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XML Transformation Languages

XML data formats abound for data exchange and processing
XML Transformation Languages (XQuery, XSLT, XDuce) ...

. are essential to convert data between different formats
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... but unsatisfactory to mutually convert between such
formats (a maintenance nightmare!)
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Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”
[Czarnecki et al., ICMT 2009]
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e many bidirectional transformation approaches support XML
formats



BX approaches - Relational

e write a consistency relation between the two schemas in a
declarative language

e derive both transformations from the consistency relation
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e examples:
o biXid [Kawanaka & Hosoya, ICFP 2006]

e XSugar [Brabrand et al., DBPL 2005]
e QVT [OMG, 2011]



BX approaches - Bidirectionalization

e write a (typically lossy) forward transformation in a common
programming language
e derive the backward transformation
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e examples:

o XQuery views [Fegaras, ICDE 2010;Liu et al., PEPM 2007]
e polymorphic Haskell functions [Matsuda & Wang, PPDP 2013]



Bx approaches - Combinatorial

write a program in a domain-specific bidirectional language

each program denotes both transformations

composition; correct-by-construction

examples:

S

Focal [Foster et al., TOPLAS 2007]
X [Hu et al.,, PEPM 2004]
Multifocal [Pacheco & Cunha, ICMT 2012]

etc



BX approaches - Current Picture

e due to the latent ambiguity of BXs

e existing approaches focus mainly on enforcing consistency
e from the programmer’s perspective, they suffer either from:
e supporting only “trivial” BXs
e being unpredictable, by making arbitrary choices and giving
little control over what the BX does
e being impractical to specify complex BXs



BXs = Updates

“Intuitively, a BX translates updates on a source model
into updates on a target model, and vice-versa, so that
the updated models are kept consistent.”




XML Update Languages

e XML transformation languages (XQuery, XSLT, XDuce) are
bad for specifying small updates
e a few dedicated languages for in- place XML updates:
o XQuery Update Facility

e imperative language
e ill-understood semantics (aliasing, side-effects, depends on
traversal order)

e Flux (Functional Lightweight Updates for XML)

functional language

clear semantics

static typing

straightforward type-checking

o XUpdate, XQuery!, and many others...



A Flux Example

UPDATE books/book BY
INSERT AS LAST INTO author
VALUE ’Stephen Buxton’
WHERE title = ’Querying XML’

books [book [author [string], title [string]]*]
— books [book [author [string]+, title [string]]x]



Our proposal: BiFluX

e We propose BiFluX, a bidirectional variant of Flux

e particular class of BXs: lenses, view updating

e modest syntactic extension

e notion of view (feat. pattern matching, non-in-place updates)
e static restrictions to ensure well-behavedness

e Flux: unidirectional e BiFluX: bidirectional
in-place semantics view-update semantics
S
S] T




BiFluX - A Bidirectional Update Language

query

S +> Vv
t update
S \

e a bidirectional update says:

e which parts of the source are to be updated
e how view modifications are reflected to the source

e there is a unique query function for each BiFluX program

e consistency properties of lenses
/

Update(s,v') =s' = Query(s') =v
Query(s) = v = Update(s,v) =s QUERYUPDATE

UPDATEQUERY



A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY
INSERT AS LAST INTO author
VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string



A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY
INSERT AS LAST INTO author
VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string

e adds the view as the last author to the source authors

e violates the QUERYUPDATE consistency law!



A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY
REPLACE IN author[last()]
WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string



A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY
REPLACE IN author[last()]
WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]*]
V = string

e replaces the last author in the source with the view author

e well-behaved bidirectional update!



XML types and values

e XDuce-style regular expression types
(with n-guarded recursion)

a :=bool || string || n[7]
To=al Qi Tnr Tl X

e Flux: “flat” representation of values as trees/forests
e economical, hard to embed into functional languages w/o
structural type equivalence

ft »:=true | false | w | n[fv]
fvi=()|ft, fv

o BiFluX: structured representation of values as ADTs
e ‘“witness how to parse a flat value as an instance of a type"

t n=true | false | w | n[v]
vi=t|(O|Lv|Rv|(v,v)]|[vo...yVan]



XML Subtyping

e Flux: type-checking with inclusion-based subtyping
T < 7 [Tlgae © [T ] e
e equivalence relation that ignores structure
v~ v 2 flat(v) = flat(v')

e BiFluX: we need more than subtyping

e we reuse an algorithm with additional witness functions
between underlying structured values

. /<_\ o ucast v~ v Up.
~—_ ~ dcast VV.=v=v ~ v DOWN.



Core Language

e BiFluX — core language
e we consider two kinds of core updates and semantics
e bidirectional semantics as lenses

@ Hugo Pacheco and Zhenjiang Hu and Sebastian Fischer

Monadic Combinators for “Putback” Style Bidirectional Programming
PEPM 2014.

e unidirectional semantics as arrows

@ James Cheney
Flux: Functional Updates for XML
ICFP 2008.

e core BiFluX language (novelties in green):

e .= “core XQuery expressions”
p .= "“simple XPath expressions”
pat = “linear, sequence-based XDuce patterns”

u ::= "“Flux unidirectional updates”
b := "BiFluX bidirectional updates”



Core language: Unidirectional updates

e Flux in-place updates u modify specific parts of the source
and leave the remaining data unchanged

e purely value-based semantics

'y;vl—u:>v'

“in environment ~ and focus v, the
unidirectional update u updates v to value v'”

e independent typing
M= A{r}u{r}

“in type environment I', the unidirectional
update u maps values of type T to values of type 7'



Core language: Bidirectional updates

e BiFluX bidirectional updates b are interpreted as:

e an update function that modifies specific parts of the source to
embed all view information
e a query function that computes a view of a given source

e semantics is given to type derivations

[+ {rs} b{rv} = (query, udpate)

“in type environment I', the bidirectional update
b defines a BX (query, update) between source type
Ts and view type Ty, with query : 7s — Ty and
update : I = 76 = Ty — 75



BiFluX Syntax

e BiFluX high-level language (changes to Flux in green):

Stmt Upd [WHERE Conds] | Stmt ; Stmt | { Stmt } | { }
IF Tag Expr THEN Stmt ELSE Stmt
LET Tag Pat = Expr IN Stmt
CASE Tag Expr OF { Cases }
INSERT (BEFORE | AFTER) PatPath VALUE Expr
INSERT AS (FIRST | LAST) INTO PatPath VALUE Expr
DELETE [FROM] PatPath | REPLACE [IN] PatPath WITH Expr
UPDATE PatPath BY Stmt
UPDATE PatPath BY VStmt FOR VIEW PatPath [Match]
KEEP PatPath | CREATE VALUE Expr
Tag Expr [; Conds] | Tag Var := Expr [; Conds]
Pat — Stmt | Cases '|" Cases
{ VStmt } | VUpd
VUpd '|" VUpd
MATCH — Stmt
UNMATCHS — Stmt
UNMATCHV — Stmt
MATCHING BY Path
MATCHING SOURCE BY Path
VIEW BY Path
PatPath  ::=  [Pat IN| Path
Tag = [SOURCE | VIEW]

Upd

Conds
Cases
VStmt

VUpd

Match



A bookstore BiFluX Example

UPDATE $book IN $source/bookstore/book BY
{
MATCH -> REPLACE price WITH $price

| UNMATCHV -> CREATE VALUE <book category=’undefined’>
<title/>
<author>?7</author>
<year>?77</year>
<price/>

</book>

}

FOR VIEW book[$title AS v:title, $price AS v:price] IN $view/books/*

MATCHING SOURCE BY $book/title VIEW BY $title



A bookstore BiFluX Example: Forward

e Source:

<bookstore>

<book>
<title >Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category=’Programming’>
<title >Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

® View:

<books>
<book>
<title>Harry Potter</title>
<price>29.99</price>
</book>
<book>
<title>Learning XML</title>
<price>39.95</price>
</book>
</books>



A bookstore BiFluX Example

® Source:

<bookstore>

<book>
<title >Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>

<book category=’Programming’>
<title >Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>

</bookstore>

e Updated View:

<books>
<book>

<title>XPath for Dummies</title>

<price>19.99</price>
</book>
<book>
<title>Harry Potter</title>
<price>19.99</price>
</book>
<book>
<title>Learning XML</title>
<price>19.99</price>
</book>
</books>

: View update



A bookstore BiFluX Example: Backward

e Updated Source:

<bookstore>
<book category=’undefined’>
<title>XPath for Dummies</title>
<author>?7</author> <year>7?</year>
<price>19.99</price>
</book>
<book>
<title>Harry Potter</title>
<author>J K. Rowling</author> <year>2005</year>
<price>19.99</price>
</book>
<book category=’Programming’>
<title>Learning XML</title>
<author>Erik T. Ray</author> <year>2003</year>
<price>19.99</price>
</book>
</bookstore>



Conclusions

proposed a novel bidirectional programming by update
approach

e declarative style (write an update)
e good configurability (direct control over the update strategy)

presented BiFluX, a bidirectional XML update language

| hope to have convinced you that BiFluX allows users to write
BXs in a friendly notation and at a nice level of abstraction

type-safe, strongly-typed implementation in Haskell
for demos, our tool and more BiFIuX examples see...

http://www.prg.nii.ac. jp/projects/BiFluX J



http://www.prg.nii.ac.jp/projects/BiFluX

