BiFluX: A Bidirectional Functional Update
Language for XML

Hugo Pacheco! Tao Zan?  Zhenjiang Hu?

LCornell University, USA

2National Institute of Informatics, Tokyo, Japan

PPDP 2014

Canterbury, September 10th, 2014



XML Transformation Languages

XML data formats abound for data exchange and processing
XML Transformation Languages (XQuery, XSLT, XDuce) ...

. are essential to convert data between different formats

S +> T

... but unsatisfactory to mutually convert between such
formats (a maintenance nightmare!)

=




Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”
[Czarnecki et al., ICMT 2009]

s —Pp— T
s —¢— T

e many bidirectional transformation approaches support XML
formats



BX approaches - Relational

e write a consistency relation between the two schemas in a
declarative language

e derive both transformations from the consistency relation

s «—Pp— T

e examples:
o biXid [Kawanaka & Hosoya, ICFP 2006]

e XSugar [Brabrand et al., DBPL 2005]
e QVT [OMG, 2011]



BX approaches - Bidirectionalization

e write a (typically lossy) forward transformation in a common
programming language
e derive the backward transformation

s ——pPp— T

s «—¢4¢—— T

e examples:

o XQuery views [Fegaras, ICDE 2010;Liu et al., PEPM 2007]
e polymorphic Haskell functions [Matsuda & Wang, PPDP 2013]



Bx approaches - Combinatorial

write a program in a domain-specific bidirectional language

each program denotes both transformations

composition; correct-by-construction

examples:

S

Focal [Foster et al., TOPLAS 2007]
X [Hu et al.,, PEPM 2004]
Multifocal [Pacheco & Cunha, ICMT 2012]

etc



BX approaches - Current Picture

e due to the latent ambiguity of BXs

e existing approaches focus mainly on enforcing consistency
e from the programmer’s perspective, they suffer either from:
e supporting only “trivial” BXs
e being unpredictable, by making arbitrary choices and giving
little control over what the BX does
e being impractical to specify complex BXs



BXs = Updates

“Intuitively, a BX translates updates on a source model
into updates on a target model, and vice-versa, so that
the updated models are kept consistent.”




XML Update Languages

e XML transformation languages (XQuery, XSLT, XDuce) are
bad for specifying small updates
e a few dedicated languages for in- place XML updates:
o XQuery Update Facility

e imperative language
e ill-understood semantics (aliasing, side-effects, depends on
traversal order)

e Flux (Functional Lightweight Updates for XML)

functional language

clear semantics

static typing

straightforward type-checking

o XUpdate, XQuery!, and many others...



A Flux Example

UPDATE books/book BY
INSERT AS LAST INTO author
VALUE ’Stephen Buxton’
WHERE title = ’Querying XML’

books [book [author [string], title [string]]*]
— books [book [author [string]+, title [string]]x]



Our proposal: BiFluX

e We propose BiFluX, a bidirectional variant of Flux

e particular class of BXs: lenses, view updating

e modest syntactic extension

e notion of view (feat. pattern matching, non-in-place updates)
e static restrictions to ensure well-behavedness

e Flux: unidirectional e BiFluX: bidirectional
in-place semantics view-update semantics
S
S] T




BiFluX - A Bidirectional Update Language

query

S +> Vv
t update
S \

e a bidirectional update says:

e which parts of the source are to be updated
e how view modifications are reflected to the source

e there is a unique query function for each BiFluX program

e consistency properties of lenses
/

Update(s,v') =s' = Query(s') =v
Query(s) = v = Update(s,v) =s QUERYUPDATE

UPDATEQUERY



A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY
INSERT AS LAST INTO author
VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string



A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY
INSERT AS LAST INTO author
VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string

e adds the view as the last author to the source authors

e violates the QUERYUPDATE consistency law!



A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY
REPLACE IN author[last()]
WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string



A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY
REPLACE IN author[last()]
WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string

e replaces the last author in the source with the view author

e well-behaved bidirectional update!



XML types and values

e XDuce-style regular expression types
(with n-guarded recursion)

a :=bool || string || n[7]
To=al Qi Tnr Tl X

e Flux: “flat” representation of values as trees/forests
e economical, hard to embed into functional languages w/o
structural type equivalence

ft »:=true | false | w | n[fv]
fvi=()|ft, fv

o BiFluX: structured representation of values as ADTs
e ‘“witness how to parse a flat value as an instance of a type"

t n=true | false | w | n[v]
vi=t|(O|Lv|Rv|(v,v)]|[vo...yVan]



XML Subtyping

e Flux: type-checking with inclusion-based subtyping
T < 7 [Tlgae © [T ] e
e equivalence relation that ignores structure
v~ v 2 flat(v) = flat(v')

e BiFluX: we need more than subtyping

e we reuse an algorithm with additional witness functions
between underlying structured values

. /<_\ o ucast v~ v Up.
~—_ ~ dcast VV.=v=v ~ v DOWN.



Core Language

e BiFluX — core language
e we consider two kinds of core updates and semantics
e bidirectional semantics as lenses

@ Hugo Pacheco and Zhenjiang Hu and Sebastian Fischer

Monadic Combinators for “Putback” Style Bidirectional Programming
PEPM 2014.

e unidirectional semantics as arrows

@ James Cheney
Flux: Functional Updates for XML
ICFP 2008.

e core BiFluX language (novelties in green):

e .= “core XQuery expressions”
p .= "“simple XPath expressions”
pat = “linear, sequence-based XDuce patterns”

u ::= "“Flux unidirectional updates”
b := "BiFluX bidirectional updates”



Core language: Unidirectional updates

e Flux in-place updates u modify specific parts of the source
and leave the remaining data unchanged

e purely value-based semantics

'y;vl—u:>v'

“in environment ~ and focus v, the
unidirectional update u updates v to value v'”

e independent typing
M= A{r}u{r}

“in type environment I', the unidirectional
update u maps values of type T to values of type 7'



Core language: Bidirectional updates

e BiFluX bidirectional updates b are interpreted as:

e an update function that modifies specific parts of the source to
embed all view information
e a query function that computes a view of a given source

e semantics is given to type derivations

[+ {rs} b{rv} = (query, udpate)

“in type environment I', the bidirectional update
b defines a BX (query, update) between source type
Ts and view type Ty, with query : 7s — Ty and
update : I = 76 = Ty — 75



BiFluX Syntax

e BiFluX high-level language (changes to Flux in green):

Stmt Upd [WHERE Conds] | Stmt ; Stmt | { Stmt } | { }
IF Tag Expr THEN Stmt ELSE Stmt
LET Tag Pat = Expr IN Stmt
CASE Tag Expr OF { Cases }
INSERT (BEFORE | AFTER) PatPath VALUE Expr
INSERT AS (FIRST | LAST) INTO PatPath VALUE Expr
DELETE [FROM] PatPath | REPLACE [IN] PatPath WITH Expr
UPDATE PatPath BY Stmt
UPDATE PatPath BY VStmt FOR VIEW PatPath [Match]
KEEP PatPath | CREATE VALUE Expr
Tag Expr [; Conds] | Tag Var := Expr [; Conds]
Pat — Stmt | Cases '|" Cases
{ VStmt } | VUpd
VUpd '|" VUpd
MATCH — Stmt
UNMATCHS — Stmt
UNMATCHV — Stmt
MATCHING BY Path
MATCHING SOURCE BY Path
VIEW BY Path
PatPath  ::=  [Pat IN| Path
Tag = [SOURCE | VIEW]

Upd

Conds
Cases
VStmt

VUpd

Match



A bookstore BiFluX Example

UPDATE $book IN $source/bookstore/book BY
{
MATCH -> REPLACE price WITH $price

| UNMATCHV -> CREATE VALUE <book category=’undefined’>
<title/>
<author>?7</author>
<year>?77</year>
<price/>

</book>

}

FOR VIEW book[$title AS v:title, $price AS v:price] IN $view/books/*

MATCHING SOURCE BY $book/title VIEW BY $title



A bookstore BiFluX Example: Forward

e Source:

<bookstore>

<book>
<title >Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category=’Programming’>
<title >Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

® View:

<books>
<book>
<title>Harry Potter</title>
<price>29.99</price>
</book>
<book>
<title>Learning XML</title>
<price>39.95</price>
</book>
</books>



A bookstore BiFluX Example

® Source:

<bookstore>

<book>
<title >Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category=’Programming’>
<title >Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

e Updated View:

<books>
<book>

<title>XPath for Dummies</title>

<price>19.99</price>
</book>
<book>
<title>Harry Potter</title>
<price>19.99</price>
</book>
<book>
<title>Learning XML</title>
<price>19.99</price>
</book>
</books>

: View update



A bookstore BiFluX Example: Backward

e Updated Source:

<bookstore>
<book category=’undefined’>
<title>XPath for Dummies</title>
<author>?7</author> <year>7?</year>
<price>19.99</price>
</book>
<book>
<title>Harry Potter</title>
<author>J K. Rowling</author> <year>2005</year>
<price>19.99</price>
</book>
<book category=’Programming’>
<title>Learning XML</title>
<author>Erik T. Ray</author> <year>2003</year>
<price>19.99</price>
</book>
</bookstore>



Conclusions

proposed a novel bidirectional programming by update
approach

e declarative style (write an update)
e good configurability (direct control over the update strategy)

presented BiFluX, a bidirectional XML update language

| hope to have convinced you that BiFluX allows users to write
BXs in a friendly notation and at a nice level of abstraction

type-safe, strongly-typed implementation in Haskell
for demos, our tool and more BiFIuX examples see...

http://www.prg.nii.ac. jp/projects/BiFluX J



http://www.prg.nii.ac.jp/projects/BiFluX

