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Data Transformations

data transformations abound in software engineering

essential to convert data between different formats

S T

in real model-driven software engineering scenarios, we often
need to run a transformation in both directions

S T

a bidirectional transformation (BX)
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(Ad hoc) Bidirectional Transformations

S T

S T

Manual design: two separate transformations

expensive

error-prone

a maintenance problem
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Bidirectional Languages

S T

S T

Combinatorial design: the same specification denotes both

nice syntax

clean semantics

compositional
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Bidirectional Languages exist for ...

...databases...

A B D

a1 b1 d1

a2 b2 d2

A B C

a1 b1 c1

a2 b2 c2

Database

Query

Trigger

View
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Bidirectional Languages exist for ...

...model-driven software engineering...

Java Code

Forward

Backward

UML Diagram

-empId:Int
+salary():double

Employee

-empId:Int
-empAge:Int
+salary():double

Employee

public class Employee 
{
   private int empID;
   public double 
salary()
   { ... }
}

public class Employee 
{
   private int empID;
   private int empAge;
   public double 
salary()
   { ... }
}

Bidirectional Data Transformation by Calculation 7 / 49 Hugo Pacheco



Introduction Efficiency Configurability Genericity Summary

Bidirectional Languages exist for ...

...user interfaces...

XML Document

Forward

Backward

User Interface

<a>
   <b/>
   <b>
     <c/>
  </b>
</a>

<a>
   <b/>
   <b/>
</a>

b b

a

c

b b

a

...etc
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1 Efficiency
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Motivation - Optimization

combinatorial approaches build complex transformations by
composition

S T U

composition ⇒ cluttering ⇒ inefficiency!

S U

a serious implementation of BXs needs to be efficient

Question

how to optimize bidirectional transformations?

S U
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Motivation - Is BX optimization really hard?

write the two transformations in a language with support for
optimization

S T U

optimize both independently

S U

twice the effort!

no longer a single program!
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Motivation - Is BX optimization really hard?

write the forward transformation in a language with support
for optimization and derive the backward transformation

S

derive

S V

V

optimize the forward transformation and derive the other

S

derive

S V

V

different semantics!
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Motivation - A better solution

write the BX in a language with support for optimization

S T U

optimize bidirectional programs

S U

optimized BX program

same semantics
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Bidirectional Lenses

Foster et al. proposed the framework of lenses
[POPL’05,TOPLAS]

lenses are one of the most popular BX frameworks

S

S V

V

get

put
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The Lens Laws

PutGet law

put must translate
view updates exactly.

s'

s

v'
put

get

get (put v ′ s) = v ′

GetPut law

put must preserve
null view updates.

s v

get

put

put (get s) s = s
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A Point-free Design

A data domain (algebraic data types)

data [a ] = [ ] | a : [a ]
data Tree a = Empty | Node a (Tree a) (Tree a)

A language syntax

id : A→ A
◦ : (B → C )→ (A→ B)→ (A→ C )
π1 : A × B → A
× : (A→ C )→ (B → D)→ (A × B → C × D)

A set of calculation laws

f ◦ (g ◦ h) = (f ◦ g) ◦ h Comp-Assoc

π1 ◦ (f 4 g) = f ∧ π2 ◦ (f 4 g) = g Prod-Cancel

(f ×g) ◦ (h4 i) = f ◦ h4 g ◦ i Prod-Absor
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Point-free Lenses

Lens

get

put

S VQ

get : S → V
put : V × S → S

get ◦ put = π1

put ◦ (get4 id) = id

Language of point-free lens combinators

Lens ::= id | Lens ◦ Lens | !c | Prod | Sum | Iso | Rec
Prod ::= πb1 | πa2 | Lens×Lens
Sum ::= Lens •∇ Lens | Lens ∇• Lens | Lens + Lens

| inlOLens | LensOinr
Iso ::= assocl | assocr | coassocl | coassocr

| swap | coswap | distl | distr
Rec ::= inF | outF | F Lens | (|Lens|)F | bd(Lens)ceF
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Point-free Lens Examples

lengtha = bd((id +πa2) ◦ out)ce : [A] Q Nat
map f = (|in ◦ (id + f ×id)|) : [A] Q [B ]
concat = (|...|) : [[A]] Q [A]

name

actor

played

year title role award

reviewtitleyear

 show

imdb

* *

* *

*

user comment

concatlength

ex =map show×map actor

show =id×(id×length◦map (id×πComment))

actor =id×concat◦map πAwards

name

actor

awardcomsNºtitleyear

 show

imdb

* *

*
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Point-free Lens Calculus

lift the point-free laws to lenses

f = g ⇔
{

getf = getg
putf = putg

point-free lens laws

πa1 ◦ (f ×g) = f ◦ πcreatef a
1 Prod-Cancel

(f •∇ g) ◦ (h+ i) = f ◦ h •∇ g ◦ i Sum-Absor

f ◦ (|g |)F = (|h|)F ⇐ f ◦ g = h ◦ F f Cata-Fusion

fusion examples

lengtha ◦map f = lengthcreatef a length-Map

concat ◦map f = concatMap f concat-Map
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Point-free Lens Calculus - Tupling

put has redundant computations of get

fuse get and put int a single function - Takeichi [IFP’09]

s'

s v

v'

get

put

update

get : S → V
put : S → V → S

get4 put : S → V × (V → S)

Fokkinga’s Mutu Tupling theorem

f 4 g = (|φ4ψ|)F ⇐

{
f = φ ◦ F (f 4 g) ◦ outF
g = ψ ◦ F (f 4 g) ◦ outF
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2 Configurability
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Motivation - Configurability

for non-bijective transformations, an update may have many
corresponding updates

SS

S V

S V

?

our point-free lens language provides one possible update

may not match the user’s intentions!

Question

how to allow users to choose a suitable update?
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State-based Lenses

State-based framework: put takes the modified view state

s'

s v

View 
Update

Updated View

Original View

v'

Original Source

Updated Source

Source 
Update

no information about the actual update

put has to “guess” the intended change of the update

Bidirectional Data Transformation by Calculation 23 / 49 Hugo Pacheco



Introduction Efficiency Configurability Genericity Summary

State-based Lens Example

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

Peter
Joseph

Peter
Joseph

John
(John, 1981)

(Peter, 1955) (Mary, 1956)

(Joseph, 2012)

getmen (Peter, 1981)
(Joseph, 1955)

getnames

putmen putnames

(John, 1981)
(Peter, 1955)

(Joseph, 2012)

data Tree a = Empty | Node a (Tree a) (Tree a)
type Person = (Name,Birth)

men : Tree Person Q [Person ] names : [Person ] Q [Name ]
men Empty = [ ] names = map πconst 2012

1

men (Node p f m) = p : men f

positional behavior: birth years? Mary?
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Operation-based Lenses

Operation-based framework: put takes a representation of the view
update

s'

s v

v'

View 
Update

Updated View

Original View
Original Source

Source 
Update

Updated Source

some knowledge about the actual update

put can infer the intended change
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Delta-based Lenses

Delta-based framework: put takes a delta

s'

s v

v'

Updated View

Original View
Original Source

Updated Source

v�v0s�s0

Diskin et al. proposed an abstract framework of delta lenses
[JOT]

deltas model “change”

delta = description of an update
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Point-free Delta Lenses

we instantiate the abstract framework of Diskin et al.

we introduce a notion of deltas for algebraic data types

1 decompose: shape + data

x

y

z

0

1

2

l : [Char]

data [a ] = [ ] | a : [a ]

2 a∆b = partial function

x

y

z

w

x

z

0

1

2

0

1

2

a : [Char] b : [Char]

we define a language of point-free delta lenses

we tailor our previous lens language to consider deltas
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Delta-based Example (Mapping)

for mapping lenses, that preserve the shape

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

(Peter, 1981)

(Joseph, 1955)

getmen Peter

Joseph

getnames

John

Peter

Joseph

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

putnames

0

1 2
1 1

11

0

0 0

0

22

0 ⟻ 1
1 ⟻ 2

0 ⟻ 1
1 ⟻ 2

names : [Person ] Q [Name ]

data alignment
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Delta-based Example (Reshaping)

for reshaping lenses, that preserve the data

(Peter, 1981)

(Joseph, 1955) (Mary, 1956)

(Peter, 1981)

(Joseph, 1955)

getmen Peter

Joseph

getnames

John

Peter

Joseph

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

putnames

0

1 2
1 1

1
1

0

0 0

0

2
2

0 ⟻ 1
1 ⟻ 2

0 ⟻ 1
1 ⟻ 2

(John, 2012)

(Peter, 1981)

(Joseph, 1955)

0

(Mary, 1956)

1

2 3

0 ⟻ 1
1 ⟻ 2
2 ⟻"3 putnames

men : Tree Person Q [Person ]

shape alignment
1 identify shape updates: insertions/deletions
2 propagate shape updates: insertions/deletions
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Delta Lens Configurability

a delta can be calculated from the original and updated states

s'

s v

v'

v�v0s�s0 diff v v'

user can choose an arbitrary heuristic
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3 Genericity
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Motivation - Conciseness

bidirectional transformations are typically built to match a
specific structure, via multiple steps

collect all event dates in a calendar data format

calendar

event
*

birthday work

+

date person date task

calendarDts : Calendar Q Date
calendarDts = map eventDts
eventDts = birthdayDts ∇• workDts
birthdayDts = πconst "unknown"

1

workDts = πconst ""
1

impractical!

for a real calendar format (iCal, XML, etc), it would be much
more boring
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Motivation - Reusability

for the same high-level transformation, different BXs for
different structures (collect all dates)

calendar

event
*

birthday work

+

person task

date

calendarDts ′ : Calendar ′ Q Date
calendarDts ′ = map eventsDts ′

eventDts ′ = π
const (Right (Work ""))
1

does not support evolution!

Question

how to define a transformation in a concise and reusable way?

S1 T1 S2 T2
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The Multifocal Language

we propose the Multifocal XML transformation language

XML 
Schema

XML 
Schema

Multifocal Transformation

Schema1 View1 Schema2 View2

Two-level:
1 schema-level transformations as views between XML Schemas
2 model-level transformations as lenses between XML documents

Strategic: concise specification style (e.g. traversals)

Bidirectional: underlying document transformations as lenses
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Multifocal Example: XML Views

source XML Schema modeling a movie database

*

*+ *

actor

imdb

seriesmovie

year title review boxoffice year title review season name

user comment country value user comment

name result

played

year title role award

** * *

year episode
**?

director
*

*
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Multifocal Example: XML Views

informal XML Schema transformation
1 delete series
2 for each movie:

count its popularity (total number of review comments)
estimate its profit (sum of the boxoffice values)

3 for each actor, select its name and a list of award names

view XML Schema

awname

imdb
* *

*
titleyear

profit

 movie actor

popularity

director name
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Multifocal Example: XML Views

<imdb>

<movie>

<year>2003</year>

<title>Kill Bill: Vol. 1</title>

<review user="emma">

<comment>Gorgeous!</comment></review>

<director>Quentin Tarantino</director>

<boxoffice country="USA" value="22089322"/>

<boxoffice country="Japan" value="3521628"/>

</movie>

<series><year>2011</year>

<title>Game of Thrones</title>

<season><year>2011</year>

<episode>Winter is Coming</episode>

</season></series>

<actor name="Umma Thurman">

<played><year>2003</year>

<title>Kill Bill: Vol. 1</title>

<role>The Bride</role>

<award name="Saturn" result="Won"/>

</played></actor>

</imdb>
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Multifocal Example: XML Views

<imdb>

<movie popularity="1" profit="25610950">

<year>2003</year>

<title>Kill Bill: Vol. 1</title>

<director>Quentin Tarantino</director>

</movie>

<actor name="Umma Thurman">

<awname>Saturn</awname>

</actor>

</imdb>
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Multifocal Example: XML Views

<imdb>

<movie> ... </movie>

<movie popularity=”2” profit=”15”>
<year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<director>Guy Ritchie</director>

</movie>
<actor name=”Uma Thurman”>
<awname>Saturn Best Actress</awname>

</actor>

</imdb>
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Multifocal Example: XML Views

<imdb>

<movie> ... </movie>

<series> ... </series>

<movie><year>2012</year>
<title>Sherlock Holmes: Game of Shadows</title>
<review user=”” comment=””/>
<review user=”” comment=””/>
<director>Guy Ritchie</director>
<boxoffice country=”” value=”15”/>

</movie>
<actor name=”Uma Thurman”>
<played><year>2003</year>

<title>Kill Bill: Vol. 1</title>

<role>The Bride</role>

<award name=”Saturn Best Actress” result="Won"/>

</played></actor>

</imdb>
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Multifocal Language: Basic Combinators

generic style = concise specification

strategic combinators

Strat = Schema→ Maybe (Schema, Lens)

construct flexible strategies in a compositional way

basic combinators (in what order? how often?):

identity nop : Strat → Strat
sequentially (>>) : Strat → Strat → Strat
alternatively (||) : Strat → Strat → Strat
repetitively many : Strat → Strat
optionally try : Strat → Strat
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Multifocal Language: Traversal Combinators

traversal combinators (at what depth?)
apply a strategy to all children

+ * all r + *

r
r

r

apply a strategy to all descendants
everywhere : Strat → Strat

apply a strategy once at an arbitrary depth

r
n

+

n

m

o

*

n

once r +
m

*

r

o n

apply a strategy many times at an arbitrary depth
outermost : Strat → Strat
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Multifocal Language: Local Combinators

control the application of certain strategies

local combinators (under which conditions?)

at a particular element

n
at "n"

n

at a particular location

n
when  
"ns"

n
* *

ns

XML name-based combinators

n
hoist plunge 

"n"

n n
rename 

"m"

m

Bidirectional Data Transformation by Calculation 43 / 49 Hugo Pacheco



Introduction Efficiency Configurability Genericity Summary

Multifocal Language: Abstraction Combinators

language for defining XML views

abstraction combinators (what to delete?)

erase the current tree
(explicit)

erase

empty tree

apply an XPath query (implicit)

+

n

m

o

*

p

select 
"//p" *

p

1 specialize the XPath expression
(/m / p) for the source schema

2 convert it to a lens into the
query’s result type
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Multifocal Example: Strategic XML Views

1 delete series
2 for each movie:

count its popularity (total number of review comments)
estimate its profit (sum of the boxoffice values)

3 for each actor, select its name and a list of award names

1 everywhere (try (at "series" erase))

2 >> everywhere (try (at "movie" (

outermost (when "reviews" (

select "count(//comment)" >> plunge "@popularity"))

>> outermost (when "boxoffices" (

select "sum(//@value)" >> plunge "@profit")))))

3 >> everywhere (try (at "actor" (

outermost (at "played" (

select "award/@name" >> all (rename "awname"))))))
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The Multifocal Framework

we implement the Multifocal framework

XML File
(.xml)

XML Schema
(.xsd)

XML File
(.xml)

Multifocal File
(.2lt)

XML Schema
(.xsd)Evaluate

XML File
(.xml)

Bidirectional 
Executable

Forward

Backward XML File
(.xml)

Compile

Optimize
Point-free Lens

three stages:
1 evaluate: XML Schema ⇒ XML Schema + lens
2 optimize (optional): lens ⇒ optimized lens
3 compile: (optimized) lens ⇒ executable
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Wrapping Up

1 efficiency

point-free lens language
algebraic calculus of lenses (fusion, tupling)

2 configurability

point-free delta lens language
user-provided alignment heuristics

3 genericity

Multifocal language and framework
a Multifocal XML schema transformation yields BXs in our
lens language that can be optimized
reusable: multiple schemas
concise: strategic combinators
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Libraries and Tools

implemented in Haskell++

available online

http://hackage.haskell.org/package/pointless-lenses

cabal install <package>

pointless-lenses (point-free lens library)
pointless-rewrite (point-free optimization library)
pointless-2lt (strategic two-level lens library)
multifocal (Multifocal system)
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Further Reading
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Calculating with lenses: optimising bidirectional transformations
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Hugo Pacheco, Alcino Cunha and Zhenjiang Hu
Delta Lenses over Inductive Types
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Hugo Pacheco and Alcino Cunha
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