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Abstract. The calculus of relations has been widely used in program
specification and reasoning. It is very tempting to use such specifications
as running prototypes of the desired program, but, even considering finite
domains, the inherent partiality and non-determinism of relations makes
this impractical and highly inefficient. To tame partiality we prescribe
the usage of invariants, represented by coreflexives, to characterize the
exact domains and codomains of relational specifications. Such invariants
can be used as pre-condition checkers to avoid runtime errors. Moreover,
we show how such invariants can be used to narrow the non-deterministic
execution of relational specifications, making it viable for a relevant class
of problems. In particular, we show how the proposed techniques can
be applied to execute specifications of bidirectional transformations, a
domain where partiality and non-determinism are paramount.

1 Introduction

The relational calculus provides a more natural way to specify programs than
purely functional formalisms: most so-called functions in computer science are
actually partial, and non-determinism is many times an essential characteristic
of the program. In particular, since its first axiomatization by Tarski, a point-free
(PF) version of the calculus of relations has been used in a variety of areas of
computer science [1-3] in order to specify and reason about programs, due to its
high simplicity and ease of manipulation.

However, relational specifications are frequently not amenable for execution:
with partiality the behavior of the program may become unpredictable and give
rise to runtime errors, while non-determinism may produce infinite runs without
returning a single valid value. For instance, consider the expression (id A id)° o
(length® A head®) : Nat — [Nat], that given a natural n, calculates a list with
length n, whose first element is also n. This is not a total relation, since it is not
defined for the value 0, since no list with length 0 could have the same 0 as its
head. We resort to the converse from the relational calculus to generate these
lists: head® generates all lists with the input value at its head, while length®
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generates all lists with the given length; both these operations are total and
non-deterministic. The expression (id A id)° is the converse of the duplication
operation: it is a partial function that takes as input tuples with two copies of
the same element, and returns such element. In an unbounded execution, length®
and head® would evaluate freely until they both return the same list that could
be consumed by (id A id)°. Such execution may not even terminate, since, for
instance, head® could be generating all possible lists by increasing length.

If we are able to determine exactly the domain (and range)! of an expression,
such mechanism can be used to predict the behavior of partial expressions by
being used as a pre-condition checker. In this case, we are able to calculate
both the domain (n # 0) and the range (length [ = head [, which also implies
that [ is not empty) of this expression. Moreover, these domains can also be
propagated down the expression to the inner combinators, avoiding unnecessary
computations. In this case, due to (id A id)°, length® and head® must generate
the same list, and we can use this information to narrow their executions. In
particular, given an input n, we can either restrict the values generated by
length® to those lists whose head is n or, dually, restrict head® to produce lists
with length n. This will result in an efficient and complete (in the sense that all
values will eventually be produced) non-deterministic evaluation.

In this paper, we propose a PF relational framework whose type system
is enhanced with the introduction of invariants (represented by coreflexives),
allowing the definition of more refined data-types, in order to address the above-
mentioned issues. To carry this development, a powerful and simple calculus
of invariants based on the relational PF notation [3] is harnessed into a type-
inference and type-checking algorithm that works for many practical examples.
The inferred invariants are also used to optimize the execution of a relational
expression, making them viable as running prototypes of the specified program.

Our framework proves to be particularly useful in the area of bidirectional
transformations, where partiality and non-determinism play an important role.
In particular, we put it to use in the specification of lenses [4], one of the most
successful approaches to bidirectional transformations. Using invariants to pre-
cisely characterize the domain and range of a lens, we can safely extend the class
of expressible transformations, namely by allowing unrestricted usage of dupli-
cation, a well-known problematic feature in such frameworks. Also, propagation
of such invariants allows us to efficiently execute the non-deterministic update
propagation function for a wider class of transformations than before [4, 5].

Section 2 introduces the PF relational calculus that is at the core of our
framework. Section 3 presents our optimizations on invariant calculation and
non-deterministic evaluation. Section 4 shows how standard recursion patterns
can also be supported. In Section 5 we apply our framework in the specification of
bidirectional transformations, obtaining non-deterministic lenses enhanced with
invariants. Finally, Section 6 discusses related work and Section 7 draws the final
conclusions and points directions for future work.

! By domain and range we refer to the exact set of values which a relation consumes
and produces, respectively.
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Fig. 1. Point-free relational combinators.

2 Point-free Relational Calculus

The point-free (PF) relational calculus [1-3] is a key ingredient in the formaliza-
tion of our framework. This calculus generalizes the well-known PF functional
calculus, and enables us to reason about partiality and non-determinism using
a powerful set of algebraic laws.

2.1 Syntax and semantics

A relation R is said to have type A — B if it is the subset of the Cartesian
product A x B. We write b R a if the pair (a,b) is in R. Relations can be built
using the combinators presented in Figure 1. The key combinator is composition,
that given R: A — B and S : B — C builds a relation So R : A — C, which
is associative and has the identity relation id : A — A as neutral element (we
thus have a category of relations). Relations R: A — B and S : A — B can be
combined using the standard intersection and union operators. Every relation
R : A — B also possesses a well-defined converse R°: B — A. For any two types
A and B, T: A — B is the largest relation over those types (their Cartesian
product) and 1 : A — B the smallest (the empty relation). A special case of T
with final type 1 as range is denoted as ! : A — 1. For any value b € B, the
constant relation b : A — B always returns b.

We also have categorical products and coproducts (or sums). For any two
relations R : A — B and S : A — C, the split combinator is defined as R A
S : A — B x C. The left and right components of a pair can be projected
with m : AXx B — A and my : A x B — B, respectively. Dually, for any
two relations R : B — A and S : C — A, the either combinator is defined
as RvS : B+ C — A. Left and right tagged elements can be built with
i1:A— A+ B and i3 : B — A + B, respectively. Two derived combinators are
the product and sum bifunctors, defined respectively as R x S = Rom; AS omy
and R+ S =141 0 RV iy0§. Some of the laws ruling the PF relational calculus
are presented in the Appendix A.

The formal semantics of relational expressions as membership predicates is
given in Figure 2. Notice that, apart from composition, this semantics can be di-
rectly and efficiently executed. If we assume that all types are finite, composition
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Fig. 2. Semantics as predicates.

[RoS] a ={c| b+ [S]ac«[R] b} [id] a ={a}
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Fig. 3. Semantics as non-deterministic functions.

could also be implemented but would obviously be very inefficient. An alterna-
tive semantics as non-deterministic functions (functions returning sets of values)
is more useful if we intend to execute relational specifications. It can trivially be
defined by set comprehension as [R:A — B a ={b| b [R] a,b + B}, but such
definition is highly inefficient and cannot be used in practice. Figure 3 presents
an alternative optimized definition that avoids the exhaustive search over B for
all combinators but the converse. Again, this semantics can be directly imple-
mented, for example using the non-determinism monad in a functional language
like Haskell. However, given a value a, even if we are only interested in just one
of the results of [R] a, there are still several concerns for efficiency (besides the
converse) that make such definition impractical. For example, in the left-biased
implementation of intersection we still need to iterate over all results of R until
a suitable value that also satisfies S is found.

The kernel of a relation is defined as ker R = R° o R, while its counter-
part, the image, is defined as img R = R o R°. A relation R is said to be
reflexive if it is at least the identity (id C R), and coreflezive if it is at most
the identity (R C id). Coreflexives will be denoted by upper-case Greek letters
(@, D, (2,...). Relations can be classified according to the properties of their kernel
and image. A relation is said to be total or surjective if its kernel and image are
reflexive, respectively, and injective or simple if its kernel or image are coreflexive,
respectively. Functions arise as the particular class of relations that are total and



simple. As a convention, the identifiers of relational expressions that happen to be
simple will begin with a lower-case. So, while R, S, T, ... are typical identifiers for
relational expressions, f, g, h, ... will denote simple relations (partial functions).

2.2 Predicates as coreflexives

Coreflexives act as filters of data and can be used to model predicates (and thus
invariants): values a for which a [®] a satisfy the predicate ¢. We will often see
them as sets and denote predicate satisfiability using just set membership a €
[®] = a [@] a. Coreflexives have interesting algebraic properties that simplify
their manipulation like, for example, ° = @, Po® = @, and Po ¥ = PNV,
Evaluation of coreflexives also reduces to membership test as [@] a = {a | a €
[®]}, meaning that its evaluation is typically efficient. The only problematic
case is again composition, but as we will see shortly most of the compositions
appearing in coreflexives can be evaluated efficiently. In particular, composition
of coreflexives is just a conjunction of predicates.

A predicate on products can always be specified by a relation between its
elements. Any relation R: A — B can be lifted to a coreflexive [R]: Ax B — AX B
defined as [R] = 7§ o R oy Nid. Another way to put it is to say that [R] is the
largest coreflexive @ such that 75 0 @ C R o 7y, since

S C[Rl e moPony CR

From this we can derive many interesting properties of this combinator, such as
[T] = id, [L] = L, the cancellation rules m o [R] = (id A R)® and 73 o [R] =
(R° Aid)°, and [mg 0 @ o 15| = P for any coreflexive on pairs @. For example,
using this combinator we can trivially specify the predicate stating that both
components of a pair are equal using the coreflexive [id]: A x A — 4 x A. Given
coreflexives @: A — A and ¥ : B — B, the coreflexive ® x W : Ax B — A X B
holds for pairs whose left element satisfy & and whose right element satisfy ¥.
It can alternatively be specified as @ x ¥ = [ o T o P).

Coreflexives on sums are considerably simpler, since predicates on sums can
always be specified using the sum combinator. The coreflexive @ + ¥ : A+ B —
A + B holds for left values that satisfy @ and for right values that satisfy ¥.

Every coreflexive has a complement & : A — A such that a [®] a &
=(a [®] a). A useful combinator for coreflexives is the guard ®? = (dVP)°: A —
A+ A that tags the input as a left or right value in a sum, depending on the result
of testing @. When combined with an either it allows to model conditionals.

In this paper, we will use coreflexives to specify the invariants that charac-
terize the domain and range of a transformation. Given a relation R : A — B,
its domain denoted as dR: A — A, is the coreflexive § R = ker R Nid. Dually, its
range, denoted as pR: B — B, is the coreflexive pR = img RNid. If R is total, its
kernel is larger than id and thus §R = ker RN id = id, as expected, while if R is
simple, its image is smaller than the identity and thus pR = img RNid = img R.
These definitions simplify in a similar way for surjective and injective relations.
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Fig. 4. Domain and range of PF combinators.

A relation R: A — B that is only defined for inputs satisfying @ and always
produces outputs satisfying ¥ (R CWo T o ®) will be typed as R: Ag — By, or
just R:® — ¥ if the underlying types are irrelevant or clear from the context.

3 Optimizations

In the previous section, we have show how the domain and range of a transfor-
mation can be specified. However, such specifications involve relational compo-
sitions that hinder their efficient execution as pre- and pos-condition checkers
of a transformation. In this section we will first show how the calculation of
the domain and range can be optimized to yield expressions more amenable to
execution. Then, we will show how we can take advantage of such domain and
range expressions to optimize the semantics defined in Figure 3.

3.1 Optimizing domain and range calculation

For relational programs written using the PF combinators from Figure 1, their
respective domains and ranges can be defined by induction as presented in Fig-
ures 4 and 5. To avoid infinite reductions in compositions, the laws of Figure 5
should be prioritized. These laws detail how the domain and range of a combi-
nator should be further restricted in presence of a coreflexive.

The expressions resulting from these definitions are more amenable for exe-
cution than the default domain and range definitions because most of the com-
positions are eliminated. The remaining ones (except for the range of the split
combinator) fall in the special case R° o U o S, that, as shown in [2], can be
evaluated deterministically as a [R° o Uo S| b = (R a) [U] (S b) if R and
S are functions. After applying the laws of Figures 4 and 5, we further sim-
plify the resulting expression using a rewrite system similar to one previously
developed for the optimization of PF functional expressions [6,7]. Essentially,
this rewrite system applies some of the laws from Appendix A as unidirectional
rewrite rules oriented from left to right. This simplification phase can further
eliminate problematic compositions. If the final expression still contains some of
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Fig. 5. Domain and range of compositions.

those, our implementation can issue a warning informing that its usage as an
invariant checker may not be feasible.

This rewrite system is also used to perform the equality test & = 1 that
occurs in some of the definitions in Figure 5. However, since such test may not
be not decidable, i.e., the rewrite system may not be able to reduce into L an
expression that is semantically equivalent to L, if we can not show that & is
empty, the default definitions of range and domain are applied instead. Still, for
some cases when we can prove that & # 1, the range of (for instance) !o® and
T o @ can be further simplified to id.

3.2 Optimizing non-deterministic executions

The executable semantics of Figure 3 can be optimized by propagating the do-
mains and ranges of the outer expressions down to the inner expressions, in
order to avoid the computation of intermediate values that are valid for sub-
expressions but are not valid for the global expression. Figure 6 shows how this
propagation can be performed (B denotes the set of all elements of the respec-
tive type and input values are assumed to have already passed the pre-condition
test). For instance, in the evaluation of R o S we now narrow the evaluation
of S to return only values in the domain of R (and vice-versa), thus avoiding
generation of values not accepted by R; since the split R A S is only defined for
values in the domain of both R and S, the domain invariant of each branch takes
the domain of the other, in other to disregard invalid values during execution.
The converse of expressions is presented in Figure 7, where each case is analyzed
individually to achieve better efficiency. We omit the evaluation of the converse
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Fig. 6. Optimized non-deterministic evaluation.
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Fig. 7. Optimized non-deterministic evaluation of converses.

of idem-potent combinators (id, {2, T, L) and of combinators whose converse can
be easily propagated (Ro S,RNS,RUS) and thus can be executed by the
definitions in Figure 6. The proof of the semantic equivalence between the two
versions for some combinators is shown in Appendix C. The remaining can be
proven by a similar technique.

The evaluation of the primitive combinators is, for most cases, fairly obvious,
since it consists in their standard definition, with a membership test for the
desired invariant. Note however that all invariant tests occur at the primitives,
meaning that infeasible values are not passed through higher-order combinators.
Nevertheless, redundant values can still be generated, even if they produce a
valid output. For instance, in the expression ko T, T will generate all possible
values, even though they will all be transformed into the same value by k. In
many of such cases, the rewrite system already presented can be used to remove
redundant value generation. In this case, k£ o T would be reduced to k.

The most interesting narrowing cases are those of the meet and the converse
of split (which is itself a meet). For these cases, if we used the definition from
Figure 3, the R branch would execute independently of the invariants of S and
its output would be tested in S. Naturally, the unconstrained evaluation of R can
be very inefficient and may process and generate infeasible values that are not in
the domain or range of S. Using invariants, we restrict R to the domain of S and
constrain the values generated by R to only those that would also be produced
by S. For instance, in the execution of the converse of the split [(R A 5)°] (a, b),
instead of having [R°] a running freely, it is restricted to produce values that



would also be produced by [S°] b, as specified by its post-condition p(¥oS°obd).
Once again, a right-biased implementation would be equivalent.

4 Recursive relations with invariants

In this section, we investigate the construction of expressions and the calculation
of invariants for recursive types. Most user-defined data types can be defined
as fixed points of regular functors. Given a base functor, the inductive type
generated by its least fixed point will be denoted by p F. A regular functor
is either the identity functor Id (denoting recursive invocation), the constant
functor A, the lifting of the sum @& and product bifunctors ® , or the composition
of functors ® . For example, for lists we have [A] = uL, where L = 1® A®Id, and
for naturals N = uN, where N = 1@ Id. Associated with each data type pF we
have also two unique functions ing: F uF' — pF and outp:puF — F pF, that are
each other’s inverse. The typical list constructors can be defined as nil = in o4
and cons = ing o 49, i.e., nil V cons = iny, and for naturals as zero = iny o0 4; and
succ = iny o i3. They allow us to encode and inspect values of the given type,
respectively. The application of out results on a one-level unfolding to a sums-
of-products representation capable of being processed with PF combinators. For
a functor F' and a function f: A — B, the functor mapping F' f: F A — F B
is a function that maps f over the instances of the type argument, and can be
defined inductively over the structure of the functor.

Instead of defining expression by general recursion, we resort to well-known
recursion patterns, namely folds (catamorphisms) and unfolds (anamorphisms),
that encode the recursion patterns of iteration and coiteration, respectively. The
fold (R)p : pF — A consumes values of a recursive type uF according to an
algebra R: F A — A, while the dual unfold [S]: A — pF produces elements
of a recursive type puF' according to a coalgebra S: A — F' A, and are the unique
relations that make the hereunder diagrams commute:

quFuF MF<in7FFuF
(lR)F\L lF(IRl)F KS)]FT TF (STr
A<——F A A——F A
R S

As expected, these recursion patterns preserve the simplicity of their argument
algebras or coalgebras [8]. Forward and backward (converse) evaluation is not
problematic, because we can proceed recursively by unfolding their definitions:

(R)p =RoF (R)pooutp [S)p=inpoF [S)zo0S

The main problem, however, is the optimization of domain and range calcu-
lation for folds and unfolds due to the nonexistence of a normal form to express
invariants over recursive types. For some simple cases, we can rely on the fol-
lowing laws [8]:



F pR COR = (R) =id F S CpS=p[S)=id
R:F®—-P= (R)p:id—o S: - Fd=[S)p:P2—id

Focusing on the left column (the other is dual for unfolds), the first law states
that a fold is total if the range of its algebra is contained in its own domain
(in particular, total algebras yield total folds); the second law states a simple
consistency condition needed to establish the range of a fold. Whenever these
laws do not apply, we resort to the general definitions of domain and range
presented in Section 2.2, and then apply the rewrite system briefly presented in
Section 3.1, enriched with laws to handle recursive patterns, namely fusion?:

So(R)p=(T)p=SoR=ToFS [S]poR=[T)p<=SocR=FRoT

As explained before, we issue a warning if the rewrite system yields expressions
whose evaluation may be problematic.

We now give some examples of recursive expressions that are already sup-
ported in our framework. We begin with (id A id)° o (length® A head®) : Nat —
[Nat], the example from the introduction, where head = 71 o cons® and length =
(inn o (id 4+ m2)). The domain of head is in_ o (L + id) o out,, meaning that the
list can not be empty, while length:id — id by applying the above laws for folds,
since its algebra has type F id — id. The range of the whole expression can be
computed as follows:

p((id A 'id)° o (head® A length®))
= {-Range definition: Figure 4 -}
p((id A id)° o p(head® A length®))
= {-Range definition: Figure 4 -}
p((id A id)° o [length® o head])
= {-Range definition: Figure 5 -}
d([length® o head] o (id A id))
= {-Range definition: Figure 5, Simplifications: Appendix A -}
head® o length N id

Returning to point-wise, this means that [ € [head® o length Nid] < head [ =
length n, as expected. On the other hand, its domain is in_ o (L + id) o out.
(the proof can be found in Appendix B), and thus, (id A id)° o (length® A
head®) :in_ o (L +id) o out, — head® o length N'id.

Another example of a catamorphism is the unzip: [A x B] — [A] x [B]
transformation, that splits a list of pairs into two lists of left and right elements.
Since the algebra of unzip is a total function g = (nil Anil) vV ((consom; X m1) A
(cons o g X m3)), the domain of the catamorphism is id. As for its range, our
rewrite system performs a calculation equivalent to the following:

punzip
= {-Definitions: range -}

2 We implement the “guessing step” required for fusion using the technique from [7].



(unzip o unzip®) N id

= {-Simplifications: unzip is simple, Liftify: range of unzip is a product -}
[r2 o unzip o unzip® o 7]

= {-Catamorphism fusion: 7; o g = nil V (cons o (m x id)) o F 7 -}
[(nil V (cons o (w1 x id)))) o (nil V (cons o (w2 x id)))°]

= {-Definitions: map -}
[((map 1) o (map 72)°]

= {-Simplifications: map converse, map fusion (see below) -}
[map (1 o 73)]

= {-Simplifications: Appendix A -}
[map T]

In this calculation, map f = (in_ o (id 4+ (f x id))])) is the mapping that applies
f to all elements of the list, whose converse and fusion properties are defined
as (map f)° = map f° and map f o map ¢ = map (f o g), respectively. The
resulting range [map T| means that unzip always produces lists with the same
length but unrelated elements. Maps of coreflexives are themselves coreflexives,
and represent a special shape of invariants over recursive types. In particular,
we are able to calculate the domain and range of constructors and destructors
of values over map invariants:

d(map P oin ) =id + (P x map D) plout o map @) = id + (¢ x map P)

The reasoning about anamorphisms follows the same rationale and is omitted.

5 Application scenario: Bidirectional Transformations

Lenses [4] are one of the most successful approaches to bidirectional transfor-
mations. A lens, denoted by S > V', is a bidirectional transformation between
sources of type S and views of type V that comprises two functions: a forward
transformation Get: S — V that abstracts a source into a view; and a backward
transformation Put: V x § — § that takes an updated view and the origi-
nal source to return an updated source. A lens is well-behaved if it satisfies the
round-tripping properties Get o Put C 7 (denoted acceptability or PUTGET)
and Puto (Get A id) C id (denoted stability or GETPUT). A lens is also said
to be total if Get and Put are total functions. Due to these laws, the Get of a
total well-behaved lenses must be a surjective function (where any value of V
must be the view of some source) and obviously total. For this reason, many
interesting transformations (such as the split combinator) are not admissible as
total well-behaved lenses since they are non-surjective transformations.

In fact, when designing a bidirectional language there is a well-known trade-
off between the expressiveness allowed by its syntax and the robustness enforced
by the totality and round-tripping laws. Some approaches [5,9] compromise the
expressiveness; others ignore the totality requirement [10-12]; others maintain
totality, but weaken the round-tripping [13]; some relax both totality and round-
tripping laws [14-17]; finally, it also possible to avoid compromising the laws by



developing a more refined type system, as proposed in the original lens frame-
work [4]: in order to preserve totality, a powerful semantic type system with in-
variants was used to specify the exact domain and range of lenses, which allowed
the definition of duplication and conditional combinators as total well-behaved
lenses. Unfortunately, to retain decidability in the type system, the expressive-
ness was still restricted by forcing composed lenses to agree not only on types
but also on invariants. For example, in such a scenario, duplication could be
followed by a merge combinator that only accepts pairs with two equal values,
but not by a generic projection that works for whatever pair.

Consider the composition of two transformations f: Ag — By and ¢g: Bp —
Cy,, where ¥ is more restrictive then I', as depicted in the following diagram:

Since the range of f and the domain of ¢ do not match, the backward transforma-
tion of a composed lens would only be defined for (2, i.e., the values in the range
of g for which the value produced by its backward transformation are within the
range of f. To support such generalized composition, we will use the techniques
proposed in this paper to: 1) perform invariant inference to discover the ex-
act range (2’ of the (global) transformation; 2) specify a non-deterministic Put,
whose optimization can be efficiently narrowed to the Put of a lens ¢': By = Co
that only generates values satisfying ¥.

Using the relational calculus, it is quite simple to specify a generic non de-
terministic Put that is the largest relation that satisfies the round-tripping pro-
prieties. To be more specific, any transformation® f : A — B can be lifted to
a total, well-behaved non-deterministic lens |f|:df = pf, with Gety = f and
Puty = (m2 V (f° o m1)) o [f°]?7. This specification of Puty trivially satisfies the
round-tripping laws (a formal proof can be found in Appendix D), because it ex-
plicitly tests if the view was modified using the coreflexive [f], which is such that
(v,s) € [If]] © v =/ s. For that case, it returns the original source; otherwise,
it runs the transformation backwards to recover all possible sources that could
have originated that view. As such, Put; is also the largest non-deterministic re-
lation that keeps the lens well-behaved. Although trivial, the lens resulting from
this lifting cannot be used in a practical bidirectional transformation framework.
Of course, we could use the semantic definition of Figure 2 to evaluate the in-
variants df and pf and perform type-checking, but as explained in Section 2.1,
due to composition the resulting algorithm would be undecidable. Similarly, for
the backward transformation, we could use the semantics of Figure 3 to per-
form evaluation. Even (reasonably) assuming that the user only wants a single
updated source, and relying on lazy evaluation, the efficiency problem would be
even worse, due to the central role played by the converse in the definition.

3 By transformation we mean a simple relation.



Both these problems can be handled by the optimizations presented in the
previous sections. Our lens language allows any simple (or simplicity-preserving)
PF combinator to be used to specify the forward transformation. Although un-
constrained converse is not allowed (since it is not simple in general), we include
the converses of the injections that are partial functions useful for “destructing
sums”. Thus, the domain and range of the transformations can be trivially cal-
culated, and except particular ranges of splits, type checking is decidable. As for
the backward transformation, by applying the rules already presented in Fig-
ure 6, the generic definition can be efficiently executed. Our language supports
transformations including splits, conditionals, and converses of injections, that
are not supported by most existing lens frameworks. In particular, the dupli-
cation operator id Aid: A — A x A yields a lens |id Aid] :id = [id] (whose
backward transformation only accepts pairs with equal components) that can
be freely composed with other lenses irrespective of their invariants. Recursive
expressions are also supported as they preserve the simplicity of their algebras.

To give an example of the performed optimizations, consider the transfor-
mation f = 7 A id. Using the algorithm of Section 3.1, we can infer its range
and domain and lift it to the lens |7y Aid] :id = [7§] that only accepts views
(z,(y, 2)) where z = y. Should the duplicated value be updated, the optimized
backward transformation would execute as follows:

[[(7@ v (foom))o[f°]7:[my] xid —id] ((a, (a,9)), (2, y))
{- Optlmlzed semantics: Ro S (Fig. 6) Domam/Range (Fig. 4) -}

{C|b%|l Pifmy] xid = id + [77] x id] ((a, (a, y)), (2, ),
C<—[[772V (feom):[fel+[f] —id] b}
{-Optimized semantics: ®?, ((a, (a,y)), (m v)) € [If°1) -}
ig )

{C|C<—[[(7T2V(f°°m)) (] + [f°] = id] (Right ((a, (a,9)), (z,)))}
{-Optimized semantics: R v S (Fig. 6) -}
y)

{C|CF|I(f°°7T1)~[f | = id] ((a; (a,9)), (z,9))}
= {-Optimized semantics: R o S, m; (Fig. 6), Domain/Range (Fig. 4) -}
{elk < [[m1]] (a,(a,y)), ¢ < [f°:id —id] k}
= {-(a,(a,9)) € [[=7]] -}
{c|c+[(m Aid)°:id —id] (a,(a,y))}
{-Optimized semantics: (R A S)° (Fig. 6), Domain/Range (Fig. 4) -}
{c|ec+[m:id = pla,y)] a}
{-p(a,y) = pa x py = [pao T o pyl], Optimized semantics: 77 (Fig. 6)
{(a, ) [ 14 [paoTopy]a}

{-Simplifications: Appendix A, Semantics: Ro S, & (Fig. 3), a € [pa] -}

{(a,9)}

Note how the invariants only need to be evaluated for the primitives. Although
the semantics of 77 is non-deterministic, id implies a single result. Simplifications
are applied to convert the invariant over pairs into the lift form.

Recursive specifications can also be lifted to lenses. For instance, the trans-
formation tail A length can be lifted to the lens [tail A length] :id > [succo

-}



m

length], whose backward transformation only accepts values such that (I, n)
[[succ o length]] < length I + 1 = n. In this case, [Put] (([2,3],3),[1,2,3]) =
{[1,2,3]} since the view did not change, while [Put] (([2,0],3),[1,2,3])
{[0,2,0],[1,2,0],[2,2,0],...}, generating all possible lists with [2,0] as tail.
Since |unzip] :id = [map T] is an injective relation, its backward transfor-
mation is simple; therefore, even if the view lists are updated, Putyn,i, always
returns a single result that is the zip of the view pair.

6 Related work

Although our calculus of invariants was inspired in [3], our typing rules impose a
stronger restriction. In our case, a relation R:® — ¥ is exactly defined only for
values of @ and only produces values in ¥, while in [3] invariants represent pre-
and post-conditions, i.e., Ro® C ¥ o R, meaning that there may exist values
outside @ for which R is defined but whose behavior is unpredictable. It follows
that all typing rules of [3] are applicable to our framework.

Functional logic programming languages like Curry [18] focus on the non-
deterministic evaluation of specifications written in a functional programming
style. While such languages focus on the evaluation of the specifications, our
approach provides a better understanding of the program and its behavior during
executing, resorting to a calculus of invariants.

The universal resolving algorithm (URA) [19] has been developed to com-
pute the inverses of functional programs. Like our evaluation algorithm, it is
complete (it lazily enumerates all possible values) but not always terminating
(since recursive types may admit infinitely many values). Nevertheless, unlike in
URA, we are able to optimize expression before evaluation using the relational
calculus. This allows to cut many intermediate infeasible values, making value
generation for most invariants much more efficient.

Regarding bidirectional transformations, our framework can be seen as a
domain-specific language over inductive types similar to the language for lenses
over generalized trees first developed by Foster et al [4]. They devise a complex
set-based type system with invariants to precisely define the domains for which
their combinators are well-behaved. However, combining lenses requires match-
ing on invariants rather than on types, which is too restrictive. A dual approach
is followed in [13], where composition requires matching on equivalence relations
that relax the lens domains.

Our application of the relational PF calculus to bidirectional transformations
builds up from [5, 7], where we have developed a language of functional PF com-
binators allowing only surjective transformations over inductive types. In this
paper, we extend such language to support typical non-surjective combinators
such as splits and injections. Unlike the data abstraction approach from [9],
our lens language allows arbitrary type constructors and deconstructors without
extending the language with ad-hoc primitives and surjectivity tests.

Most bidirectional approaches rely on more standard and decidable type
systems, at the cost of a more limited expressiveness [5,9], by allowing partial



lenses [10-12] or by assuming both partiality and weaker round-tripping laws [14—
17]. More closely related to our approach, some frameworks derive the backward
transformations by calculation, but are less expressive than ours. In [14], Put is
derived by inverting injective forward transformations through algebraic reason-
ing, while [10] bidirectionalizes a restricted first-order language (namely, with-
out duplication) based on a notion of view-update under constant complement.
They also calculate an automata that matches the exact domain of the trans-
formations, and acts similarly to our invariants. The lens language for graph
transformations proposed in [17] processes view insertions using URA, exploring
all possible right inverses for the forward transformation.

7 Conclusion

In this paper, we have presented mechanisms for the efficient execution of expres-
sions in a PF relational language over data-types with invariants. By defining a
careful semantics that uses invariants to narrow evaluation, we attain a viable
non-deterministic implementation. In retrospect, our handling of product invari-
ants in lifted form made the difference from previous approaches to domain and
range calculation, and ended up being a key component of our framework.

In the context of bidirectional transformations, we identify an open prob-
lem in the composition of lenses with (explicit or implicit) invariants that is
responsible for the latent partiality found in most practical bidirectional frame-
works. We have proposed to alleviate this problem by modeling lenses using the
relational calculus and their particular domains using invariants. Applying our
proposed non-deterministic calculus and semantics, we were able to implement
an expressive PF bidirectional transformation language that supports duplica-
tion, conditional choice and recursion patterns, whose backward transformations
emerge naturally from the lens laws.

Although we are already able to handle many interesting recursive trans-
formations, there is still a lot of room for improvement in the algorithm for
recursive invariant inference. Namely, likewise the lifted form for products, we
are currently researching possible normal forms for such invariants that are more
amenable for calculation and optimization.

We also intend to explore mechanisms for a better control of the non-deter-
minism through user-defined quality measures as additional invariants on the do-
mains of the lenses. In particular, we are studying ways to take advantage of the
shrink operator proposed in [20], which narrows the output of non-deterministic
PF relations, by selecting the “best” values defined by a given order.
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A Some Laws of the PF Relational Calculus.

A.1 Composition

Roid=R RoT=pRoT ToR=TodR

koR=kodR !oR=!06R Rol=1
A.2 Converse

id° = id T =T

(RoS)°=S8°0R°

A.3 Meet and Join

RCS<RNS=R
(RNS)of=RofNSof
feo(RNS)=f°ocRNf°0S

A.4 Split and Either

mfoRNm50S=RAS

T ATy =id

mo(RAS)=RodS
mo(RAS)=S0dR

mom =id

momy =T

(RaS)of =(Rof)a(Sof)
mfoR=RAT

msoR=TAR
(Rx8)o(UAV)=RoUASoV
(RAS)o(UAV)=R°o0UNS°0V

A.5 Coreflexives

(RNS)° = R°N S°

(R)°=R

(RUS)° = R°U §°

RCS&RUS=S
(RUS)oU=RoUUSoU
Uo(RNS)=UoRNUoS

RoiUSo0i§=RVS

i1 Vig =id

(RVS)O’h:R

(RV S)oig =258

if 04; = id

ifoig =1
Uo(RVS)=UoRvVUoS
Roiy=RV_L

Roig=1VR
(RVvS)o(U+V)=RoUVSoV
(RVvS)o(UV V) =RoU°USoV°

RNPoT=PoR RNToP=RodP Po¥=0dNV¥ P°=9



B Calculations from the examples

5((id A id)° o (head® A length®))
{-Range definition: Figure 4 -}

5(6(id A id)° o (head® A length®))
= {-Definitions: length, tail, cons -}
d(p(id A id) o (head® A length®))

{-Simplifications: Appendix A -}

5([id] o (head® A length®))

= {-Definitions: catamorphism -}
5(length®) o head o length® o §(head®) N'id

= {-Definitions: catamorphism -}
head o length® Nid

= {-Definitions: catamorphism -}
length o (1 o cons®)° N'id

= {-Definitions: catamorphism -}
length o in o9 o Nid

= {-Definitions: catamorphism -}
ino (id 4 m3) o (id 4 (id x length)) o i3 o 7§ N id

= {-Definitions: catamorphism -}
in 04y 079 o (id x length) o w7 Nid

= {-Definitions: catamorphism -}
in 049 o length o Mg o 77 Nid

= {-Definitions: catamorphism -}
inoigyolengtho T Nid

= {-Definitions: catamorphism -}
in o i3 o plengtho T Nid

= {-Definitions: catamorphism -}
ino pig o T Nid

= {-Definitions: catamorphism -}
p(ino (L +id))

= {-Definitions: catamorphism -}
ino (L +id) oout

C Proof of optimizations.

C.1 Composition

[RoS:®—V]a
= {-Range definition: Figure 4 -}
{c|b<+[S:P—IR] a,c< [R:pS—¥]b}
= {-Definitions: length, tail, cons -}
{c|b+[6RoSoP]|a,c+ [FToRopS]b}



= {-Simplifications: Appendix A -}
[#oRopSodRoSoP]a

= {-Definitions: catamorphism -}
[FoRopSNéRoSoP]a

= {-Definitions: catamorphism -}
[FoRodRopSoSod]a

= {-Definitions: catamorphism -}
[#oRoSo®]a

C.2 Split

[RAS:P—[U]]a
= {-Range definition: Figure 4 -}

{(b,e) | b« [R:2N6S = p(U°0Soa)] a,c«[S:PNIR— p(Uob)] a}
= {-Definitions: length, tail, cons -}

{(byc) | b+ [p(U°o0Soa)oRodNIS]| a,c< [p(Uocb)oSoPNIR] a}
= {-Simplifications: Appendix A -}

= {-Simplifications: Appendix A -}
{(0,¢) |5 [o(U° 0 S0a)] b,b [Ro®o55] a,c [p(Uob)] ¢, c ¢ [S 0B odR] a}
= {-Definitions: catamorphism -}

= {-Definitions: catamorphism -}
{(b,e) | b[U°0S]a,b<[Ro®PodS] a,c[U]b,c<+[S]a,a]PodR] a}
= {-Definitions: catamorphism -}
{(bye) | L. D[U°]EAK[S] a,b [RoPodS] a,c[U] b,c+ [S] a,a[PodR] a}
= {-Definitions: catamorphism -}
{(bye) | b[U°] ¢,b [RoPodS] a,c[U] byc+[S] a,a[PodR] a}
= {-Definitions: catamorphism -}
{(b,e) | (b, ) [[U]] (b,¢), b« [RoPobdS] a,c[SoPodR] a}
= {-Definitions: catamorphism -}
{(b,c) | (b, ) [[U]] (b,¢),(b,c)« [(RoPodS)A(SoPodR)] a}
= {-Definitions: catamorphism -}
[[Ulo((Ro®0dS)A(SoPodR))] a
= {-Definitions: catamorphism -}
[[Ulo((RodS) A (SodR))oP] a
= {-Definitions: catamorphism -}
[[Ulo(RAS)o?] a

D Proof of Theorem 77

D.1 Stability

Puts o (Gety Aid)
= {-Definitions: Put (Theorem ?7) -}



(ma V (f°om)) o [f°] 7 o(f id)

= {-Definitions: ¢7; (RV S)o(PV Q)°=(Ro P°) U (S0 Q°) -}
((ma o [f°]) U (foomo[fe]))o(faid)

= {-Join distributivity; [R] cancellations -}
((fid)° o (faid)) U (foo(idaf ) o (f aid))

= {{(Ra8)°c(Pa@)=(R°oP) N (570Q)-}
(foof nid) U (foo(f N f))

C {-Domainof fin®; RN R=1-}
U (o0 L)

= {-L is below anything -}
7

D.2 Acceptability

Gety o Puty
= {-Definitions: Put (Theorem ??) -}
fo(mav feom)olfe]?
= {-Either fusion -}
(fomaV fofeom)ol[f]?
C {-Rangeof f in ¥ -}
(fom VWom)ol[f]?
= {-Definitions: #7; (RV S)o(PV Q)°=(Ro P°) U (S0 Q°) -}
fomol[f?] U wom o([f] N id)
= {-[R] cancellations -}
fo(faid)® U wol(idafo)e
C {-Split fusion; Range of f in ¥ -}
fo)> U wo(ida fo)°
{-Split fusion; Join distributivity -}
(id & f2)° U (id & f°)°)
{-RA(P U Q)= (RAP) U (RAQ) -}
Wol(ida (f° U fo))°
{-R U R = T; Definitions: m; = (idAT)° -}

B
2

S

o

Yo

3

1

D.3 Totality

The transformation Gety : @ — ¥ is trivially total for @ = §f and ¥ = pf. For
Puty, the proof is as follows:




= {-Join distributivity i
(0 )0 () U (7 x 7)o [FF]

C {-Coreflexives smaller than id -}

[fe] U (@ xid) o [f°]

= {-Domain coreflexives (Figure 4) -}
olf] U a((¥ x id) o [f°])
= {-Domains (Figure 4) -}
d(mg o [f°]) U 6(¥ om0 [f°])
= {-Domains (Figure 4); & = 6f -}

6(mz 0 [f°]) U 6(f° om0 [f°])
= {-Domains (Figure 4); (RV S)o (P V Q)° = (Ro P°) U (S0 Q°) -}
8((72 7 f° 0 m) o [f°])
= {-Definitions: Put (Theorem ?7?) -}
(5Putf




