
BiFluX: A Bidirectional Functional Update
Language for XML

Hugo Pacheco1 Tao Zan2 Zhenjiang Hu2

1Cornell University, USA

2National Institute of Informatics, Tokyo, Japan

PPDP 2014

Canterbury, September 10th, 2014

XML Transformation Languages

• XML data formats abound for data exchange and processing

• XML Transformation Languages (XQuery, XSLT, XDuce) ...

• ... are essential to convert data between different formats

S T

• ... but unsatisfactory to mutually convert between such
formats (a maintenance nightmare!)

S T

Bidirectional Transformations (BXs)

“A mechanism for maintaining the consistency
of two (or more) related sources of information.”

[Czarnecki et al., ICMT 2009]

S T

S T

• many bidirectional transformation approaches support XML
formats

BX approaches - Relational

• write a consistency relation between the two schemas in a
declarative language

• derive both transformations from the consistency relation

S T

• examples:
• biXid [Kawanaka & Hosoya, ICFP 2006]
• XSugar [Brabrand et al., DBPL 2005]
• QVT [OMG, 2011]

BX approaches - Bidirectionalization

• write a (typically lossy) forward transformation in a common
programming language

• derive the backward transformation

S

S

T

T

• examples:
• XQuery views [Fegaras, ICDE 2010;Liu et al., PEPM 2007]
• polymorphic Haskell functions [Matsuda & Wang, PPDP 2013]

Bx approaches - Combinatorial

• write a program in a domain-specific bidirectional language

• each program denotes both transformations

• composition; correct-by-construction

S T

S T

• examples:
• Focal [Foster et al., TOPLAS 2007]
• X [Hu et al., PEPM 2004]
• Multifocal [Pacheco & Cunha, ICMT 2012]
• etc

BX approaches - Current Picture

• due to the latent ambiguity of BXs

• existing approaches focus mainly on enforcing consistency

• from the programmer’s perspective, they suffer either from:
• supporting only “trivial” BXs
• being unpredictable, by making arbitrary choices and giving

little control over what the BX does
• being impractical to specify complex BXs

BXs = Updates

“Intuitively, a BX translates updates on a source model
into updates on a target model, and vice-versa, so that
the updated models are kept consistent.”

S

S T

T

XML Update Languages

• XML transformation languages (XQuery, XSLT, XDuce) are
bad for specifying small updates

• a few dedicated languages for in-place XML updates:
• XQuery Update Facility [W3C, 2011]:

• imperative language
• ill-understood semantics (aliasing, side-effects, depends on

traversal order)

• Flux (Functional Lightweight Updates for XML) [Cheney, ICFP
2008]:

• functional language
• clear semantics
• static typing
• straightforward type-checking

• XUpdate, XQuery!, and many others...

A Flux Example

UPDATE books/book BY

INSERT AS LAST INTO author

VALUE ’Stephen Buxton’

WHERE title = ’Querying XML’

books [book [author [string], title [string]]∗]
→ books [book [author [string]+, title [string]]∗]

Our proposal: BiFluX

• We propose BiFluX, a bidirectional variant of Flux

• particular class of BXs: lenses, view updating

• modest syntactic extension
• notion of view (feat. pattern matching, non-in-place updates)
• static restrictions to ensure well-behavedness

• Flux: unidirectional
in-place semantics

S

T

• BiFluX: bidirectional
view-update semantics

S

S T

T

BiFluX - A Bidirectional Update Language

S

S V

V
query

update

• a bidirectional update says:
• which parts of the source are to be updated
• how view modifications are reflected to the source

• there is a unique query function for each BiFluX program

• consistency properties of lenses [Foster et al., TOPLAS 2007]:

Update(s, v ′) = s ′ ⇒ Query(s ′) = v ′ UpdateQuery

Query(s) = v ⇒ Update(s, v) = s QueryUpdate

A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY

INSERT AS LAST INTO author

VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]∗]
V = string

• adds the view as the last author to the source authors

• violates the QueryUpdate consistency law!

A BiFluX example (1)

Is this a bidirectional update?

UPDATE $source/books/book BY

INSERT AS LAST INTO author

VALUE $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]∗]
V = string

• adds the view as the last author to the source authors

• violates the QueryUpdate consistency law!

A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY

REPLACE IN author[last()]

WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]∗]
V = string

• replaces the last author in the source with the view author

• well-behaved bidirectional update!

A BiFluX example (2)

Is this a bidirectional update?

UPDATE $source/books/book BY

REPLACE IN author[last()]

WITH $view

WHERE SOURCE title = ’Querying XML’

S = books [book [author [string]+, title [string]]∗]
V = string

• replaces the last author in the source with the view author

• well-behaved bidirectional update!

XML types and values

• XDuce-style regular expression types [Hosoya et al., TOPLAS
2005] (with n-guarded recursion)

α ::= bool ‖ string ‖ n[τ]
τ ::= α ‖ () ‖ τ | τ ′ ‖ τ, τ ′ ‖ τ∗ ‖ X

• Flux: “flat” representation of values as trees/forests
• economical, hard to embed into functional languages w/o

structural type equivalence

ft ::= true | false | w | n[fv]
fv ::= () | ft, fv

• BiFluX: structured representation of values as ADTs
• “witness how to parse a flat value as an instance of a type”

t ::= true | false | w | n[v]
v ::= t | () | L v | R v | (v , v) | [v0, . . . , vn]

XML Subtyping

• Flux: type-checking with inclusion-based subtyping

τ <: τ ′ iff JτKflat ⊆ Jτ ′Kflat

• equivalence relation that ignores structure

v ∼ v ′ , flat(v) = flat(v ′)

• BiFluX: we need more than subtyping

• we reuse an algorithm with additional witness functions
between underlying structured values [Lu and Sulzmann,
APLAS 2004]

τ

ucast
%%

<: τ ′

dcast

dd
ucast v ∼ v Up∼

dcast v ′ = v ⇒ v ∼ v ′ Down∼

Core Language

• BiFluX → core language
• we consider two kinds of core updates and semantics

• bidirectional semantics as lenses

Hugo Pacheco and Zhenjiang Hu and Sebastian Fischer

Monadic Combinators for “Putback” Style Bidirectional Programming
PEPM 2014.

• unidirectional semantics as arrows

James Cheney

Flux: FunctionaL Updates for XML
ICFP 2008.

• core BiFluX language (novelties in green):

e ::= “core XQuery expressions”

p ::= “simple XPath expressions”

pat ::= “linear, sequence-based XDuce patterns”

u ::= “Flux unidirectional updates”

b ::= “BiFluX bidirectional updates”

Core language: Unidirectional updates

• Flux in-place updates u modify specific parts of the source
and leave the remaining data unchanged

• purely value-based semantics

γ; v ` u ⇒ v ′

“in environment γ and focus v , the
unidirectional update u updates v to value v ′”

• independent typing

Γ ` {τ} u {τ ′}

“in type environment Γ, the unidirectional
update u maps values of type τ to values of type τ ′”

Core language: Bidirectional updates

• BiFluX bidirectional updates b are interpreted as:
• an update function that modifies specific parts of the source to

embed all view information
• a query function that computes a view of a given source

• semantics is given to type derivations

Γ ` {τS} b {τV } ⇒ (query , udpate)

“in type environment Γ, the bidirectional update
b defines a BX (query , update) between source type
τS and view type τV , with query : τS → τV and
update : Γ→ τS → τV → τS

BiFluX Syntax

• BiFluX high-level language (changes to Flux in green):

Stmt ::= Upd [WHERE Conds] | Stmt ; Stmt | { Stmt } | { }
| IF Tag Expr THEN Stmt ELSE Stmt
| LET Tag Pat = Expr IN Stmt
| CASE Tag Expr OF { Cases }

Upd ::= INSERT (BEFORE | AFTER) PatPath VALUE Expr
| INSERT AS (FIRST | LAST) INTO PatPath VALUE Expr
| DELETE [FROM] PatPath | REPLACE [IN] PatPath WITH Expr
| UPDATE PatPath BY Stmt
| UPDATE PatPath BY VStmt FOR VIEW PatPath [Match]
| KEEP PatPath | CREATE VALUE Expr

Conds ::= Tag Expr [; Conds] | Tag Var := Expr [; Conds]
Cases ::= Pat → Stmt | Cases ′|′ Cases
VStmt ::= { VStmt } | VUpd

| VUpd ′|′ VUpd
VUpd ::= MATCH → Stmt

| UNMATCHS → Stmt
| UNMATCHV → Stmt

Match ::= MATCHING BY Path
| MATCHING SOURCE BY Path

VIEW BY Path
PatPath ::= [Pat IN] Path
Tag ::= [SOURCE | VIEW]

A bookstore BiFluX Example

UPDATE $book IN $source/bookstore/book BY

{

MATCH -> REPLACE price WITH $price

| UNMATCHV -> CREATE VALUE <book category=’undefined’>

<title/>

<author>??</author>

<year>??</year>

<price/>

</book>

}

FOR VIEW book[$title AS v:title, $price AS v:price] IN $view/books/*

MATCHING SOURCE BY $book/title VIEW BY $title

A bookstore BiFluX Example: Forward

• Source:

<bookstore>

<book>

<title >Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category=’Programming’>

<title >Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

• View:

<books>

<book>

<title>Harry Potter</title>

<price>29.99</price>

</book>

<book>

<title>Learning XML</title>

<price>39.95</price>

</book>

</books>

A bookstore BiFluX Example: View update

• Source:

<bookstore>

<book>

<title >Harry Potter</title>

<author>J K. Rowling</author>

<year>2005</year>

<price>29.99</price>

</book>

<book category=’Programming’>

<title >Learning XML</title>

<author>Erik T. Ray</author>

<year>2003</year>

<price>39.95</price>

</book>

</bookstore>

• Updated View:

<books>

<book>

<title>XPath for Dummies</title>

<price>19.99</price>

</book>

<book>

<title>Harry Potter</title>

<price>19.99</price>

</book>

<book>

<title>Learning XML</title>

<price>19.99</price>

</book>

</books>

A bookstore BiFluX Example: Backward

• Updated Source:

<bookstore>

<book category=’undefined’>

<title>XPath for Dummies</title>

<author>??</author> <year>??</year>

<price>19.99</price>

</book>

<book>

<title>Harry Potter</title>

<author>J K. Rowling</author> <year>2005</year>

<price>19.99</price>

</book>

<book category=’Programming’>

<title>Learning XML</title>

<author>Erik T. Ray</author> <year>2003</year>

<price>19.99</price>

</book>

</bookstore>

Conclusions

• proposed a novel bidirectional programming by update
approach

• declarative style (write an update)
• good configurability (direct control over the update strategy)

• presented BiFluX, a bidirectional XML update language

• I hope to have convinced you that BiFluX allows users to write
BXs in a friendly notation and at a nice level of abstraction

• type-safe, strongly-typed implementation in Haskell

• for demos, our tool and more BiFluX examples see...

http://www.prg.nii.ac.jp/projects/BiFluX

http://www.prg.nii.ac.jp/projects/BiFluX

