, 2010.

233

http://www.cs.nott.ac.uk/rcb/MPC/papers

234 Bibliography

L. Barbosa. Components as Coalgebras. PhD thesis, University of Minho, 2001.

L. S. Barbosa and J. N. Oliveira. Transposing partial components: an exercise on
coalgebraic refinement. Theoretical Computer Science, 365(1):2–22, 2006.

P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Coupled schema transformation
and data: Conversion for XML and SQL. In Proceedings of the 9th International

Symposium on Practical Aspects of Declarative Languages (PADL 2007), volume
4354 of Lecture Notes in Computer Science, pages 290–304. Springer-Verlag, 2007.

R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.

A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language for
updatable views. In Proceedings of the 25th ACM SIGMOD Symposium on Principles

of Database Systems (PODS 2006), pages 338–347. ACM, 2006.

A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and A. Schmitt. Boomerang:
resourceful lenses for string data. In Proceedings of the 35th ACM SIGPLAN

Symposium on Principles of Programming Languages (POPL 2008), pages 407–
419. ACM, 2008.

C. Brabrand, A. Møller, and M. I. Schwartzbach. Dual syntax for XML languages.
Information Systems, 33(4-5):385–406, 2008.

P. Buneman, M. Fernandez, and D. Suciu. UnQL: a query language and algebra for
semistructured data based on structural recursion. The VLDB Journal, 9(1):76–110,
2000.

P. Buneman, S. Khanna, and W.-C. Tan. On propagation of deletions and annotations
through views. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Sym-

posium on Principles of Database Systems (PODS 2002), pages 150–158. ACM,
2002.

V. Capretta, T. Uustalu, and V. Vene. Recursive coalgebras from comonads. Information

and Computation, 204(4):437–468, 2006.

M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type synonyms. In
Proceedings of the 10th ACM SIGPLAN International Conference on Functional

Programming (ICFP 2005), pages 241–253. ACM, 2005.

Bibliography 235

A. Cicchetti, D. di Ruscio, R. Eramo, and A. Pierantonio. JTL: A bidirectional and
change propagating transformation language. In Proceedings of the 3rd International

Conference on Software Language Engineering (SLE 2010), volume 6563 of Lecture

Notes in Computer Science, pages 183–202. Springer-Verlag, 2011.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of
haskell programs. In Proceedings of the 5th ACM SIGPLAN International Conference

on Functional Programming (ICFP 2000), pages 268–279. ACM, 2000.

J. Clark. XSL Transformations (XSLT) Version 1.0. World Wide Web Consortium
(W3C) Recommendation. http://www.w3.org/TR/xslt, November 1999.

A. Cunha. Point-free Program Calculation. PhD thesis, University of Minho, 2005.

A. Cunha and H. Pacheco. Algebraic specialization of generic functions for recursive
types. Electronic Notes in Theoretical Computer Science, 229(5):57–74, 2011.

A. Cunha and J. S. Pinto. Point-free program transformation. Fundamenta Informaticae,
66(4):315–352, 2005.

A. Cunha and J. Visser. Strongly typed rewriting for coupled software transformation.
Electronic Notes in Theoretical Computer Science, 174(1):17–34, 2007.

A. Cunha and J. Visser. Transformation of structure-shy programs with application to
XPath queries and strategic functions. Science of Computer Programming, 76(6):
512–539, 2011.

A. Cunha, J. N. Oliveira, and J. Visser. Type-safe two-level data transformation. In
Proceedings of the 14th International Symposium on Formal Methods (FM 2006),
volume 4085 of Lecture Notes in Computer Science, pages 284–299. Springer-Verlag,
2006a.

A. Cunha, J. S. Pinto, and J. Proença. A framework for point-free program transforma-
tion. In Selected Papers of the 17th International Workshop on Implementation and

Application of Functional Languages (IFL 2005), volume 4015 of Lecture Notes in

Computer Science, pages 1–18. Springer-Verlag, 2006b.

J. Cunha, J. Saraiva, and J. Visser. From spreadsheets to relational databases and back.
In Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM 2009), pages 179–188. ACM, 2009.

http://www.w3.org/TR/xslt

236 Bibliography

J. Cunha, J. P. Fernandes, J. Mendes., H. Pacheco, and J. Saraiva. Bidirectional
transformation of model-driven spreadsheets. In Proceedings of the 5th International

Conference on Model Transformation (ICMT 2012), volume 7307 of Lecture Notes

in Computer Science, pages 105–120. Springer-Verlag, 2012.

K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger. Bidirec-
tional transformations: A cross-discipline perspective. In Proceedings of the 2nd

International Conference on Model Transformation (ICMT 2009), volume 5563 of
Lecture Notes in Computer Science, pages 260–283. Springer-Verlag, 2009.

U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM Transactions on Database Systems, 7(3):381–416, 1982.

Z. Diskin. Algebraic models for bidirectional model synchronization. In Proceedings

of the 11th International Conference on Model Driven Engineering Languages and

Systems (MoDELS 2008), volume 5301 of Lecture Notes in Computer Science, pages
21–36. Springer-Verlag, 2008a.

Z. Diskin. Algebra of bidirectional model synchronization. Technical Report CSRG-
573, Department of Computing Science, University of Toronto, 2008b.

Z. Diskin. Model synchronization: Mappings, tiles, and categories. In Proceedings of

the 3rd International Summer School on Generative and Transformational Techniques

in Software Engineering (GTTSE 2009), volume 6491 of Lecture Notes in Computer

Science, pages 92–165. Springer-Verlag, 2011.

Z. Diskin, Y. Xiong, and K. Czarnecki. From state- to delta-based bidirectional model
transformations: the asymmetric case. Journal of Object Technology, 10:6:1–25,
2011a.

Z. Diskin, Y. Xiong, K. Czarnecki, H. Ehrig, F. Hermann, and F. Orejas. From state- to
delta-based bidirectional model transformations: The symmetric case. In Proceedings

of the 14th International Conference on Model Driven Engineering Languages and

Systems (MoDELS 2011), volume 6981 of Lecture Notes in Computer Science, pages
304–318. Springer-Verlag, 2011b.

H. Doornbos and B. Von Karger. On the union of well-founded relations. Logic Journal

of the IGPL, 6(2):195–201, 1998.

Bibliography 237

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph

Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer-Verlag, 2006.

H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer. Information preserving
bidirectional model transformations. In Proceedings of the 10th International Con-

ference on Fundamental Approaches to Software Engineering (FASE 2007), volume
4422 of Lecture Notes in Computer Science, pages 72–86. Springer-Verlag, 2007.

R. Ennals and D. Gay. Multi-language synchronization. In Proceedings of the 16th Eu-

ropean Conference on Programming Languages and Systems (ESOP 2007), volume
4421 of Lecture Notes in Computer Science, pages 475–489. Springer-Verlag, 2007.

L. Fegaras. Propagating updates through XML views using lineage tracing. In Proceed-

ings of the 26th IEEE International Conference on Data Engineering (ICDE 2010),
pages 309 –320. IEEE, 2010.

F. Ferreira and H. Pacheco. XPTO – an Xpath preprocessor with type-aware optimiza-
tion. In Proceedings of the Conference on Compilers, Related Technologies and

Applications (CORTA 2007). University of Beira Interior, 2007.

M. M. Fokkinga. Tupling and Mutumorphisms. Squiggolist, 1(4), 1989.

J. N. Foster. Bidirectional Programming Languages. PhD thesis, University of Pennsyl-
vania, 2009.

J. N. Foster, M. B. Greenwald, C. Kirkegaard, B. C. Pierce, and A. Schmitt. Schema-
directed data synchronization. Technical Report MS-CIS-05-02, University of Penn-
sylvania, 2005.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update
problem. ACM Transactions on Programming Languages and Systems, 29(3):17,
2007.

J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient lenses. In Proceeding of the 13th

ACM SIGPLAN International Conference on Functional Programming (ICFP 2008),
pages 383–396. ACM, 2008.

238 Bibliography

J. N. Foster, B. C. Pierce, and S. Zdancewic. Updatable security views. In Proceedings

of the 22nd IEEE Computer Security Foundations Symposium (CSF-22), pages 60–74.
IEEE, 2009.

A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: Dealing set-theoretically
with function, union, intersection, and negation types. Journal of the ACM, 55(4):
1–64, 2008.

J. Gibbons. Calculating functional programs. In Revised Lectures from the Interna-

tional Summer School and Workshop on Algebraic and Coalgebraic Methods in the

Mathematics of Program Construction, volume 2297 of Lecture Notes in Computer

Science, pages 151–203. Springer-Verlag, 2002.

J. Gibbons. Datatype-generic programming. In Proceedings of the 2006 International

Spring School on Datatype-generic Programming (SSDGP 2006), volume 4719 of
Lecture Notes in Computer Science, pages 1–71. Springer-Verlag, 2007.

H. Giese and R. Wagner. Incremental model synchronization with triple graph grammars.
In Proceedings of the 9th International Conference on Model Driven Engineering

Languages and Systems (MoDELS 2006), volume 4199 of Lecture Notes in Computer

Science, pages 543–557. Springer-Verlag, 2006.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent
views. ACM Transactions on Database Systems, 13(4):486–524, 1988.

J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Transformation-based database
reverse engineering. In Proceedings of the 12th International Conference on the

Entity-Relationship Approach (ER 1993), volume 823 of Lecture Notes in Computer

Science, pages 364–375. Springer-Verlag, 1994.

F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, and Y. Xiong. Correctness
of model synchronization based on triple graph grammars. In Proceedings of the

14th International Conference on Model Driven Engineering Languages and Systems

(MoDELS 2011), volume 6981 of Lecture Notes in Computer Science, pages 668–682.
Springer-Verlag, 2011.

S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidirectionalizing
graph transformations. In Proceedings of the 15th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2010), pages 205–216. ACM, 2010.

Bibliography 239

R. Hinze. Generic programs and proofs. Habilitation thesis, Bonn University, 2000.

M. Hofmann, B. C. Pierce, and D. Wagner. Symmetric lenses. In Proceedings of the

38th annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL 2011), pages 371–384. ACM, 2011.

M. Hofmann, B. C. Pierce, and D. Wagner. Edit lenses. In Proceedings of the 39th

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2012),
pages 495–508. ACM, 2012.

P. Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Technische Universiteit
Eindhoven, 1997.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured
documents based on bidirectional transformations. Higher Order and Symbolic

Computation, 21(1-2):89–118, 2008.

K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Graph-transformation verification
using monadic second-order logic. In Proceedings of the 13th International ACM

SIGPLAN Symposium on Principles and Practices of Declarative Programming

(PPDP 2011), pages 17–28. ACM, 2011.

P. Jansson and J. Jeuring. PolyP – a polytypic programming language extension.
In Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL 1997), pages 470–482. ACM, 1997.

C. Jay. A semantics for shape. Science of Computer Programming, 25(2-3):251–283,
1995.

P. Johann and N. Ghani. Initial algebra semantics is enough! In Proceedings of the 8th

International Conference on Typed Lambda Calculi and Applications (TLCA 2007),
volume 4583 of Lecture Notes in Computer Science, pages 207–222. Springer-Verlag,
2007.

S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting as a practical
optimisation technique in GHC. In Proceedings of the 2001 ACM SIGPLAN Haskell

Workshop, pages 203–233. ACM, 2001.

240 Bibliography

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple unification-based
type inference for GADTs. In Proceedings of the 11th ACM SIGPLAN International

Conference on Functional programming (ICFP 2006), pages 50–61. ACM, 2006.

F. Jouault and I. Kurtev. Transforming models with ATL. In Satellite Events at the

MoDELS 2005 Conference, volume 3844 of Lecture Notes in Computer Science,
pages 128–138. Springer-Verlag, 2006.

S. Kawanaka and H. Hosoya. biXid: a bidirectional transformation language for XML.
In Proceedings of the 11th ACM SIGPLAN International Conference on Functional

Programming (ICFP 2006), pages 201–214. ACM, 2006.

M. Kay. XSL Transformations (XSLT) Version 2.0. World Wide Web Consortium
(W3C) Recommendation. http://www.w3.org/TR/xslt20, January 2007.

A. Keller. Choosing a view update translator by dialog at view definition time. In
Proceedings of the 12th International Conference on Very Large Databases (VLDB

86), pages 467–474. Morgan Kaufmann Publishers, 1986.

A. J. Kennedy. Pickler combinators. Journal of Functional Programming, 14(6):
727–739, 2004.

A. Königs and A. Schürr. Tool integration with triple graph grammars – a survey.
Electronic Notes in Theoretical Computer Science, 148(1):113–150, 2006.

R. Lämmel. Grammar adaptation. In Proceedings of the International Symposium of

Formal Methods Europe on Formal Methods for Increasing Software Productivity

(FME 2001), volume 2021 of Lecture Notes in Computer Science, pages 550–570.
Springer-Verlag, 2001.

R. Lämmel. Typed generic traversal with term rewriting strategies. Journal of Logic

and Algebraic Programming, 54(1-2):1–64, 2003.

R. Lämmel. Coupled software transformations (extended abstract). Proceedings of
the 1st International Workshop on Software Evolution Transformations (SET 2004),
2004a.

R. Lämmel. Transformations everywhere. Science of Computer Programming, 52(1-3):
1–8, 2004b.

http://www.w3.org/TR/xslt20

Bibliography 241

R. Lämmel and W. Lohmann. Format evolution. In Proceedings of the 7th International

Conference on Reverse Engineering for Information Systems (RETIS 2001), volume
155 of books@ocg.at, pages 113–134. OCG, 2001.

R. Lämmel and E. Meijer. Mappings make data processing go ’round. In Proceedings of

the 1st International Summer School on Generative and Transformational Techniques

in Software Engineering (GTTSE 2005), volume 4143 of Lecture Notes in Computer

Science, pages 169–218. Springer-Verlag, 2006.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate: A practical design pattern
for generic programming. In Proceedings of the 2003 ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation (TLDI 2003, pages
26–37. ACM, 2003.

R. Lämmel and S. Peyton Jones. Scrap your boilerplate with class: extensible generic
functions. In Proceedings of the 10th ACM SIGPLAN International Conference on

Functional Programming (ICFP 2005), pages 204–215. ACM, 2005.

R. Lämmel and J. Visser. A Strafunski Application Letter. In Proceedings of the 5th

International Symposium on Practical Aspects of Declarative Languages (PADL

2003), volume 2562 of Lecture Notes in Computer Science, pages 357–375. Springer-
Verlag, 2003.

K. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propa-

gation Patterns. PWS Publishing Company, 1995.

D. Liu, Z. Hu, and M. Takeichi. Bidirectional interpretation of XQuery. In Proceed-

ings of the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Program

Manipulation (PEPM 2007), pages 21–30. ACM, 2007.

S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts

in Mathematics. Springer-Verlag, 1998.

N. Macedo, H. Pacheco, and A. Cunha. Relations as executable specifications: taming
partiality and non-determinism using invariants. In Proceedings of the 13th Inter-

national Conference on Relational and Algebraic Methods in Computer Science

(RAMiCS 13), Lecture Notes in Computer Science. Springer-Verlag, 2012. to appear.

242 Bibliography

D. MacQueen and M. Tofte. A semantics for higher-order functors. In Donald Sannella,
editor, Proceedings of the 5th European Symposium on Programming (ESOP 1994),
volume 788 of Lecture Notes in Computer Science, pages 409–423. Springer-Verlag,
1994.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions. In
Proceedings of the 12th ACM SIGPLAN International Conference on Functional

Programming (ICFP 2007), pages 47–58. ACM, 2007.

L. Meertens. Paramorphisms. Formal Aspects of Computing, 4(5):413–424, 1992.

L. Meertens. Designing constraint maintainers for user interaction. Manuscript available
at http://www.kestrel.edu/home/people/meertens, 1998.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. In Proceedings of the 5th ACM Conference on Functional

Programming Languages and Computer Architecture (FPCA 1991), volume 523 of
Lecture Notes in Computer Science, pages 124–144. Springer-Verlag, 1991.

S. Melnik, A. Adya, and P. A. Bernstein. Compiling mappings to bridge applications
and databases. In Proceedings of the 2007 ACM SIGMOD International Conference

on Management of Data (SIGMOD 2007), pages 461–472. ACM, 2007.

N. Mitchell and C. Runciman. Uniform boilerplate and list processing. In Proceedings

of the 2007 ACM SIGPLAN Haskell Workshop, pages 49–60. ACM, 2007.

C. Morgan and P. H. B. Gardiner. Data refinement by calculation. Acta Informatica, 27
(6):481–503, 1990.

S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-directional updating. In
Proceedings of the 2nd ASIAN Symposium on Programming Languages and Systems

(APLAS 2004), volume 3302 of Lecture Notes in Computer Science, pages 2–20.
Springer-Verlag, 2004.

K. Nakano, Z. Hu, and M. Takeichi. Consistent web site updating based on bidirectional
transformation. International Journal on Software Tools for Technology Transfer, 11
(6):453–468, 2009.

http://www. kestrel. edu/home/people/meertens

Bibliography 243

U. Norell. Dependently typed programming in Agda. In Proceedings of the 6th

International Conference on Advanced Functional Programming (AFP 2008), volume
5832 of Lecture Notes in Computer Science, pages 230–266. Springer-Verlag, 2009.

J. N. Oliveira. Calculate databases with ‘simplicity’. Presented at the IFIP WG 2.1
#59 Meeting, slides available at http://www3.di.uminho.pt/~jno/ps/
ifip04sl.pdf, September 2004.

J. N. Oliveira. Transforming data by calculation. In Proceedings of the 2nd Interna-

tional Summer School on Generative and Transformational Techniques in Software

Engineering (GTTSE 2007), volume 5235 of Lecture Notes in Computer Science,
pages 134–195. Springer-Verlag, 2008.

J. N. Oliveira. Extended static checking by calculation using the pointfree transform.
In Proceedings of the International Summer School on Language Engineering and

Rigorous Software Development (LerNet 2008), volume 5520 of Lecture Notes in

Computer Science, pages 195–251. Springer-Verlag, 2009.

OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Version 1.0.
Associated OMG document ptc/07-07-08. http://www.omg.org/spec/QVT/
1.0/, April 2008.

H. Pacheco and A. Cunha. Generic point-free lenses. In Proceedings of the 10th

International Conference on Mathematics of Program Construction (MPC 2010),
volume 6120 of Lecture Notes in Computer Science, pages 331–352. Springer-Verlag,
2010.

H. Pacheco and A. Cunha. Calculating with lenses: optimising bidirectional transfor-
mations. In Proceedings of the 20th ACM SIGPLAN Workshop on Partial evaluation

and Program Manipulation (PEPM 2011), pages 91–100. ACM, 2011.

H. Pacheco and A. Cunha. Multifocal: A strategic bidirectional transformation language
for XML schemas. In Proceedings of the 5th International Conference on Model

Transformation (ICMT 2012), volume 7307 of Lecture Notes in Computer Science,
pages 89–104. Springer-Verlag, 2012.

H. Pacheco, A. Cunha, and Z. Hu. Delta lenses over inductive types. In Proceeding

of the 1st International Workshop on Bidirectional Transformations (BX 2012),
Electronic Communications of the EASST, 2012a. to appear.

http://www3.di.uminho.pt/~jno/ps/ifip04sl.pdf
http://www3.di.uminho.pt/~jno/ps/ifip04sl.pdf
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/spec/QVT/1.0/

244 Bibliography

H. Pacheco, N. Macedo, A. Cunha, and J. Voigtländer. A taxonomy of bidirectional
transformations. submitted, 2012b.

A. Pardo. Generic accumulations. In Proceedings of the IFIP TC2/WG2.1 Working

Conference on Generic Programming, pages 49–78. Kluwer, B.V., 2003.

B. C. Pierce. Basic Category Theory for Computer Scientists. Foundations of Comput-
ing. MIT Press, 1991.

I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Toward bidirectionaliza-
tion of ATL with GRoundTram. In Proceedings of the 4th International Conference

on Model Transformation (ICMT 2011), volume 6707 of Lecture Notes in Computer

Science, pages 138–151. Springer-Verlag, 2011.

T. Schrijvers, Sulzmann M., S. Peyton Jones, and M. T. Chakravarty. Towards open
type functions for Haskell. In Draft proceedings of the 19th International Symposium

on Implementation and Application of Functional Languages (IFL 2007), pages
233–251. Computing Laboratory, University of Kent, 2007. Technical Report No.
12-07.

A. Schürr. Specification of graph translators with triple graph grammars. In Proceedings

of the 21st International Workshop on Graph-Theoretic Concepts in Computer Sci-

ence (WG 1995), volume 903 of Lecture Notes in Computer Science, pages 151–163.
Springer-Verlag, 1995.

A. Schürr and F. Klar. 15 years of triple graph grammars. In Proceedings of the 4th

International Conference on Graph Transformations (ICGT 2008), volume 5214 of
Lecture Notes in Computer Science, pages 411–425. Springer-Verlag, 2008.

D. Sereni. Termination analysis and call graph construction for higher-order functional
programs. In Proceedings of the 12th ACM SIGPLAN International Conference on

Functional Programming (ICFP 2007), pages 71–84. ACM, 2007.

T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings of the 1993 Conference

on Functional Programming Languages and Computer Architecture (FPCA 1993),
pages 233–242. ACM, 1993.

Bibliography 245

G. Sittampalam and O. de Moor. Mechanising fusion. In J. Gibbons and O. de Moor,
editors, The Fun of Programming, chapter 5, pages 79–104. Palgrave Macmillan,
2003.

P. Stevens. Bidirectional model transformations in QVT: Semantic issues and open
questions. In Proceedings of the 10th International Conference on Model Driven

Engineering Languages and Systems (MoDELS 2007), volume 4735 of Lecture Notes

in Computer Science, pages 1–15. Springer-Verlag, 2007.

P. Stevens. A landscape of bidirectional model transformations. In Proceedings of the

2nd International Summer School on Generative and Transformational Techniques

in Software Engineering (GTTSE 2007), volume 5235 of Lecture Notes in Computer

Science, pages 408–424. Springer-Verlag, 2008.

M. Takeichi. Configuring bidirectional programs with functions. In Draft proceedings

of the 21st Symposium on Implementation and Application of Functional Languages

(IFL 2009). Seton Hall University, 2009. Technical Report SHU-TR-CS-2009-09-1.

J. F. Terwilliger, L. M. L. Delcambre, and J. Logan. Querying through a user interface.
Data & Knowledge Engineering, 63(3):774–794, 2007.

W. Tichy. The string-to-string correction problem with block moves. ACM Transactions

on Computer Systems, 2(4):309–321, 1984.

D. Turner. Elementary strong functional programming. In Proceedings of the 1st

International Symposium on Functional Programming Languages in Education

(FPLE 1995), volume 1022 of Lecture Notes in Computer Science, pages 1–13.
Springer-Verlag, 1995.

A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

S. Vermolen and E. Visser. Heterogeneous coupled evolution of software languages.
In Proceedings of the 11th International Conference on Model Driven Engineering

Languages and Systems (MoDELS 2008), volume 5301 of Lecture Notes in Computer

Science, pages 630–644. Springer-Verlag, 2008.

E. Visser. Stratego: A language for program transformation based on rewriting strate-
gies system description of Stratego 0.5. In Proceedings of the 12th International

246 Bibliography

Conference on Rewriting Techniques and Applications (RTA 2001), volume 2051 of
Lecture Notes in Computer Science, pages 357–361. Springer-Verlag, 2001.

E. Visser. A survey of strategies in rule-based program transformation systems. Journal

of Symbolic Computation, 40(1):831–873, 2005.

J. Visser. Coupled transformation of schemas, documents, queries, and constraints.
Electronic Notes in Theoretical Computer Science, 200(3):3–23, 2008.

J. Voigtländer. Bidirectionalization for free! (Pearl). In Proceedings of the 36th ACM

SIGPLAN Symposium on Principles of Programming Languages (POPL 2009), pages
165–176. ACM, 2009.

J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic and seman-
tic bidirectionalization. In Proceedings of the 15th ACM SIGPLAN International

Conference on Functional Programming (ICFP 2010), pages 181–192. ACM, 2010.

P. Wadler. Views: a way for pattern matching to cohabit with data abstraction. In
Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-

gramming Languages (POPL 1987), pages 307–313. ACM, 1987.

M. Wang, J. Gibbons, K. Matsuda, and Z. Hu. Gradual refinement: blending pattern
matching with data abstraction. In Proceedings of the 10th International Conference

on Mathematics of Program Construction (MPC 2010), volume 6120 of Lecture

Notes in Computer Science, pages 397–425. Springer-Verlag, 2010.

M. Wang, J. Gibbons, and N. Wu. Incremental updates for efficient bidirectional
transformations. In Proceedings of the 16th ACM SIGPLAN International Conference

on Functional Programming (ICFP 2011), pages 392–403. ACM, 2011.

M. Wildmoser and T. Nipkow. Certifying machine code safety: Shallow versus deep
embedding. In Proceedings of the 17th International Conference on Theorem Proving

in Higher Order Logics (TPHOLs 2004), volume 3223 of Lecture Notes in Computer

Science, pages 133–142. Springer-Verlag, 2004.

Y. Xiong, D. Liu, Z. Hu, H. Zhao, M. Takeichi, and H. Mei. Towards automatic model
synchronization from model transformations. In Proceedings of the 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007), pages
164–173. ACM, 2007.

Bibliography 247

Y. Xiong, H. Song, Z. Hu, and M. Takeichi. Supporting parallel updates with bidirec-
tional model transformations. In Proceedings of the 2nd International Conference on

Model Transformations (ICMT 2009), volume 5563 of Lecture Notes in Computer

Science, pages 213–228. Springer-Verlag, 2009.

T. Yokoyama, H. Bock Axelsen, and Glück R. Principles of a reversible programming
language. In Proceedings of the 5th International Conference on Computing Frontiers

(CF 2008), pages 43–54. ACM, 2008.

	Introduction
	Goals and Contributions
	Overview of the Thesis

	Point-free Programming
	Point-free Functional Calculus
	Basic Combinators
	Recursive Combinators

	Point-free Relational Calculus
	Relational Combinators
	Properties of Relations
	Proving the Termination of Anamorphisms

	Summary

	State of the Art
	Taxonomy
	Scheme
	Properties
	Deployment
	Exploring the Design Space

	Survey
	Mapping Frameworks
	Lens Frameworks
	Maintainer Frameworks
	Synchronization Frameworks

	Summary

	Generic Point-free Lenses
	Point-free Combinators as Lenses
	Basic Lens Combinators
	Products
	Sums
	Isomorphisms as Lens Combinators
	Higher-order Lens Combinators

	Recursion Patterns as Lenses
	Functor Mapping
	Catamorphisms
	Anamorphisms
	Natural Transformations
	Hylomorphisms

	Summary

	Generic Point-free Delta Lenses
	Deltas over Polymorphic Inductive Types
	Laying Down Delta Lenses
	Combinators for Horizontal Delta Lenses
	Primitive Combinators
	Point-free Combinators

	Recursion Patterns as Horizontal Delta Lenses
	Identifying and Propagating Shape Updates
	Higher-order Functor Mapping
	Catamorphism
	Anamorphism

	Summary

	The Multifocal Framework
	A Point-free Lens Library
	Basic Lenses
	Recursive Lenses
	Delta lenses

	A Strategic Lens Library
	Representing Types and Expressions
	Combinators for Two-level Lenses

	A Point-free Rewriting Library
	Specializing Generic Queries
	Mechanizing Fusion
	Encoding a Point-free Rewrite System

	Multifocal: A Strategic Bidirectional Transformation Language for XML Schemas
	Language
	Interface
	Application Scenarios

	Summary

	Conclusion
	Final Remarks
	Future Work

	Additional Point-free Laws and Proofs
	Functional Point-free Laws and Proofs
	Relational Point-free Laws and Proofs

	Additional Lens Laws and Proofs
	State-based Lens Laws
	State-based Lens Proofs
	Composition
	Catamorphisms
	Anamorphisms
	Natural Transformations

	Horizontal Delta Lens Proofs
	Horizontal Delta Lens
	Composition
	Mapping
	Reshaping
	Catamorphisms

	Bibliography

