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Abstract—The emergence of lightweight formal methods tools
such as Alloy improves the software design process, by encourag-
ing developers to model and verify their systems before engaging
in hideous implementation details. However, an abstract Alloy
specification is far from an actual implementation, and manually
refining the former into the latter is unfortunately a non-trivial
task. This paper identifies a subset of the Alloy language that
is equivalent to a relational database schema with the most
conventional integrity constraints, namely functional and inclu-
sion dependencies. This semantic correspondence enables both
the automatic translation of Alloy specifications into relational
database schemas and the reengineering of legacy databases into
Alloy. The paper also discusses how to derive an object-oriented
application layer to serve as interface to the underlying database.

I. INTRODUCTION

Model driven software engineering (MDSE) aims at improv-
ing the software development process by making extensive
use of models at different levels of abstraction. In this model-
centric approach, implementations are obtained by step-wise
refinements of high-level specifications, ideally deployed as
automated models transformations. Formal methods (FM) can
play a key role on MDSE, not only on the model verification
task, but also in establishing the correctness of model trans-
formations. However, they tend to be neglected in common
(non-critical) software development scenarios due to the high
costs involved.

Alloy [1] is an increasingly popular modeling language that
is particularly well-suited to serve as the ”Trojan horse” of FM
in the overall MDSE community. It embodies the so-called
lightweight approach to formal methods [2]: a language based
on simple mathematical concepts, sharing some resemblances
with typical object modeling languages such as UML, but
combined with a powerful automatic SAT analyzer that brings
the power of formal verification to the average software
engineer.

Although Alloy is reaching a mature state as a modeling
language, considerable work is still needed to unleash its
full potential for MDSE. In particular, more theory and tool
support is needed to help bridge the gap between specifications
and implementations. In this paper we attempt precisely to
establish the foundations of a framework to map between
Alloy specifications and database-intensive applications. As
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Fig. 1. Mapping Alloy specifications to database-intensive applications.

seen in Figure 1, the basic idea is to derive from the same
specification the following artifacts:
• A relational database schema where the data model will

be materialized. Whenever possible, the static constraints
prescribed in the specification should be enforced by the
database schema in order to avoid integrity problems.

• An object-oriented application layer to serve as interface
to the programmer. All dynamic aspects of the specifi-
cation, namely operations, will also be ported into this
layer.

• An object-relational mapping (ORM) to handle the per-
sistence of objects in the relational database.

In this paper we will mainly focus on the first artifact, i.e,
the connection between Alloy specifications and relational
database schemas.

After briefly presenting the Alloy modeling language (Sec-
tion II) and recalling a formal definition of database schemas
(Section III), we identify a subset of Alloy whose expres-
sive power is similar to that of database schemas enriched
with functional and inclusion dependencies (Section IV). We
then formalize this correspondence by providing forward and
reverse mappings between this Alloy subset and database
schemas (Section V). They are also shown to be correct in
respect to a database equivalence notion that ignores redundant
attributes. These bidirectional mappings lay the foundation for
not only migrating Alloy specifications to relational database
implementations, but also reverse engineering abstract models
from legacy databases. We then present the first steps toward
the generation of the object-oriented application layer (Sec-
tion VI), and discuss some technical details of the imple-
mented prototype (Section VII). After presenting some related



sig Name {}
abstract sig Obj {

name : one Name
}
fact {

all n : Name | lone name·n
}
sig Dir, File extends Obj {}
sig FS {

objects : set Obj,
root : one (Dir & objects),
parent : objects → lone (Dir & objects)
}
assert {

all fs : FS | some fs·objects
}
pred cd [f, f’:FS, d:Dir] { . . . }
pred mv [f, f’:FS, o:Object, d:Dir] { . . . }

Fig. 2. Alloy specification of a filesystem.

work (Section VIII), the paper concludes with a synthesis
of the main contributions, along with ideas for future work
(Section IX).

II. THE ALLOY LANGUAGE

In this section, we illustrate the Alloy language with a
popular modeling example of a file system adapted from
[1]. The model, shown in Figure 2, consists of a series of
paragraphs, each specifying a signature, a fact, a predicate, or
an assertion. Signatures realize the notion of type or class in
Alloy and denote sets of atoms. Similarly to object-oriented
languages, it is possible to specify an hierarchy between
signatures (using the keyword extends), and to declare some
signatures abstract. In this particular case, objects of a file
system are either files or directories.

A signature declaration may also comprise a set of fields,
that model relationships between signatures. For example,
name associates objects with their names. In this field declara-
tion, one is a multiplicity constraint stating that each object has
exactly one name. The remaining fields state that a filesystem
has a set of objects and one root directory that is an object of
the filesystem, and that all the objects in a filesystem may have
one parent directory that, again, is an object of the filesystem.

At this point, it is noticeable that, despite the natural and
minimalist language, it is possible to express directly in field
declarations intricate relationships between the entities of the
data model. However, not all invariants can be expressed in this
way, and more elaborate constraints can be defined as explicit
facts, that are essentially first-order logic formulas that must
always hold. In this particular case, we have a fact stating
that name must be injective, i.e, all objects have different
names. Notice how the relational dot join operator (relational
composition) is used to obtain all objects associated with a
given name n. This is possible because all entities in an

Alloy model are relations, including signatures, that are unary
relations, and scalars, that are unary relations with a single
tuple.

Analogously to functions in regular programming lan-
guages, predicates define parameterized formulas that can be
reused several times in a specification. In Alloy they are typi-
cally used to model operations - since instances are immutable,
these are specified by stating the relation between pre- and
post-states. As a convention, post-states are usually primed in
the list of arguments. Here we have two operations: cd and
mv denote the change directory and move object operations,
respectively. Their specification is not given, because in this
paper we focus only the static aspects of a model.

Assertions specify formulas that should hold as a conse-
quence of the model’s facts. They can be used to check for
model consistency, or to check the correctness of operations.
The Alloy analyzer checks assertions by feeding them into an
off-the-shelf SAT solver. A counter-example is shown when
an assertion is not valid. In our example, the assertion states
that no filesystem can be empty. This holds because there must
always exist a root which is also an object of the filesystem. In
fact, we could have used the multiplicity some instead of set
in the declaration of the field objects. Assertions only make
sense at the specification level, and have no effect on the final
implementation. As such, they will be ignored in the remaining
of the paper.

III. DATABASE SCHEMAS

In the traditional relational model, relations are unordered
and tuples are partial functions from attributes to atoms, where
the attributes of each relation must have distinct names. In
Alloy, a relation R ⊆ S1 × . . . × S|R| is a subset of an
ordered cartesian product of signatures. Notice that there may
be repeated signatures in a relation declaration: signatures just
play the role of types and cannot be used as attribute names. To
better match this notion of relation, we will specify database
schemas using ordered relations with anonymous attributes.
All projections and dependencies will be specified with a
positional calculus. The notion of type will be recovered from
the inclusion dependencies in the schema.

A relation schema R : k is a sequence of anonymous
attributes with arity k. We will usually denote the arity of
R as |R|. Given 1 ≤ i ≤ |R|, Ri denotes the i-th attribute of
R. A tuple with arity n is a sequence of values 〈a1, . . . , an〉. A
relation r over a relation schema R is a set of tuples with arity
|R|. Let R = {R1, . . . , Rk} be a set of relation schemas. A
database over R is a set of relations d = {r1, . . . , rk}, where
each ri is over Ri.

Let t be a tuple with arity n and X = 〈i1, . . . , ik〉 a
sequence of distinct natural numbers in {1, . . . , n}, then t[X]
is the tuple projection 〈ai1 , . . . , aik〉. The notion of projection
can be extended to relations naturally: the relational projection
r[X] is just {t[X] | t ∈ r}. If X = 〈1, . . . , |r|〉, then r[X]
is the identity projection on r. In a relational projection we
omit the braces around sequences: r[i1, . . . , ik] is identical to
r[〈i1, . . . , ik〉]. In a database we will denote the relation over



a given relation schema R using the corresponding lower-case
letter r.

A functional dependency (FD) over a set of relation schemas
R is a statement of the form R : X → Y , where R ∈ R,
and X and Y are sequences of distinct natural numbers in
{1, . . . , |R|}. A FD R : X → Y is satisfied in a database d,
denoted by d |= R : X → Y , whenever ∀t1, t2 ∈ r, if t1[X] =
t2[X] then t1[Y ] = t2[Y ]. A FD R : X → 〈1, . . . , |R|〉
denotes a superkey constraint, and will be abbreviated as
R : X → R

An inclusion dependency (IND) over a set of relation
schemas R is a statement of the form R[X] ⊆ S[Y ], where
R,S ∈ R, |X| = |Y | and X,Y are sequences of distinct
natural numbers in {1, . . . , |R|} and {1, . . . , |S|}, respectively.
When X is an identity projection we will denote R[X] just by
R. An IND R[X] ⊆ S[Y ] is satisfied in a database d, denoted
by d |= R[X] ⊆ S[Y ], whenever r[X] ⊆ s[Y ].

Definition III.1. A database schema is a tuple 〈R,ΣI ,ΣF 〉
where:
• R is a set of relation schemas.
• ΣI is a set of inclusion dependencies over R.
• ΣF is a set of functional dependencies over R.

A set of dependencies Σ is satisfied in a database d, denoted
by d |= Σ, if ∀σ ∈ Σ, d |= σ. Σ logically implies a
dependency σ, denoted by Σ |= σ, if whenever d |= Σ then
d |= σ. Let Σ∗ denote the set of all FDs and INDs that are
logically implied by Σ. Given a database schema 〈R,ΣI ,ΣF 〉
it is well-known that it is possible to compute Σ∗I using the
axiom system from [3], and Σ∗F using Armstrong’s axioms [4].
However, if we consider the set of FDs and INDs together
Σ = ΣI ∪ ΣF , then computing Σ∗ is undecidable [5], [6].
To retain decidability, we will use a rather strong notion of
equality between database schemas:

Definition III.2. Two database schemas 〈R,ΣI ,ΣF 〉 and
〈R′,Σ′I ,Σ′F 〉 are equal if R = R′ and Σ∗I = Σ′∗I and
Σ∗F = Σ′∗F .

IV. A STATIC ALLOY SUBSET

The objective of this section is to identify a static subset
of Alloy that can be mapped into a database schema, and
vice-versa. This subset will be denoted as AlloyDB . As seen
in the previous section, we only consider the most common
integrity constraints on databases, namely, FDs and INDs. It
is obvious that, by resorting only to these constraints, it is
impossible to express all the power of Alloy’s specification
logic. Nonetheless, AlloyDB is still expressive enough to cover
many non-trivial examples, including almost all of our running
example.

In fact, the only aspect that will not be covered in the exam-
ple concerns signature hierarchy. In Alloy, different extensions
of a signature are necessarily disjoint. Using just FDs and
INDs it is not possible to state that two relations are disjoint,
and thus it will not be possible to capture the precise semantics
of extends. The same applies to abstract signatures, since we

would need to express that some relation equals the reunion of
others. We can however specify that one relation is contained
in another, and thus our formal definition of AlloyDB will
include the keyword in that models a more relaxed notion of
inheritance. In our example, this corresponds to the following
alternative declaration of the objects of a filesystem:

sig Obj {
name : one Name
}
sig Dir, File in Obj {}

Notice that there is no longer the guarantee that an object is
either a directory or a file. Considering that the final target of
our transformation is not just a database schema, but a fully
materialized object-oriented implementation, this limitation is
not relevant since the semantics of extends and abstract
matches that of most object-oriented languages, and thus can
easily be enforced in the application layer.

INDs allow us to specify inclusions between arbitrary pro-
jections of relations. In Alloy, projections can be specified by
composing relations with signatures. For example, parent·Dir
projects out the the last domain of the ternary parent relation.
To further project out the first domain we could perform an-
other composition: FS·(parent·Dir). Given that Alloy relations
are ordered, and that projection is achieved via composition,
in order to project out a middle domain it is necessary to first
perform a permutation on the relation. For example, the binary
relation between filesystems and parent directories could be
defined as follows:

{f:FS, d:Dir, o:Obj | f → o → d in parent}·Obj

Without loss of generality, a projection in Alloy can be
specified by a tuple 〈R,α, π〉, where R is any relation declared
in a specification, α is a bijective function that specifies a
permutation on R, and π is the number of projected-out
domains on the right-hand side of R. π must be less then
|R|, the arity of R. For example, the above projection can be
succinctly specified as 〈parent, {1 7→ 1, 2 7→ 3, 3 7→ 2}, 1〉.
Notice that it is rather trivial to parse this representation from
more liberal syntactic representations of projections, namely
those where we have projected domains on both the left- and
right-hand side of a relation. When specifying permutations,
we will sometimes denote any bijective function where i maps
to j just by i 7→ j, and the identity permutation by id. The
identity projection 〈R, id, 0〉 will be denoted just by R.

Informally, an AlloyDB specification includes a set of
signature and field declarations, an inclusion relation between
signatures, and a set of facts of the form R in S, where R
is any projection and S is any cartesian product of projec-
tions, optionally constrained by a lone multiplicity (to express
a functional dependency). Formally, we have the following
definition.

Definition IV.1. An AlloyDB specification is a tuple
〈S,E,F,Σ〉 where:
• S is a set of signature declarations.



• E is an acyclic and simple inclusion relation between
signatures1.

• F is a set of field declarations F : S1× . . .×S|F |, where
F is the field name and each Si ∈ S is a signature.

• Σ is a set of facts 〈〈R,α, π〉, 〈R1, α1, π1〉 × . . . ×
〈Rk, αk, πk〉,m〉, each stating that a projection 〈R,α, π〉,
where R ∈ S ∪ F , is contained in the cartesian product
of any other k projections. Furthermore, 1 ≤ m ≤ k
specifies a lone multiplicity constraint after the m-th
projection. If m = k, this constrain is vacuous.

Furthermore, Σ must be consistent with E, i.e, if A E B
then the fact 〈A,B, 1〉 exists in Σ. Notice that π, the number
of projected-out domains in the left-hand side of a fact, is
redundant since type-checking guarantees that

π = |R| −
k∑
i=1

(|Ri| − πi)

Although we require Σ to be consistent with E, the latter
cannot be specified just by facts: in Alloy, a top-level signature
is disjoint from any other signature, and any fact specified in
the model is type-checked against this premise. Namely, the
following specification is not equivalent to the one above, and
originates a type-error in Alloy, since neither Dir nor File can
be contained in Obj.

sig Obj {
name : one Name
}
sig Dir, File {}
fact {

Dir in Obj
File in Obj
}

In order to parse an Alloy specification into the above formal
model, a field declaration must be split into a type declaration
and one or more explicit facts, stating similar properties in
our restricted syntactic form. For example, consider the field
declaration root : one (Dir & objects). From the conjunction
it is easy to infer that root : FS × Dir . Furthermore, the
inclusion and multiplicity constraints could be expressed by
the following facts:

root in objects
root in FS → lone Dir
root in FS → some Dir

The first two facts map directly into our syntactic form. In
general, to capture some multiplicity constraints in a database
schema we would need join dependencies [7], and thus they
were excluded from the AlloyDB specification. However,
some constraints on binary relations can easily be specified
using INDs. The last fact could be represented by the following
equivalent one:

FS in root·Dir

1A relation R : A×B is simple if R in A → lone B

sig Name {}
sig Obj {

name : set Name
}
sig Dir, File in Obj {}
sig FS {

objects : set Obj,
root : set Dir,
parent : Obj → Dir
}
fact {

Dir in Obj
File in Obj
name in Obj → lone Name
Obj in name·Name
{n:Name,o:Obj | o→ n in name} in Name → lone Obj
root in FS → lone Dir
FS in root·Dir
root in objects
parent in objects → lone Dir
{f:FS,d:Dir,o:Obj | f→ o→ d in parent}·Obj in objects
}

Fig. 3. AlloyDB specification of a filesystem.

Using similar straightforward techniques, our running example
could be parsed into a formal model, whose transliteration into
Alloy is presented in Figure 3.

V. MAPPING BETWEEN ALLOYDB AND DATABASES

In this section, we formalize the mappings between
AlloyDB specifications and database schemas. The following
mappings will be defined:

AlloyDB

Reflect

��
Database

Reify

DD

Grow

FF

Reflect maps an AlloyDB specification to a database schema.
The backwards translation proceeds in two steps: first, the
Grow transformation is applied in order to enforce that all
distinct types in a database exist as unary tables; then the
resulting schema is translated into AlloyDB with the Reify
translation. An equivalence notion on database schemas is also
defined, and the transformations are proved correct against this
definition.

A. Mapping AlloyDB Specifications to Database Schemas

The definition of Reflect is quite simple. Signatures and
fields have a one-to-one mapping with the relations in the
database schema. Field types can be enforced in the database
using unary INDs to the respective unary relations. AlloyDB

facts will originate one IND for each projection in the



cartesian product of the right-hand side. The specification of
permutations using bijective functions makes the generation
of projections trivial: we will use the notation 〈1, . . . , i〉α as
an abbreviation to 〈α(1), . . . , α(i)〉; and α−1 to denote the
inverse function of a bijective function α. lone multiplicities
also possess a direct translation in terms of FDs. The formal
definition of the mapping is as follows:

Definition V.1. Given an AlloyDB specification,
Reflect(〈S,E,F,Σ〉) = 〈R,ΣI ,ΣF 〉 is a database schema
where:

• R contains for each S ∈ S an ordered relation S : 1,
and for each F : S1× . . .×S|F | ∈ F an ordered relation
F : |F |.

• ΣI contains:

– For each field F : S1 × . . . × S|F | ∈ F, an unary
IND for each 1 ≤ i ≤ |F |:

F [i] ⊆ Si

– For each fact 〈〈R,α, π〉, 〈R1, α1, π1〉 × . . . ×
〈Rk, αk, πk〉,m〉 ∈ Σ, an IND for each 1 ≤ i ≤ k:

R[1 +
∑i−1
j=1(|Rj | − πj), . . . ,

∑i
j=1(|Rj | − πj)]α−1

⊆
Ri[1, . . . , |Ri| − πi]α−1

i

• ΣF contains, for each fact 〈〈R,α, π〉, 〈R1, α1, π1〉×. . .×
〈Rk, αk, πk〉,m〉 ∈ Σ, a FD:

〈1, . . . ,
∑m
j=1(|Rj | − πj)〉α−1

R : →
〈1 +

∑m
j=1(|Rj | − πj), . . . , |R| − π〉α−1

Notice that, when m = k, a trivial FD of the form R :
〈1, . . . , |R| − π〉α−1 → 〈〉 is generated.

To illustrate the application of Reflect, Figure 4 presents the
database schema that results from mapping the example from
Figure 3. The trivial FDs are omitted.

From a database engineering perspective, the resulting
schema is probably not the most intuitive. The main reason
for this is that signatures, that realize the notion of type in
Alloy, denote unary relations whose sets of atoms contain all
existing instances of their corresponding types. Some of the
unary relations created by Reflect when mapping signatures are
redundant and can be safely deleted. That is the case of FS
in our running example: since a filesystem must always have
a root, the set of all existing filesystems is also contained in
the root relation (note that root[1] ⊆ FS and FS ⊆ root[1]).
From a database design perspective, it might make sense to
delete all such unary relations. That is the approach followed,
for example, in [8]. Nevertheless, this decision would affect
the semantics of the resulting database in comparison to the
original specification. We return to this discussion at the end
of Section VI-A.

R = {Name : 1, Obj : 1, Dir : 1, F ile : 1, FS : 1,
name : 2, objects : 2, root : 2, parent : 3}

ΣI = {Dir ⊆ Obj, F ile ⊆ Obj,
name[1] ⊆ Obj, name[2] ⊆ Name,
objects[1] ⊆ FS, objects[2] ⊆ Obj,
root[1] ⊆ FS, root[2] ⊆ Dir
parent[1] ⊆ FS, parent[2] ⊆ Obj, parent[3] ⊆ Dir,
Obj ⊆ name[1], FS ⊆ root[1], root ⊆ objects,
parent[1, 2] ⊆ objects, parent[1, 3] ⊆ objects}

ΣF = {name : 〈1〉 → 〈2〉, name : 〈2〉 → 〈1〉,
root : 〈1〉 → 〈2〉, parent : 〈1, 2〉 → 〈3〉}

Fig. 4. Database schema for the example of Figure 3.

B. Mapping Database Schemas to AlloyDB Specifications

Not all database schemas can be mapped to AlloyDB . In
particular, it will be required that the schema is confluent.

Definition V.2. Given a database schema 〈R,ΣI ,ΣF 〉, let
⊆1 be the unary fragment of the INDs in Σ∗I . Two unary
projections R[i], S[j] have the same type iff there exists a
projection T [k] (the meet projection) such that R[i] ⊆1 T [k]
and S[j] ⊆1 T [k].

Definition V.3. A database schema is confluent iff for all unary
projections R[i], S[j], T [k], if R[i] ⊆1 S[j] and R[i] ⊆1 T [k]
then S[j] and T [k] have the same type.

As will be discussed in Section V-D, unless unions are
allowed in the right-hand side of AlloyDB facts, non-confluent
schemas cannot be mapped to equivalent AlloyDB specifica-
tions. Moreover, to simplify the presentation of this mapping,
we will require the input schema to Reify to be confluent to
unary relations.

Definition V.4. A database schema is confluent to unary
relations iff it is confluent and the meet projection (in the
same type definition) is restricted to be on an unary relation.

The following proposition is a trivial consequence of Alloy
type checking mechanism, that disallows one to specify an
inclusion between disjoint signatures, and the fact that an IND
between each unary projection and an unary relation is created
by Reflect.

Proposition V.1. If s is an AlloyDB specification then
Reflect(s) is confluent to unary relations.

It is always possible to add redundant unary relations to
a confluent schema in order to make it confluent to unary
relations. That is the role of the Grow transformation.

Definition V.5. Given a confluent database schema,
Grow(〈R,ΣI ,ΣF 〉) = 〈R′,Σ′I ,Σ′F 〉 is a database schema
where:
• R′ contains all relations in R plus an unary relation Ri :

1 for each attribute Ri not contained in an unary relation.
• Σ′I contains all INDs in ΣI plus R[i] ⊆ Ri and Ri ⊆ R[i]

for each Ri not contained in an unary relation.



• Σ′F = ΣF .

The added INDs guarantee that the new relations are indeed
redundant. Again, it is trivial to prove that Grow achieves the
desired effect.

Proposition V.2. If s is a confluent database schema then
Grow(s) is confluent to unary relations.

When a database schema is confluent to unary relations
it is more simple to perform the mapping to an AlloyDB

specification, because all necessary signatures are guaranteed
to exist as unary tables. Given an attribute Ri, let Ri be any
unary relation where R[i] is contained. On a schema confluent
to unary relations Ri is guaranteed to exist for all Ri. Reify
can now be defined as follows.

Definition V.6. Given a database schema confluent to unary
relations, Reify(〈R,ΣI ,ΣF 〉) = 〈S,E,F,Σ〉 is an AlloyDB

specification where:
• S contains all unary relations.
• E is any acyclic and simple fragment of ⊆1 that is

complete in the sense that, if two unary tables have the
same type under ⊆1 then the corresponding signatures
have the same type under E.

• F contains all relations R : R1 × . . . × R|R|, such that
R ∈ R and |R| > 1.

• Σ contains:
– For each IND R[X] ⊆ S[Y ] a fact

〈〈R,α, |R| − k〉, 〈S, β, |S| − k〉, 1〉

where k = |X| = |Y | and α and β are any
permutations such that Xα = Yβ = 〈1, . . . , k〉.

– For each FD R : X → Y a fact

〈〈R,α, |R| − j〉, 〈Rα(1), id, 0〉 × . . . 〈Rα(j), id, 0〉, i〉

where i = |X|, j = |X ∪ Y |, and α is any permu-
tation such that Xα = 〈1, . . . , i〉 and (Y − X)α =
〈i+ 1, . . . , j〉.

Once again we have a one-to-one mapping between relations
in the schema and signatures and fields. We do not commit to a
particular strategy when inferring E, and just give a sufficient
condition for it to be correct. A possible implementation that
guarantees this condition could be:

1) Build a graph where nodes are unary relations and edges
are INDs between them.

2) Compute the strongly connected components (SCCs) of
this graph.

3) For each terminal SCC pick one relation to serve as
top-level signature.

4) For all the remaining relations add a pair to E stating
in which top-level signature it is contained.

Thanks to permutations, INDs and FDs have a direct trans-
lation to AlloyDB . However, many redundant facts are gen-
erated, namely those corresponding to the INDs R[i] ⊆ Ri,
that assert the connection between the attributes of a relation

and the signatures that contain them (they are redundant
because the field declaration enforces them). In a concrete
implementation of Reify it is trivial to remove them from the
final specification. In the case of a FD R : X → Y , where Y is
not disjoint from X , we first remove the trivial dependencies
from Y : the fact inserted in the specification corresponds to
R : X → (Y −X).

C. Correctness of the Mappings

To be able to check that our mappings are correct, we
first need to define a notion of equivalence between database
schemas that is more relaxed than the equality presented in
definition III.2. Consider a database schema with a single
relation schema R : 2. After applying Reify, we obtain an
AlloyDB specification equivalent to the following, where A
and B correspond to the unary relations introduced by Grow
to make the schema confluent to unary relations:

sig A { r : set B}
sig B {}
fact {

A in r·B
B in A·r
}

If we now apply Reflect, we end up getting a different schema
with three relations R : 2, A : 1, B : 1 plus the INDs
A ⊆ R[1], R[1] ⊆ A,B ⊆ R[2], R[2] ⊆ B. Clearly, the single
attributes of both A and B are redundant, in the following
sense [9]:

Definition V.7. Given a database schema 〈R,Σi,ΣF 〉, the i-th
attribute of a relation schema R ∈ R is redundant if, whenever
d is a database over R which satisfies Σ, then, for every tuple
t ∈ r, if t[i] is replaced by a value v 6= t[i] then the resulting
database does not satisfy Σ.

Ideally, we would like our notion of equivalence to ignore
all redundant attributes, by converting first the schemas to the
so called Attribute Redundancy Free Normal Form [9], but it
is currently unknown how to do that in general. However, in
this particular case, it suffices to eliminate redundant unary
relations, using the following procedure:

Definition V.8. Given a database schema Γ = 〈R,ΣI ,ΣF 〉,
Reduce(Γ) is the schema that results from exhaustively apply-
ing the following reduction rule: if R is an unary relation such
that ∃S ∈ R, 1 ≤ i ≤ |S|, S 6= R ∧ R ⊆1 S[i] ∧ S[i] ⊆1 R,
then remove R from R and redirect all INDs pointing to R
to S[i].

Definition V.9. Two database schemas Γ = 〈R,ΣI ,ΣF 〉
and ∆ = 〈R′,Σ′I ,Σ′F 〉 are equivalent, written Γ ≡ ∆, iff
Reduce(Γ) = Reduce(∆).

It is trivial to show that Grow generates an equivalent
schema:

Proposition V.3. Given any database schema Γ =
〈R,ΣI ,ΣF 〉, Grow(Γ) ≡ Γ.



The following lemma is central to establish the correctness
of the mappings:

Lemma V.4. Given any database schema Γ = 〈R,ΣI ,ΣF 〉
confluent to unary relations, Reflect(Reify(Γ)) ≡ Γ.

Proof: First notice that, in both mappings, unary relations
are in one-to-one correspondence to signatures and non-
unary ones in one-to-one correspondence to fields. Thus, the
resulting set of relation schemas is equal to R. Each IND
gives origin to a single AlloyDB fact, that is translated back
to exactly the same IND. Field declarations will originate a
set of unary INDs of the form R[i] ⊆ Ri, but by definition
of Ri they follow from ΣI and thus are redundant. A FD
R : X → Y , where X and Y are disjoint, is translated to
a single AlloyDB fact, that will be translated back into the
same FD plus a set of redundant unary INDs of the form
R[i] ⊆ Ri. On the other hand, a FD R : X → XY will be
translated back as R : X → Y , which is equivalent to the
original by the Armstrong’s axioms [4].

The correctness of the mapping from database schemas
to AlloyDB is a corollary of this lemma and the previous
proposition:

Theorem V.5. Given any confluent database schema Γ =
〈R,ΣI ,ΣF 〉, Reflect(Reify(Grow(Γ))) ≡ Γ.

To show the correctness of the other mapping, we also need
a notion of equivalence between AlloyDB specifications. Here,
we will simply resort to the database schema equivalence via
the Reflect mapping:

Definition V.10. Two AlloyDB specifications
Γ = 〈S,E,F,Σ〉 and ∆ = 〈S′,E′,F′,Σ′〉 are equivalent,
written Γ ≡ ∆, iff Reflect(Γ) ≡ Reflect(∆).

This notion of equivalence makes the correctness of the
mapping from AlloyDB to databases a trivial corollary of the
previous results:

Theorem V.6. Given any AlloyDB specification Γ =
〈S,E,F,Σ〉, Reify(Reflect(Γ)) ≡ Γ.

Notice that, due to proposition V.1, it is not necessary
to apply the Grow transformation on the resulting database
schema.

D. Non-confluent Database Schemas

As we have seen, the database schemas equivalent to
AlloyDB specifications are confluent to unary relations. Us-
ing the Grow transformation we can handle any confluent
database schema, but would it be possible to map non-
confluent schemas to Alloy? Consider, for example a database
schema with three unary relations, A, B and C, and the INDs
A ⊆ B,A ⊆ C. This is the simplest schema that breaks the
confluence property: since A is contained in B and C, then
these attributes should have the same type. One possible way
to map this schema to Alloy would be to force the confluence
by adding an artificial superset signature including both B and
C:

sig T {}
sig A,B,C in T {}
fact {

A in B
A in C
T in B + C
}

Since A cannot inherit from both B and C, it is declared as a
subset signature of T and later constrained to be in both B and
C. Additionally, we must restrict the domain of T to be in the
union of B with C, otherwise the Alloy specification would
allow values not present in the original database schema. We
name this constraint an union constraint.

Without explicit support for union constraints on the
database side, it is not trivial to define a general technique to
map Alloy specifications into databases: the naive approach
of not mapping signatures that are contained in a union
constraint will not work in general. Consider the following
Alloy specification:

sig T {}
sig A,B in T {}
fact {

T in A + B
}

In this case, if T is not mapped to the database schema, we
will be left with two unrelated unary relations. Since there is
no proof that A and B have the same type, converting the
resulting database schema back into Alloy would originate a
specification completely different from the original:

sig A,B {}

If union constraints were supported on database schemas (as
generalization of INDs), it would be quite simple to extend our
transformations to work correctly. In fact, since T is redundant
according to definition V.7, we would just need to extend
Reduce to remove also this kind of redundancy, in order to
get a suitable equivalence definition on database schemas.
The problem is that this kind of constraint is non-standard,
and further research is needed to determine how can they be
enforced on databases and how do they interact with the other
dependencies.

VI. OBJECT-ORIENTED APPLICATION LAYER

As discussed in [10], Alloy is an object modelling notation,
albeit more in the sense of a data modelling language for
describing the conceptual entities of software systems and their
relationships. At the same time, it has an object-oriented flavor,
incorporating features such as abstraction and inheritance, and
the most standard Alloy idioms also have an inherent notion of
state over which the dynamic aspects of a system are specified.

Building on this duality, in this section we debate how an
Alloy specification can be mapped into an object-oriented ap-
plication layer, with the overall system state fully materialized
in an underlying relational database (as prescribed in Figure 1).
This mapping encompasses two steps: the translation of a static



Fig. 5. UML class diagram for the filesystem from Figure 2.

AlloyDB data model, enriched with abstraction and extension,
to a Java class hierarchy that is made persistent through
an off-the-shelf ORM framework [11]; and the conversion
of the dynamic operations in the specification to methods
in the corresponding classes. The UML class diagram from
Figure 5 illustrates the resulting object-oriented schema for
the filesystem example (Figure 2).

A. Mapping the Static Data Model

The signature hierarchy in an Alloy specification has a direct
correspondence with the class hierarchy in the object-oriented
implementation. For each signature S, we create a class S
with an identifier of the primitive type int (to be used by the
ORM). The class S is made abstract or an extension of another
class S′ (inheriting its identifier) if the signature S is abstract
or extends a signature S′, respectively. As an exception, if
S extends Alloy’s built-in signature Int, we do not create a
class S and all the instances of S have the primitive type int .
It is also possible to map other signatures to primitive types:
for example, the Name signature in the filesystem example of
Figure 2 is a natural candidate to be mapped into a string.

The fields in an Alloy specification, relating signatures
in the model, originate associations between classes, to be
expressed as specific attributes of each class. Instead of Alloy’s
undirected relationships, where for some relation r in A → B
we can use both a·r and r·b to select related elements, here
we must conform to a directed navigational style, and create
an attribute r in both A and B to navigate between them.
Of course, the ORM must guarantee the bidirectionality of
the association. When a signature is mapped to a primitive
type, its associations will no longer be bidirectional: if we see
names as strings in our example, the relation name between

filesystem objects and names will only be represented in the
first class.

Thus, for each field declaration F : S1×. . .×S|F |, we insert
attributes in the class of each signature Si in F , unless Si is
mapped to a primitive type. The name and type of the attributes
depends on the size of the field and on the lone multiplicities
involving Si (represented as FDs in an underlying database
d):
• if |F | = 2 and d |= F : 〈Si〉 → 〈Sj〉, where i 6= j, insert

an attribute named F with type Sj ; otherwise, insert a
collection of objects Sj named F ;

• if |F | > 2 and d |= F : 〈Si〉 → F insert an attribute of
type Sj for each signature Sj in F − {Si};

• if |F | = 3 and d |= F : 〈Si, Sj〉 → 〈Sk〉, where i 6= j 6=
k, insert a map from Sj to Sk named F ;

• otherwise, insert a collection named F whose instances
belong to an association class that represents the entire
field.

As an optimization, we remove redundant unary relations
from the database schemas, according to the Reduce trans-
formation from Section V-C. The ORM must take these
redundancies into account in order to make the corresponding
classes persistent. Also, to regulate the creation of non-
redundant signature relations, we decided to delete unary
relations for signatures extending built-in signatures, such as
Int, or any other signature mapped to a primitive type.

Note that, at this point, further optimizations are likely to be
performed in a normal database development cycle. Recalling
the database schema from Figure 4, a database designer
could, for instance, choose to fuse the objects and parent
relations into a new database table with a nullable parent field.
By resorting to a table-per-class strategy (we implicitly use
table-per-subclass), the designer could also alter the objects
hierarchy into a single table with a boolean type discriminator
column, testifying if an object is either a directory or a file.
However, these performance-improving techniques normally
favor schema denormalization and can compromise the con-
sistency of the database. They are outside the scope of an
automated mapping tool, and should later be assessed and
applied by developers in the generated implementations.

B. Mapping the Dynamic Operations

The dynamic operations are encoded as methods in the
object-oriented schema and have a one-to-one correspondence
with the stateful predicates in the original Alloy specification.
A predicate is called stateful if it contains at least one pair of
variables that have the same type and share the same name
with and without priming (e.g., f and f ’). The type of each
variable is a signature, instead of an arbitrary unary relation
as in full Alloy.

For each stateful predicate, we declare a method with the
same name in the corresponding class. The method declaration
contains one argument for each non stateful variable and one
argument for each other pair of states. Note that so far we
only generate the declarations, but do not synthesize the body
of methods.



VII. IMPLEMENTATION

We have implemented a prototype tool for translating be-
tween Alloy specifications and database schemas, according
to the mappings presented in Section V. In the forward
direction, the tool uses an Alloy parser as a front-end and
outputs a SQL database together with a Java application layer.
With this prototype, we have successfully generated for our
running example a database schema and the corresponding
object-oriented application layer. We have also manually im-
plemented and tested different properties of the ORM gluing
code. The algorithm for the automatic generation of the ORM
code is ongoing work.

The implementation differs from the proposed mappings in
some technical details:

a) Naming: The SQL language considers unordered re-
lations with attribute names, in contrast to the database model
from Section III. Thus, the implementation assumes a default
order for relations and creates new names for attributes based
on their signature domain. Likewise, SQL is case-insensitive
whether Alloy is case sensitive, from what some renaming of
relations may also be necessary.

b) Key constraints: In SQL, only superkey constraints
can be expressed via primary key or unique constraints. All
non-superkey FDs are consequently ignored.

c) Referential constraints: The SQL92 standard defines
foreign keys as many-to-one relationships, meaning that a
relation must only refer to superkeys, while INDs can refer
to arbitrary projections. Consequently, this imposes a non-
syntactic restriction disallowing references to non-keys: our
tool recognizes and rejects these cases and alternatively allows
the generation of non-standard SQL triggers. Above that, the
INDs in the database schema are possibly circular, entailing
circular foreign keys. The traditional solution to this problem
is to declare circular foreign keys as deferrable, as prescribed
in the SQL92 standard but unfortunately not supported by all
RDBMS implementations. A workaround would be to remove
the circularities in the database and enforce them as one-to-one
associations in the ORM.

VIII. RELATED WORK

The comparison between Alloy and UML, being UML the
de facto modeling language in industry, is a natural topic ever
since the genesis of Alloy [10], [12]. While Alloy is targeted at
high-level abstract modeling, UML is a language for modeling
complete object-oriented software systems at different levels
of abstraction. As a result, while Alloy is concise and precise,
UML tends to be complicated and ambiguous. The connection
between both languages was explored in UML2Alloy [13], a
tool that transforms UML class diagrams with OCL constraints
to Alloy. Several methodologies (e.g. [14]–[16]) have been
proposed for relational database modeling with UML. In
general, they extend UML with non-standard stereotypes to
model to the various ER diagram components, thus providing
a similar expressive power and suffering from the same criti-
cisms, such as difficulty to express the business rules and ease
of inserting non-syntactic errors. The AlloyDB fragment also

has a similar expressive power, but allows the user to express
the various dependencies amongst data in a more natural and
uniform way, using a language amenable to fully automated
verification.

Focusing on the data-modeling aspects, Alloy essentially
realizes the notion of a semantic data model [17], by allowing
us to model databases in terms of an (almost) natural lan-
guage with entities and relationships between them. In [8],
the authors study the formal connection between semantic
database models and the relational model, and define mappings
between the two using the Iris data model as a concrete case
study. Apart from the source specification language, the main
difference to our work is the type of constraints supported:
while we restrict ourselves to the conventional inclusion and
functional dependencies, they only allow unary inclusions but
support other powerful constraints, such as join dependencies.
It would be interesting to incorporate these in AlloyDB since
they can capture the some multiplicity.

Focusing now on tools/frameworks to derive implementa-
tions from Alloy specifications, the most relevant is without
any doubt Alchemy [18], a tool that translates an Alloy
specification into a PLT Scheme implementation that executes
against a persistent database. The database integrity constraints
are not deployed explicitly in the schema, but instead dynami-
cally enforced by the generated implementation: the algorithm
chooses non-deterministically which repair actions to exe-
cute, backtracking whenever a choice leads to an inconsistent
database. Although more flexible, this run-time approach has
several disadvantages: performance is one of them, but the
most relevant is that the generated code is essentially a generic
integrity repair black-box, with no meaningful connection to
the original specification, and thus of little use to serve as the
basis for a final implementation. Although we cover a much
smaller subset of Alloy, we propose a compile-time approach
that generates implementations that explicitly reflect the facts
in the original specification.

In [19], a stateful Alloy idiom similar to the one used
in Alchemy is used as starting point for the generation of
Java executable code for embedded systems. Besides their
structural Java translation, that resembles the one generated in
our application layer, they encode Alloy built-in expressions
using a dedicated Java library that mimics the behavior of
Alloy’s primitives. Unfortunately, the generated code does not
reflect a natural object-oriented implementation, and thus this
approach will not be followed in our future implementation.
In the next section we discuss some alternatives.

Our work also has some similarities with WebAlloy [20],
a framework for generation of policy-rich websites, where
the data model and access policies are specified using Alloy.
A WebAlloy specification can be decoupled into three main
components: a static database model, a security layer with
the access policies, and an user interface. Likewise to our
approach of embodying (as much as possible) the business
rules as integrity constraints on the database, the access poli-
cies denote pre- and post-conditions on tuple operations and
can be seen as the check conditions for generalized integrity



constraints on the data model. This promotes the independence
of the database and prevents applications from violating the
rules/policies and, therefore, the consistency of the database.
Our generated object-oriented application layer corresponds to
one possible user interface.

IX. CONCLUDING REMARKS

In this paper, we have laid out the foundations for a
full fledged framework to transform Alloy specifications into
database-intensive applications. We have identified a static
subset of Alloy that is equivalent to confluent database
schemas enriched with functional and inclusion dependencies,
and developed mappings from one formalism to the other.
We have also shown how the confluence restriction can be
lifted when mapping database schemas into Alloy, and how an
object-oriented application layer can also be derived from the
original specification. Objects in this layer are made persistent
using a standard ORM framework and will be the target of the
dynamic aspects of the specification.

A lot of work remains to be done to make the framework
fully operational. First, we need to characterize more precisely
the syntactic fragment of Alloy that corresponds to AlloyDB :
as our example shows, this fragment is definitively larger
than the direct transliteration of AlloyDB facts, but its exact
expressiveness is still not clear. Second, we need to automate
the generation of the ORM code. Third, we must settle on a
strategy to translate the pre- and post-conditions that specify
the operations, since so far only the method headers are being
generated in the application layer. We envisage two possible
(complementary) strategies for this: 1) adopt a design-by-
contract methodology, and annotate the Java methods with
the corresponding JML pre- and post-conditions [21]; 2) infer
actual implementations from the post-conditions. Likewise to
Alchemy, a procedure on the database side would be needed
to restore integrity, since most of the time post-conditions are
just partial specifications. For this to be viable, the result-
ing database schema should be free of insertion and update
anomalies, which is quite difficult to guarantee when mixing
INDs and FDs due to non-trivial interactions between both
sets of dependencies. One possibility we are researching at the
moment, is to restrict the database schemas to be in the so-
called Inclusion Dependency Normal Form [9], a redundancy-
free normal form where automatic integrity repair is feasible.
The impact that this restriction has on the expressiveness of
the source Alloy must be accessed carefully.

We are particularly interested in applying the developed
mappings in the reengineering of legacy databases. By re-
sorting to existing transformation frameworks [22], [23], we
are researching the possibility of making them fully bidirec-
tional [24], so that any changes made on the specification level
could be merged back into the database design. Ideally, we
would also like to derive the corresponding data migration
functions.
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