
2LT Framework

http://2lt.googlecode.com

Type-safe implementation of data refinements in 
Haskell such that transformations are well-typed, 
consistent and composable.

Transformations are specified as point-free 
functions and subject to point-free simplification 
laws.

An example application is the automatic mapping 
between XML schemas and SQL databases.

BIDIRECTIONAL DATA TRANSFORMATION
BY CALCULATION

University of Minho

School of Engineering

Department of Informatics / CCTC

Hugo Pacheco*
Supervisor: Manuel Alcino Cunha
Co-supervisor: José Nuno Oliveira

*hpacheco@di.uminho.pt

Bidirectional Data Transformation

Data transformations are frequent in software engineering 
and are essential to “bridge the gap” between technology 
layers. Moreover, users generally expect transformations to 
be bidirectional, in the sense that changes made to one 
model can be safely propagated to its connected pair.

The key issue in bidirectional transformations is what is 
meant by “safely propagated” and how to guarantee that 
property.

2 unidirectional transformations / bidirectional transformation

S T

S T

S T

A C

to'' • to'

!

from' • from''

A B C

to'

! !

to''

from' from''

Well-behaved Bidirectional Transformations

Refinements
transform abstract models into more concrete 
ones, that have more information

Lenses
transform concrete models into more abstract 
ones, that have less information

Isomorphisms
transform models into equivalent ones, that have 
the same information

!

Goals / Open Questions

Extend the 2LT framework to recursive types and investigate 
how to generically express and represent transformations 
over mutually recursive types.

Investigate how the relational calculus, inherently more 
bidirectional than the currently expressed functional setting, 
can be mechanized and how that additional power will 
enhance the functionalities of the 2LT framework.

Study how can lenses be integrated into the 2LT framework: 
which transformation scenarios exist and how to extend the 
lens theory to recursive types.

Consider transformations that may add and delete 
information and, thus, are more general than refinements and 
lenses: which formal properties hold for such relations 
between models?

(manually prove consistency)
(expensive, error-prone)

(gen. reverse transformation)
(strong behavioral laws)

Results

Alcino Cunha and Hugo Pacheco. Algebraic Specialization of Generic Functions for Recursive Types, MSFP 08.

!

!

http://2lt.googlecode.com
http://2lt.googlecode.com
mailto:hpacheco@di.uminho.pt
mailto:hpacheco@di.uminho.pt

