
Bidirectional Data Transformation by Calculation

Hugo Pacheco

HASLab
INESC TEC & University of Minho, Braga, Portugal

Former

55th ToPS Seminar

Tokyo - December 18th 2012

Introduction Efficiency Configurability Genericity Summary

Outline

1 Introduction

2 Efficiency

3 Configurability

4 Genericity

5 Summary

Bidirectional Data Transformation by Calculation 2 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Data Transformations

data transformations abound in software engineering

essential to convert data between different formats

S T

in real model-driven software engineering scenarios, we often
need to run a transformation in both directions

S T

a bidirectional transformation (BX)

Bidirectional Data Transformation by Calculation 3 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

(Ad hoc) Bidirectional Transformations

S T

S T

Manual design: two separate transformations

expensive

error-prone

a maintenance problem

Bidirectional Data Transformation by Calculation 4 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Bidirectional Languages

S T

S T

Combinatorial design: the same specification denotes both

nice syntax

clean semantics

compositional

Bidirectional Data Transformation by Calculation 5 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Bidirectional Languages exist for ...

...databases...

A B D

a1 b1 d1

a2 b2 d2

A B C

a1 b1 c1

a2 b2 c2

Database

Query

Trigger

View

Bidirectional Data Transformation by Calculation 6 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Bidirectional Languages exist for ...

...model-driven software engineering...

Java Code

Forward

Backward

UML Diagram

-empId:Int
+salary():double

Employee

-empId:Int
-empAge:Int
+salary():double

Employee

public class Employee
{
 private int empID;
 public double
salary()
 { ... }
}

public class Employee
{
 private int empID;
 private int empAge;
 public double
salary()
 { ... }
}

Bidirectional Data Transformation by Calculation 7 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Bidirectional Languages exist for ...

...user interfaces...

XML Document

Forward

Backward

User Interface

<a>

 <c/>

<a>

b b

a

c

b b

a

...etc

Bidirectional Data Transformation by Calculation 8 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

1 Efficiency

Bidirectional Data Transformation by Calculation 9 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Optimization

combinatorial approaches build complex transformations by
composition

S T U

composition ⇒ cluttering ⇒ inefficiency!

S U

a serious implementation of BXs needs to be efficient

Question

how to optimize bidirectional transformations?

S U

Bidirectional Data Transformation by Calculation 10 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Is BX optimization really hard?

write the two transformations in a language with support for
optimization

S T U

optimize both independently

S U

twice the effort!

no longer a single program!

Bidirectional Data Transformation by Calculation 11 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Is BX optimization really hard?

write the forward transformation in a language with support
for optimization and derive the backward transformation

S

derive

S V

V

optimize the forward transformation and derive the other

S

derive

S V

V

different semantics!

Bidirectional Data Transformation by Calculation 12 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - A better solution

write the BX in a language with support for optimization

S T U

optimize bidirectional programs

S U

optimized BX program

same semantics

Bidirectional Data Transformation by Calculation 13 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Bidirectional Lenses

Foster et al. proposed the framework of lenses
[POPL’05,TOPLAS]

lenses are one of the most popular BX frameworks

S

S V

V

get

put

Bidirectional Data Transformation by Calculation 14 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

The Lens Laws

PutGet law

put must translate
view updates exactly.

s'

s

v'
put

get

get (put v ′ s) = v ′

GetPut law

put must preserve
null view updates.

s v

get

put

put (get s) s = s

Bidirectional Data Transformation by Calculation 15 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

A Point-free Design

A data domain (algebraic data types)

data [a] = [] | a : [a]
data Tree a = Empty | Node a (Tree a) (Tree a)

A language syntax

id : A→ A
◦ : (B → C)→ (A→ B)→ (A→ C)
π1 : A × B → A
× : (A→ C)→ (B → D)→ (A × B → C × D)

A set of calculation laws

f ◦ (g ◦ h) = (f ◦ g) ◦ h Comp-Assoc

π1 ◦ (f 4 g) = f ∧ π2 ◦ (f 4 g) = g Prod-Cancel

(f ×g) ◦ (h4 i) = f ◦ h4 g ◦ i Prod-Absor

Bidirectional Data Transformation by Calculation 16 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Point-free Lenses

Lens

get

put

S VQ

get : S → V
put : V × S → S

get ◦ put = π1

put ◦ (get4 id) = id

Language of point-free lens combinators

Lens ::= id | Lens ◦ Lens | !c | Prod | Sum | Iso | Rec
Prod ::= πb1 | πa2 | Lens×Lens
Sum ::= Lens •∇ Lens | Lens ∇• Lens | Lens + Lens

| inlOLens | LensOinr
Iso ::= assocl | assocr | coassocl | coassocr

| swap | coswap | distl | distr
Rec ::= inF | outF | F Lens | (|Lens|)F | bd(Lens)ceF

Bidirectional Data Transformation by Calculation 17 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Point-free Lens Examples

lengtha = bd((id +πa2) ◦ out)ce : [A] Q Nat
map f = (|in ◦ (id + f ×id)|) : [A] Q [B]
concat = (|...|) : [[A]] Q [A]

name

actor

played

year title role award

reviewtitleyear

 show

imdb

* *

* *

*

user comment

concatlength

ex =map show×map actor

show =id×(id×length◦map (id×πComment))

actor =id×concat◦map πAwards

name

actor

awardcomsNºtitleyear

 show

imdb

* *

*

Bidirectional Data Transformation by Calculation 18 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Point-free Lens Calculus

lift the point-free laws to lenses

f = g ⇔
{

getf = getg
putf = putg

point-free lens laws

πa1 ◦ (f ×g) = f ◦ πcreatef a
1 Prod-Cancel

(f •∇ g) ◦ (h+ i) = f ◦ h •∇ g ◦ i Sum-Absor

f ◦ (|g |)F = (|h|)F ⇐ f ◦ g = h ◦ F f Cata-Fusion

fusion examples

lengtha ◦map f = lengthcreatef a length-Map

concat ◦map f = concatMap f concat-Map

Bidirectional Data Transformation by Calculation 19 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Point-free Lens Calculus - Tupling

put has redundant computations of get

fuse get and put int a single function - Takeichi [IFP’09]

s'

s v

v'

get

put

update

get : S → V
put : S → V → S

get4 put : S → V × (V → S)

Fokkinga’s Mutu Tupling theorem

f 4 g = (|φ4ψ|)F ⇐

{
f = φ ◦ F (f 4 g) ◦ outF
g = ψ ◦ F (f 4 g) ◦ outF

Bidirectional Data Transformation by Calculation 20 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

2 Configurability

Bidirectional Data Transformation by Calculation 21 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Configurability

for non-bijective transformations, an update may have many
corresponding updates

SS

S V

S V

?

our point-free lens language provides one possible update

may not match the user’s intentions!

Question

how to allow users to choose a suitable update?

Bidirectional Data Transformation by Calculation 22 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

State-based Lenses

State-based framework: put takes the modified view state

s'

s v

View
Update

Updated View

Original View

v'

Original Source

Updated Source

Source
Update

no information about the actual update

put has to “guess” the intended change of the update

Bidirectional Data Transformation by Calculation 23 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

State-based Lens Example

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

Peter
Joseph

Peter
Joseph

John
(John, 1981)

(Peter, 1955) (Mary, 1956)

(Joseph, 2012)

getmen (Peter, 1981)
(Joseph, 1955)

getnames

putmen putnames

(John, 1981)
(Peter, 1955)

(Joseph, 2012)

data Tree a = Empty | Node a (Tree a) (Tree a)
type Person = (Name,Birth)

men : Tree Person Q [Person] names : [Person] Q [Name]
men Empty = [] names = map πconst 2012

1

men (Node p f m) = p : men f

positional behavior: birth years? Mary?

Bidirectional Data Transformation by Calculation 24 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Operation-based Lenses

Operation-based framework: put takes a representation of the view
update

s'

s v

v'

View
Update

Updated View

Original View
Original Source

Source
Update

Updated Source

some knowledge about the actual update

put can infer the intended change

Bidirectional Data Transformation by Calculation 25 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Delta-based Lenses

Delta-based framework: put takes a delta

s'

s v

v'

Updated View

Original View
Original Source

Updated Source

v�v0s�s0

Diskin et al. proposed an abstract framework of delta lenses
[JOT]

deltas model “change”

delta = description of an update

Bidirectional Data Transformation by Calculation 26 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Point-free Delta Lenses

we instantiate the abstract framework of Diskin et al.

we introduce a notion of deltas for algebraic data types

1 decompose: shape + data

x

y

z

0

1

2

l : [Char]

data [a] = [] | a : [a]

2 a∆b = partial function

x

y

z

w

x

z

0

1

2

0

1

2

a : [Char] b : [Char]

we define a language of point-free delta lenses

we tailor our previous lens language to consider deltas

Bidirectional Data Transformation by Calculation 27 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Delta-based Example (Mapping)

for mapping lenses, that preserve the shape

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

(Peter, 1981)

(Joseph, 1955)

getmen Peter

Joseph

getnames

John

Peter

Joseph

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

putnames

0

1 2
1 1

11

0

0 0

0

22

0 ⟻ 1
1 ⟻ 2

0 ⟻ 1
1 ⟻ 2

names : [Person] Q [Name]

data alignment

Bidirectional Data Transformation by Calculation 28 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Delta-based Example (Reshaping)

for reshaping lenses, that preserve the data

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

(Peter, 1981)

(Joseph, 1955)

getmen Peter

Joseph

getnames

John

Peter

Joseph

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

putnames

0

1 2
1 1

1
1

0

0 0

0

2
2

0 ⟻ 1
1 ⟻ 2

0 ⟻ 1
1 ⟻ 2

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

0

(Mary, 1956)

1

2 3

0 ⟻ 1
1 ⟻ 2
2 ⟻"3 putnames

men : Tree Person Q [Person]

shape alignment
1 identify shape updates: insertions/deletions
2 propagate shape updates: insertions/deletions

Bidirectional Data Transformation by Calculation 29 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Delta Lens Configurability

a delta can be calculated from the original and updated states

s'

s v

v'

v�v0s�s0 diff v v'

user can choose an arbitrary heuristic

Bidirectional Data Transformation by Calculation 30 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

3 Genericity

Bidirectional Data Transformation by Calculation 31 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Conciseness

bidirectional transformations are typically built to match a
specific structure, via multiple steps

collect all event dates in a calendar data format

calendar

event
*

birthday work

+

date person date task

calendarDts : Calendar Q Date
calendarDts = map eventDts
eventDts = birthdayDts ∇• workDts
birthdayDts = πconst "unknown"

1

workDts = πconst ""
1

impractical!

for a real calendar format (iCal, XML, etc), it would be much
more boring

Bidirectional Data Transformation by Calculation 32 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Motivation - Reusability

for the same high-level transformation, different BXs for
different structures (collect all dates)

calendar

event
*

birthday work

+

person task

date

calendarDts ′ : Calendar ′ Q Date
calendarDts ′ = map eventsDts ′

eventDts ′ = π
const (Right (Work ""))
1

does not support evolution!

Question

how to define a transformation in a concise and reusable way?

S1 T1 S2 T2

Bidirectional Data Transformation by Calculation 33 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

The Multifocal Language

we propose the Multifocal XML transformation language

XML
Schema

XML
Schema

Multifocal Transformation

Schema1 View1 Schema2 View2

Two-level:
1 schema-level transformations as views between XML Schemas
2 model-level transformations as lenses between XML documents

Strategic: concise specification style (e.g. traversals)

Bidirectional: underlying document transformations as lenses

Bidirectional Data Transformation by Calculation 34 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

source XML Schema modeling a movie database

*

*+ *

actor

imdb

seriesmovie

year title review boxoffice year title review season name

user comment country value user comment

name result

played

year title role award

** * *

year episode
**?

director
*

*

Bidirectional Data Transformation by Calculation 35 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

informal XML Schema transformation
1 delete series
2 for each movie:

count its popularity (total number of review comments)
estimate its profit (sum of the boxoffice values)

3 for each actor, select its name and a list of award names

view XML Schema

awname

imdb
* *

*
titleyear

profit

 movie actor

popularity

director name

Bidirectional Data Transformation by Calculation 36 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

<imdb>

<movie>

<year>2003</year>

<title>Kill Bill: Vol. 1</title>

<review user="emma">

<comment>Gorgeous!</comment></review>

<director>Quentin Tarantino</director>

<boxoffice country="USA" value="22089322"/>

<boxoffice country="Japan" value="3521628"/>

</movie>

<series><year>2011</year>

<title>Game of Thrones</title>

<season><year>2011</year>

<episode>Winter is Coming</episode>

</season></series>

<actor name="Umma Thurman">

<played><year>2003</year>

<title>Kill Bill: Vol. 1</title>

<role>The Bride</role>

<award name="Saturn" result="Won"/>

</played></actor>

</imdb>

Bidirectional Data Transformation by Calculation 37 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

<imdb>

<movie popularity="1" profit="25610950">

<year>2003</year>

<title>Kill Bill: Vol. 1</title>

<director>Quentin Tarantino</director>

</movie>

<actor name="Umma Thurman">

<awname>Saturn</awname>

</actor>

</imdb>

Bidirectional Data Transformation by Calculation 38 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

<imdb>

<movie> ... </movie>

<movie popularity=”2” profit=”15”>
<year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<director>Guy Ritchie</director>

</movie>
<actor name=”Uma Thurman”>
<awname>Saturn Best Actress</awname>

</actor>

</imdb>

Bidirectional Data Transformation by Calculation 39 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: XML Views

<imdb>

<movie> ... </movie>

<series> ... </series>

<movie><year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<review user=”” comment=””/>
<review user=”” comment=””/>
<director>Guy Ritchie</director>
<boxoffice country=”” value=”15”/>

</movie>
<actor name=”Uma Thurman”>
<played><year>2003</year>

<title>Kill Bill: Vol. 1</title>

<role>The Bride</role>

<award name=”Saturn Best Actress” result="Won"/>

</played></actor>

</imdb>

Bidirectional Data Transformation by Calculation 40 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Language: Basic Combinators

generic style = concise specification

strategic combinators

Strat = Schema→ Maybe (Schema, Lens)

construct flexible strategies in a compositional way

basic combinators (in what order? how often?):

identity nop : Strat → Strat
sequentially (>>) : Strat → Strat → Strat
alternatively (||) : Strat → Strat → Strat
repetitively many : Strat → Strat
optionally try : Strat → Strat

Bidirectional Data Transformation by Calculation 41 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Language: Traversal Combinators

traversal combinators (at what depth?)
apply a strategy to all children

+ * all r + *

r
r

r

apply a strategy to all descendants
everywhere : Strat → Strat

apply a strategy once at an arbitrary depth

r
n

+

n

m

o

*

n

once r +
m

*

r

o n

apply a strategy many times at an arbitrary depth
outermost : Strat → Strat

Bidirectional Data Transformation by Calculation 42 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Language: Local Combinators

control the application of certain strategies

local combinators (under which conditions?)

at a particular element

n
at "n"

n

at a particular location

n
when
"ns"

n
* *

ns

XML name-based combinators

n
hoist plunge

"n"

n n
rename

"m"

m

Bidirectional Data Transformation by Calculation 43 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Language: Abstraction Combinators

language for defining XML views

abstraction combinators (what to delete?)

erase the current tree
(explicit)

erase

empty tree

apply an XPath query (implicit)

+

n

m

o

*

p

select
"//p" *

p

1 specialize the XPath expression
(/m / p) for the source schema

2 convert it to a lens into the
query’s result type

Bidirectional Data Transformation by Calculation 44 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Multifocal Example: Strategic XML Views

1 delete series
2 for each movie:

count its popularity (total number of review comments)
estimate its profit (sum of the boxoffice values)

3 for each actor, select its name and a list of award names

1 everywhere (try (at "series" erase))

2 >> everywhere (try (at "movie" (

outermost (when "reviews" (

select "count(//comment)" >> plunge "@popularity"))

>> outermost (when "boxoffices" (

select "sum(//@value)" >> plunge "@profit")))))

3 >> everywhere (try (at "actor" (

outermost (at "played" (

select "award/@name" >> all (rename "awname"))))))

Bidirectional Data Transformation by Calculation 45 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

The Multifocal Framework

we implement the Multifocal framework

XML File
(.xml)

XML Schema
(.xsd)

XML File
(.xml)

Multifocal File
(.2lt)

XML Schema
(.xsd)Evaluate

XML File
(.xml)

Bidirectional
Executable

Forward

Backward XML File
(.xml)

Compile

Optimize
Point-free Lens

three stages:
1 evaluate: XML Schema ⇒ XML Schema + lens
2 optimize (optional): lens ⇒ optimized lens
3 compile: (optimized) lens ⇒ executable

Bidirectional Data Transformation by Calculation 46 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Wrapping Up

1 efficiency

point-free lens language
algebraic calculus of lenses (fusion, tupling)

2 configurability

point-free delta lens language
user-provided alignment heuristics

3 genericity

Multifocal language and framework
a Multifocal XML schema transformation yields BXs in our
lens language that can be optimized
reusable: multiple schemas
concise: strategic combinators

Bidirectional Data Transformation by Calculation 47 / 49 Hugo Pacheco

Introduction Efficiency Configurability Genericity Summary

Libraries and Tools

implemented in Haskell++

available online

http://hackage.haskell.org/package/pointless-lenses

cabal install <package>

pointless-lenses (point-free lens library)
pointless-rewrite (point-free optimization library)
pointless-2lt (strategic two-level lens library)
multifocal (Multifocal system)

Bidirectional Data Transformation by Calculation 48 / 49 Hugo Pacheco

http://hackage.haskell.org/package/pointless-lenses

Introduction Efficiency Configurability Genericity Summary

Further Reading

Hugo Pacheco and Alcino Cunha
Generic Point-free Lenses
MPC 2010.

Hugo Pacheco and Alcino Cunha
Calculating with lenses: optimising bidirectional transformations
PEPM 2011.

Hugo Pacheco, Alcino Cunha and Zhenjiang Hu
Delta Lenses over Inductive Types
BX 2012.

Hugo Pacheco and Alcino Cunha
Multifocal: A Strategic Bidirectional Transformation Language for XML
Schemas
ICMT 2012.

Alcino Cunha and Hugo Pacheco
Algebraic Specialization of Generic Functions for Recursive Types
Electronic Notes in Theoretical Computer Science, 2011.

Bidirectional Data Transformation by Calculation 49 / 49 Hugo Pacheco

	Introduction
	Efficiency
	Configurability
	Genericity
	Summary

