
XPTO
An Xpath Preprocessor with Type-aware Optimization

Flávio Ferreira∗ Hugo Pacheco†

February 27, 2007

Engenharia de Sistemas e Informática, Universidade do Minho, Portugal

Abstract

Various languages allow specific query languages for selection and
transformation of portions of documents. Such queries are defined generi-
cally for different data types, and only specify specific behaviours for a few
relevant subtypes. This is a well-known feature of XML query languages,
that allow selection of element nodes without exhaustively specifying in-
termediate nodes.

We have implemented a system for performing optimizations on XPath
expressions through schema-specialization of their structure-shy proper-
ties. The core of the system consists of a combinator library, based on
algebraic laws for transformation of structure-shy programs, conversion
into structure-sensitive programs, and vice-versa. We show how the core
library can be extended with laws for specific XPath features and adapted
to construct an effective rewrite system for specialization and optimization
of XPath structure-shy programs. The front-end for this system carries
the conversion of XML Schema and XPath files into internal representa-
tions and the generation of Haskell programs containing optimized queries
as Haskell functions. The front-end itself was implemented over the func-
tional language Haskell.

Keywords Haskell, XPath, schema-specialization, optimization

1 Introduction

Query languages are designed to query collections of data over documents in a
host language. This concept encompasses all the techniques to retrieve infor-
mation from large sets of structured data. The probably most popular query
language is the SQL language, modelled for handling data stored in relational
databases. Developed for the sharing of data across different information sys-
tems, the XML markup language structures the data under a tree-based repre-
sentation and stores it in regular text files.

∗flavioxavier@gmail.com
†hpacheco@gmail.com

1

XPath is a simple SQL homologous for the XML technology, but is also an
essential ingredient of XQuery and XSLT. It follows a structure-shy program-
ming technique to navigate through the hierarchy of XML nodes. Structure-shy
programs can be significantly more concise, by focusing on the essence of the
algorithm rather than oozing with boilerplate code, what makes them more con-
cise and understandable [24]. However, such advantages potentially reduce the
efficiency of these queries, due to the need to look up for possible elements in
the whole document and the resource to dynamic checks to determine wether
to apply specific or generic behavior for each data node.

As a simple XML query language, various efforts have been made in the
last few years to improve XPath efficiency [26] [18]: one of them is schema-
based optimization [22]. In field’s literature, schema-awareness is synonym
of using schema-knowledge to perform some optimizations on XPath expres-
sions by trying to eliminate impossible path expressions or to remove redundant
conditions. We go further by performing type-specialization and optimization
over the query, this means, the query semantics are simplified taking in ac-
count the document’s structure, as described in the schema’s type definition,
and refining the specialized query into a Haskell functional program. A type-
safe, type-directed rewrite system can be created for transformation of XPath
structure-shy queries into structure-sensitive point-free functional programs [7].
This system relies upon a set of algebraic laws, formulated for transformation
of point-free programs [5]. Type-specialized queries are point-free program spe-
cific for the schema in use, and may be run against any XML document that
conforms to such schema.

In this report, we will focus on developing a front-end for optimization of
Xpath queries, based on the presented rewrite system. Much of the theoreti-
cal work have been explored in the previous paper [7]. Both the front-end and
the rewrite system are implemented in Haskell. Schema type definitions and
optimized point-free queries can be outputted as Haskell datatypes and func-
tions that, composed with a proper XML parser, generate a complete Haskell
program.

A variety of contexts can be found for generated programs, whenever the
same query needs to be run against documents conforming to the same schema
multiple times. For example, web services commonly involve extraction of in-
formation from XML databases. Such extractions can be expressed according
to previously well-defined selection functions in the XPath language and are
likely to be performed several times (imagine a regular PHP website based on
a XML database). Software maintenance is also strictly related to generation
of tests and summary reports on data stored in XML databases. Tests and
reports tend to be executed on a regular basis. Any other contexts in which
query-specialization may play a role involve application integration relying on
data retrieval from XML databases.

In Section 2, we present some concrete examples to motivate our approach.
In Section 3, we briefly recapitulate previous work on two-level type-safe rep-
resentation of data and selectors. In Section 4, we present the formalization
of XPath axis and some of the algebraic laws for specialization into point-free

2

imdb

movie actor

name played

role awardtitleyear

box_officereviewdirectortitle

valuecountry

* *

*

*
year

date

?

* *

Figure 1: A movie database schema, inspired by IMDb (http://www.imdb.
com/).

The following grammar describes a very resumed XPath syntax:

xpath := expr (’,’ expr) ?
expr := unionexpr | numliteral
unionexpr := expr ’union’ expr
location := ’/’ ? (step (’/’ step)∗)
step := axis ’::’ test pred ∗
axis := ’child’ | ’descendant’ | ’self’ | ’descendant-or-self’
test := name | ’*’ | ’text()’ | ’node()’
pred := ’[’ xpath ’]’
name := any document tag

The full syntax is available in the XPath language reference [30]. Abbrevi-
ated syntax is available and heavily used where for instance // expands to
/descendant-or-self::node()/ and an element name without preceding axis
modifier expands to /child::name.

Figure 2: Summary of XPath.

structure-sensitive programs. In Section 5 and Section 6, we explain in detail
our implementation and show how the front-end can be used for tackling dif-
ferent scenarios. Later, in Section 7, we perform some tests on our tool and
comparisons with other XPath processors and conclude about the efficiency and
applicability of the technologies and approach used. We end with a discussion
of related work (Section 8) and concluding remarks (Section 9).

2 Motivating Example

In this section, we will study some query examples for different degrees of
structure-shyness. They will be specialized against the XML Schema in Fig-
ure 1 representing documents that hold information about movies and actors.

3

http://www.imdb.com/
http://www.imdb.com/

Retrieve all movie actors from the document

//movie/actor

This query asks to retrieve actor every elements that are direct children of
movie elements appearing at any depth in the document’s tree. However, we
won’t study this query in deeper detail as it is resumed to void, because there is
no actor element under movie, once the actor is only defined at the same depth
(Figure 1).

Retrieve all titles from the document

//title

This query selects all title elements at arbitrary depth, and works in a very
similar way to the previous one. The desc − or − self XPath axis is structure-
shy, in the sense that it does not specifies the full tree path to reach title el-
ements from the document’s imdb root element. From the user’s perspective,
structure-shyness helps simplify queries, specially when the user has notion of
the schema structure. The queries tend to become more understandable, con-
cise, and adaptative to other schemas. However, we would like to optimize the
query by improving it’s structure-sensitivity to the schema. Knowing that title
elements can occur under movie and played elements, we can derive:

imdb/(movie/title union actor/played/title)

Retrieve the first movie title from the document

(//movie/title)[1]

This query extends is a special case of the previous one. In order to choose
only title elements child of movies, we have to specify that requirement. There
is also an index for selecting the first element of all title elements inside movie
elements.

In the optimized form, since we know that all movie elements must have a
title child, the index can be factored out into the movie selection:

(imdb/movie)[1]/title

Note that this example query is completely different from having:

//movie/title[1]

In this second form, the query indexes the first element of all title elements (it
doesn’t enforce titles inside movies for the index). Since only one title appears
at once, the index can be removed and the query can be specialized further to:

imdb/movie/title

4

Retrieve the third element from merging movie titles and reviews

(//movie/(title union review))[3]

This query can be constructed from the previous example, by changing the
selection to both title and review elements, inside movie elements. The index
was changed from the first element to the third. Merging the results means
applying the set union over the result sets (title

⋃
review). XPath’s result sets

have order, what means that all title tags will appear after review tags. By
indexing the final result, we are asking for a title if there are more than 2 title
elements defined, or for a review otherwise.

Retrieve all directors for movies with year and box office date

//movie[year,box_office/date]/director

This last example uses a filtering predicate. The notation is similar to in-
dexes, but since it doesn’t receive a numeric expression, it is evaluated as the
non-empty condition: if the query returns at least one element, then it succeeds,
otherwise it fails.

The exact meaning of the query is to select every director elements child of
movie elements, for the movies that have non-empty year and box office’s date
childs. As we can check in the schema for Figure 1, there must always be an
year element for a title and a list of box office. As monoids, lists allow empty
lists, so we can’t simplify it in the query. For each box office element, the date
element is optional, reason for which it can’t be simplified as well.

The optimized query for this example is as follows:

imdb/movie[box_office/date]/director

In the following sections we will demonstrate how these transformations can
be achieved through algebraic rewriting of XPath axis representations. This
examples will be revisited in Section 5.

3 Type-safe Representation of Types and Queries

The various algebraic laws for query transformation can be harnesses into a
type-safe, type-directed rewriting system for generalization, specialization and
optimization of structure-shy programs. In this section, we present a mean of
guaranteeing type-safeness in the representation of types, values and functions
over them.

To ensure type-safety in our rewire system, a universal type representation
of types does not suffice. Some rewrite laws make explicit reference to types,
and therefore enforce their own type definition. To achieve this, we will need
type-representations at the value level, which can be provided by using gener-
alized algebraic data types (GADTs), a powerfull generalization of Haskell data

5

types [28]. For all parameterized data Type a, their inhabitants must be repre-
sentations of type a [19].

data Type a where
Int :: Type Int
Bool :: Type Bool
String :: Type String
List :: Type a → Type [a]
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Func :: Type a → Type b → Type (a → b)
Data :: String → EP a b → Type b → Type a
? ::Type a → Type ?
...

data ? where ? ::Type a → a → ?

Notice that, in this declaration, the type a that parameterizes Type a is
restricted differently in each constructor. This makes the difference between a
GADT and a common Haskell 98 parameterized datatype, where the parame-
ters in the result type must always be unrestricted in all constructors. In the
definition of a Type a, the GADT allows data constructors to return types of
values other than the original type of the value they were given, and the param-
eter a of each constructor is restricted exactly to the type that the constructor
represents.

Given a ground type a it is possible to use the Haskell type system to infer
its representation. We can define a class with all representable types.

class Typeable a where typeof :: Type a
Most instances of this class are trivially defined. For example, for integers and
functions we have

instance Typeable Int where typeof = Int
instance (Typeable a,Typeable b)⇒ Typeable (a → b)

where typeof = Func typeof typeof
New data types can be easily defined using the Data constructor. For example,
the user-defined Haskell datatypes that represent our schema of Figure 1 can be
represented in Haskell by the user-defined datatypes shown in Figure 3.

In the Data constructor, you can notice that it requires a value of type
Ep a b, where Type b is the encapsulated type and Type a the resulting type
for the newly defined datatype. Data works as a wrapper for a type (similar
to a XML node tag), where Ep is an embedding-projection pair that converts
values from the user-defined type into values of the isomorphic type. The type
a is expected to be the sum-of-products representation of the user-defined type
a.

Here, Typeable instances are assumed for Movie and Actor . The instance
for Imdb is defined on top of instances for it’s subtypes.

instance Typeable Imdb where
typeof = Data "imdb" (EP unImdb Imdb) typeof

6

newtype Imdb = Imdb{unImdb :: ([Movie], [Actor])}
newtype Movie = Movie{unMovie :: (Title, (Year , ([Review],

(Director , [BoxOffice]))))}
newtype Actor = Actor{unActor :: (Name, [Played])}
...

Here, we represent XML element tags from the schema’s type definition from
Figure 1 with Haskell data types. Each newtype defines a XML node, with
it’s own markup tag. For each node, a reverse method is provided for untagging
values of it’s type.

Figure 3: Haskell datatypes for the schema of Figure 1.

In XPath, combinators enjoy a very relaxed typing. Selection functions are
implemented as aggregation functions for sets of types, but there is no distinction
in grouping properties for values of different types. For this reason, sets of
values don’t have a type distinction, what can not be achieved in our type-
safe representation. In order to overcome this issue, we defined a ? constructor
which hides a type inside it’s definition. This way, it allows us to define Type a
instances without being constrained to a specific type, but that type is not lost,
since it is encapsulated inside the ?.

Analogously to types, we need to represent functions in the same type-safe
manner. For this purpose, we resort again to a GADT, allowing function’s type-
checking for free: impossible or incorrect compositions of functions are checked
against haskell’s native type system and rejected. Constructors can be defined
for different approaches like point-free, strategic or Xpath combinators. Such
constructors are explained in [7].

Remembering some of the most important point-free combinators:
data F f where

Id :: F (a→a)
Comp :: Type b → F (b→c)→ F (a→b)→ F (a→c)
Fst :: F ((a, b)→a)
Snd :: F ((a, b)→b)
(4) :: F (a→b)→ F (a→c)→ F (a→(b, c))
Plus :: Monoid a → F ((a, a)→a)
unData :: F (a→b)
MkAny :: F (a→?)
Fun :: String → (a→b)→ F (a→b)
Wrap :: F (a→[a])
...

In this report we will focus on the XPath combinators required to implement
XPath’s most relevant features:

type Q r = ∀a . Type a → a → r

7

data F f where
...
Index :: Int→F ([a]→ [a])
...
Self :: F (Q [?])
Child :: F (Q [?])
Descendant :: F (Q [?])
(//) :: F (Q [?])
(@) :: F (Q [?])
Name :: String → F (Q [?])
(/) :: F (Q [?])→F (Q r)→F (Q r)
(?) :: F (Q [?])→F (Q Bool)→F (Q [?])
(I) :: Type a→F (Q a)→F (a→b)→ F (Q b)
(N) :: F (Q a)→F (Q b)→F (Q (a, b))
NonEmpty :: F (Q Bool)

There are two classes of generic combinators: type-unifying (queries), are
defined as overloaded functions that return a result for a specific type; and type-
preserving (traversals), that preserve the type of the result. XPath combinators
are implemented as strategic type-unifying combinators. They were initially
defined in terms of strategic combinators by Lämmel [23].

The Index combinator is used to filter certain elements over a result set, and
is encoded as point-free combinator, since it is more generic than XPath context
and may be applied in a normal point-free composition. In XPath, it receives a
boolean predicate as an argument, but has been simplified in our approach to
receive a single integer for the filtered element. This makes it easier to write
simplification rules over this combinators, but is likely to change in a future
version.

The I combinator defines composition of Xpath combinators with point-free
combinators. This is a very important feature for guaranteeing the system’s
extensibility, since it allows extending the supported XPath features by compo-
sition with new point-free combinators. A practical example for this constructor
is the query:

imdb[2]

Since the Index constructor is defined as a point-free function, we might
compose it with the XPath axes, giving:

Child/imdb I (Index 2)
The N combinator lifts the semantics of a point-free 4 into XPath combi-

nators. It allows a simple way of defining tuples of XPath combinators and is
very usefull essentially for binary operators. Imagine an Xpath constructor that
allows the definition of constant values:

data F where
...
Constant :: a→F (Q a)
...

8

We could now create the constant XPath expression:

1+2

and convert it to our combinators:
(Constant 1NConstant 2) I (Plus mint) I (Comp Wrap MkAny)

Here, the sum of two numbers is performed by the monoid for integers. The
result integer needs to be wrapped into a [?] for the type of the XPath result
set to be valid.

If we would want to compose the last two examples

imdb[1+1]

we could preprocess the sum into a regular integer, since it returns a fixed
value, or we could lift the Index combinator into a XPath combinator itself

data F where
...
Index :: F (Q Int)→F (Q [a])→F (Q [a])
...

(Constant 1NConstant 1) I (Plus mint) Index (Child/imdb)
At last, the @ combinator maps the XPath attribute axis, which returns all

attributes of the actual element. It works on a similar way to the Xpath child
axis (Child). An example query for this feature would be

imdb/attribute::version

encoded as
Child/imdb/Child/@/version

4 Point-free query calculus and rewriting

The developed rewrite system is defined as a composition of strategies, that are
themselves smaller rewrite systems, in a similar approach to the F combinators
presented in Section 3. Strategies for this rewrite system are type-preserving,
and can be encoded in Haskell as monadic functions of the following type:

type Rule = ∀f . Type f → F f → RewriteM (F f)
Note that a Rule type receives an explicit argument type f , allowing rules

to make type t-based rewriting decisions.
The RewriteM monad extends rules with the capability to store a proof trace

during rewriting, including intermediate results and names of applied rules, and
induces partiality on the transformation, since it has an instance on MonadPlus.

Now that the rewrite system’s reasoning is explained, we can define any
type-preserving strategies for transformation of programs. For this report, we

9

index m ◦ index n = index m
if n ≡ 1

index m ◦ index n = zero, otherwise

 index -Comp

index n ◦map f = map f ◦ index n index -Map
index n ◦ zero = zero index -Zero

index 1 ◦ wrap = wrap
index n ◦ wrap = zero, if n > 0
index n ◦ f = zero, if n < 1

 index -DeF

cond p f g = f , if f ≡ g cond -DeF
cond b f (cond p g h) = cond p (cond b f g) (cond b f h) cond -Fusion1

cond p f g ◦ h = cond (p ◦ h) (f ◦ h) (g ◦ h) cond -Fusion2
(f∇g) ◦ i1 = f
(f∇g) ◦ i2 = g
h ◦ (f∇g) ◦ i1 = h ◦ f
h ◦ (f∇g) ◦ i2 = h ◦ g

 sum-Cancel

i1∇i2 = id
(i1 + i2) = id

}
sum-RefleX

f ◦ (g∇h) = (f ◦ g)∇(f ◦ h) sum-Fusion
(k1 ◦ i1)∇(k2 ◦ i2) = k1 , if k1 ≡ k2 sum-EtA

f + g = (i1 ◦ f)∇(i2 ◦ g) sum-DeF

Figure 4: Our added laws for point-free program calculation.

will focus on optimizing XPath structure-shy queries into point-free structure-
sensitive functions.

Our strategy is defined as specialization of the XPath strategic combinators
into point-free functional programs.

In order to guarantee that the resulting function is on the canonical form,
this means, does not contain any redundancy, a powerfull set of laws has to be
applied. The first step is to convert all the XPath combinators into strategic
combinators. Then, all the possible specializations are applied over the strategic
program. At last, the strategic program is converted into a point-free expression,
that can be simplified and refined into the result optimized function.

All this rewriting work is performed by the the optimizexp function, where
reduce evaluates the RewriteM monad and xpath applies exhaustively all the
presented rules:

optimizexp :: Typeable b ⇒ Type a → F (Q b)→ F (a → b)
optimizexp a q = reduce xpath (Func a typeof) (ApplyQ a q)

Despite not being the purpose of this work, optimized point-free queries
can still be converted into a XPath structure-sensitive equivalent representation
(pf2xp).

10

apQA (q I f) = f ◦ (apQA q) I-Apply
aNb = mkQ? (apQ? a4apQ? b) N-DeF

@/name n = child/(name ’@’ : n) @-Name

Figure 5: Our added laws for XPath strategic program calculation.

5 One-level transformation

Now that we have explained how our rewrite system works, we will demonstrate
how to apply the specialization to each of the examples initially presented.

The first step is to parse the schema into the Type a representation:
> DynT t ← xsd2type "../examples/imdbNoTVDir.xsd"

After that we have to, for each query, parse the XPath query into the F (Q ?)
representation.

> q1 ← readXPath "//movie/actor" >>= return ◦ xPath2PF
(descself / ((child / movie) / (child / actor)))

> q2 ← readXPath "//title" >>= return ◦ xPath2PF
(descself / (child / title))

> q3 ← readXPath "(//movie/title)[1]" >>= return ◦ xPath2PF
((descself / ((child / movie) / (child / title))) | > index 1)

> q4 ← readXPath "(//movie/(title union review))[3]" >>=
return ◦ xPath2PF ((descself / ((child / movie) /
((union (child / title)) (child / review)))) | > index 3)

> q5 ← readXPath "//movie[year,box_office/date]/director" >>=
return ◦ xPath2PF (descself / (((child / movie) ? (((union
(child / year))((child / box office) / (child / date)))
/ nonempty)) / (child / director)))

Finally, we call the optimizexp′ strategy (similar to optimizexp but prints
reductions), responsible for converting XPath structure-shy queries into point-
free structure-sensitive functions (F (a→[?])).

For the first example, as expected, the query was reduced to a void path,
and always returns the zero monoid for lists.

> let pf1 = optimizexp′ t q1
1250 reductions
listnil

For the second example, the query has been divided into two expressions,
one for each possible occurrence of the tag title in the document. Note that the
outer listcat is concatenating the result of these two expressions.

> let pf2 = optimizexp′ t q2
1090 reductions
(listcat ◦ (((listmap (mkDyn ◦ (fst ◦ unEmovie))) ◦ (fst ◦ unEimdb))4(concat ◦ ((listmap

11

((listmap (mkDyn ◦ (fst ◦ unEplayed))) ◦ (snd ◦ unEactor))) ◦ (snd ◦ unEimdb)))))
For the third example, the index gets applied to the movie result set. The

first title is directly extracted from the first movie in the document.
> let pf3 = optimizexp′ t q3
1250 reductions
((listmap (mkDyn ◦ (fst ◦ unEmovie))) ◦ (index 1 ◦ (fst ◦ unEimdb)))

For the fourth query, not much can be optimized, in terms of XPath struc-
ture. The point-free function has exactly the same semantics as the XPath
expression.

> let pf4 = optimizexp′ t q4
1331 reductions
(index 3 ◦ (concat ◦ ((listmap (listcat ◦ ((wrap ◦ (mkDyn ◦ (fst ◦ unEmovie)))4
((listmap mkDyn) ◦ (fst ◦ (snd ◦ (snd ◦ unEmovie))))))) ◦ (fst ◦ unEimdb))))

For the latter example, the most relevant difference is in the encoding of the
NonEmpty combinator. It is expressed as a conditional test (cond ::(a→Bool)→
(a→b) → (a→b)→a→b). The cond operator is applied to a list of elements.
The guard condition is implemented as a or ::[Bool]→Bool , and for each element
of the list is returned a True constant value. Once the list has more that one
value, the Haskell lazy evaluator returns success, meaning that there is at least
one child obeying to the given description. For each movie, a cond is applied to
the list of box office childs. Repeatedly, for each existant box office is applied a
cond to test wether the optional date exists or not.

Remember that the year element always exists under movie and was simpli-
fied

> let pf5 = optimizexp′ t q5
1588 reductions
(concat ◦ ((listmap (((cond (or ◦ (listcat ◦ ((wrap ◦ true)4(concat ◦ ((listmap (((wrap ◦ true)
∇listnil) ◦ (fst ◦ unEbox office))) ◦ (snd ◦ (snd ◦ (snd ◦ (snd ◦ unEmovie)))))))))) (wrap ◦
(mkDyn ◦ (fst ◦ (snd ◦ (snd ◦ (snd ◦ unEmovie))))))) listnil)) ◦ (fst ◦ unEimdb)))

If we want to generate an Haskell module with the query and corresponding
data types for the schema, we need to serialize the Type a structure, because
there can be no two data types with the same name, and the schema might
contain elements with the same tag but different types.

> let t ′ = serializeTypeSmart t
For last, we output the generated code for the desired query (pf1). The

boolean argument sets if we allow laziness in parsing or not.
> prettyPrint (type2HsModule True t ′ pf1)

For a more detailed explanation of the rules applied during optimization,
please refer to [7].

12

Figure 6: Structure of the repository (http://haskell.di.uminho.pt/repos/
darcsweb.cgi?r=Two%20Level%20Transformation;a=summary).

6 Front-end

This project inherits some of the theory and implementation from the previous
2LT project[2] and extends it with a new front-end, one-level rewrite rules, and
an XPath parser. For this reason, the original distribution has been refactored
into transformation, parsing and front-end modules, with all of them sharing a
root module containing the GADT representation of types and queries, along
with their Spine generic mappings.

The relations between the modules define a partially ordered set, shown in
Figure 6

Architecture The final solution is to be used in three phases: generation
of the optimized query as an Haskell program; followed by compilation of the
generated program; and execution with one or more XML argument files. There
is also the option to run all the three phases at once, by evaluating the generated
PF expression automatically.

The generation of the optimized queries represents the front-end’s kernel,
containing functions for parsing, convertion into our type-safe representation
and application of transformation rules. The result of applying the optimization
strategy is a point-free Haskell program, that can be outputted into a file for
later compilation (Figure 8).

Since we process several XML languages, the front-end functions are com-
bined with parsers and pretty-printers for XML, XSD and XPath abstract syn-
tax trees. The conversion to our type-safe representation, XML and XSD parsers
in use were inherited from the 2LT project [2]: for XML we use the HaXml
parser and printer [1] and for XSD we use the XML Schema instances from the
XsdMetz tool [29] with some modifications, which in turn uses HaXml (XML
Schemas are themselves XML files). In order to support lazy parsing, we have
upgraded HaXml to development version 1.17, enforcing the conversion of XML
Schema instances into the parser combinators technique. The Xpath parser
and pretty-printer were hand-crafted and implemented with the fast combina-

13

http://haskell.di.uminho.pt/repos/darcsweb.cgi?r=Two%20Level%20Transformation;a=summary
http://haskell.di.uminho.pt/repos/darcsweb.cgi?r=Two%20Level%20Transformation;a=summary

Usage: xpto [OPTION...]

-h --help Show usage info
-i XML --input=XML Input xml files
-x XSD --xsd=XSD Input schema file
-s Haskell --source=Haskell Input Haskell source file
-o FILE --output=FILE Output file (default: stdout)
-q XPATH --xpath=XPATH Input xpath query.
-v --validate Schema validation on

Figure 7: Usage options for the xpto demo program

XML
Schema

(.xsd)

Xpath
Expression

.xsd.xsdXML
files

(.xml)

XSD
parser and
converter

XPTO
Kernel

Haskell
Module

(.hs)

XPath
parser and
converter

F (GQ *)

Type a

Parse Optimize

Evaluate

Generate Compile Execute

F (a → [*])

F (a → [*]) ghc

XML Result
Set ([*])

XML
parser

and
converter

XML Result
Set ([*])

Executable

a

XML
parser

and
converter

.xsd.xsdXML
files

(.xml)

Evaluate

a

Figure 8: Architecture for our solution

tor parser library Parsec [25]. They are XPath 2.0 compliant and support the
full specification [30]. There was also written a extended to abbreviate syntax
converter.

Laziness XML parsing is the most expensive operation in XPath query pro-
cessing, due to the great amounts of data frequently stored in such file databases.
For this reason, we should avoid parsing unnecessary element nodes. Haskell
lazy evaluation addresses this problem, by delaying term evaluation until it’s
result is known to be needed, leading to potential improvements on execution
time. By matching the Xpath query against to the XSD schema definition,
properties for order, repetition and existence of elements can be inferred. This

14

knowledge, essential to our strategy, helps identifying and selecting only the de-
sired nodes for the query and extends the lazy parser with the ability to stop at
the last selected node’s position in the input file. Note that, however, allowing
laziness in parsing compromises validation of the full document, but also makes
it less sensitive to possible errors at greater depth.

There are plenty of examples where laziness would improve dramatically the
parsing times. The most basic case is when the query doesn’t conform to the
schema. In such a case the return set will be empty, without the need to even
parse the XML input document.

Any other example is when the query only selects elements from the begin-
ning of the XML document, which is the case of the motivation example

//movie/title[1]

In this case, this query returns the title of the first movie in the XML
database which, according to the schema, must be the first child element of
the root element imdb.

FrontEndXpto class The front-end should be responsible for converting
parser structures into type-safe context-dependant data types. The following
class captures the pattern behind this scenario and generalises it for any parsed
query matching a two-level structure. The Maybe monad indicates the partiality
of the conversions.

type Query a = F (a → [?])
class FrontEndXpto t v q | t → v , v → t , t → q , q → t where

parsetype :: t → Maybe DynType
printtype :: Type a → Maybe t
parsevalue :: Bool → Type a → v → Maybe a
printvalue :: Type a → a → Maybe v
parsequery :: Type a → q → Maybe (Query a)
printquery :: Query a → Maybe q

instance (FrontEndXpto Schema (Document Posn) XPath HsModule) where ...

The initial class methods, over type and values, refer to the original FrontEnd
class as defined in [2]. The boolean argument present in the parsevalue function
consists on a switch for controlling document validation. In other words, parsing
and further conversion laziness cannot be activated if document validation is a
requirement.

In this tool, parsequery composes the conversion of the query with the opti-
mization strategy and returns the optimized query in point-free fashion.

Despite having a single instance defined for the the context of XPath query
optimization, different instances could be defined for other query languages.
For instance, it would be perfectly reasonable to create an instance for the
SQL language, where queries would correspond to SELECT statements over a

15

database, and code would be PL/SQL code encapsulating a SELECT query and
possibly appending some extra context behaviours to it.

We can reuse the interface of the FrontEnd class to program overloaded
functions that represent the logic of our tool, and moreover, evaluate or gen-
erate source code for queries, on top of external abstract syntaxes. Although
they could be generically implemented, both functions perform very particular
operations, bound to the context of this work. The Bool argument indicates
wether the operations assume laziness or require full document validation.

The eval function presented above wraps all the specialization and opti-
mization strategy contained in evalOptPF into for a FrontEnd instance. The
evaluation is implemented for the F function representation itself.

eval :: (FrontEndXpto t v q)⇒ Bool → t → v → q → Maybe [?]
eval b t v q = do

DynT pT ← parsetype t
pV ← parsevalue b pT v
pQ ← parsequery pT q
return (evalOptPF pT pQ pV)

The gen function generates and outputs a valid Haskell program representing
the Type a and Query a instances, created from their FrontEnd parameterized
syntax trees.

Some of the generated code comes “for free“ from the Spine mapping for
Type a constructors. Spines allow performing generic traversals over types,
including show functions. We use this Spine instances to generate valid Haskell
representations of types. Queries, optimized to point-free functions, also have an
associate Type declaration and can be pretty-printed under the same technique.

In the generated module, types are defined using Haskell’s newtype. All
of this would work using a data declaration instead, but the data declaration
incurs extra overhead in the representation of values for the declared type. The
use of newtype avoids the extra level of indirection (caused by laziness) that
the data declaration would introduce.

For each type is defined a Typeable instance and a mapping function over
values for those type. Typeable instances enable the parser to derive Type a
declarations natively for Haskell defined types.

All this code is wrapped into an instance of Haskell’s language syntax module
and can be pretty-printed into a output file.

gen :: (FrontEndXpto t v q)⇒ Bool → t → q → Maybe HsModule
gen b t q = do

DynT pT ← parsetype t
pQ ← parsequery pT q
return (type2HsModule b pT pQ)

16

7 Tests and Benchmarking

In this section we discuss the results of comparing the developed front-end
against Saxon Schema-Aware, one of the most popular and fastest XPath pro-
cessors in the market.

Figure 9: Comparison tests between our tool and Saxon SA
.

Benchmark and profiling tests were run for all the examples. For testing,
GHC version 6.6 with optimization flag -O2 has been used. The Haskell XML
parser used was HaXml development version 1.17. Here, we show the results of

17

Figure 10: Profiling times for our tool and Saxon SA compiled queries
.

benchmarking all queries and the profiling for one of them1.

By analysis of the results, we can see that Saxon has a reasonably high
starting time of around 0.80s for all the queries. However, it proves to be very
efficient in general. Parsing time has a very good linear relational with the XML
database size, and execution times are almost constant for queries with different
features.

The results for our tool are much more complex. For inconsistent queries
that are optimized to a void path, such as the first example (Section 2), Haskell’s
lazy evaluator doesn’t require the input XML document to be parsed and the
total time is always 0s. On the other side, Saxon always parses the input XML
file independently on the query, since it has optimistic algorithms for evaluating
XPath queries, but doesn’t refine the queries before evaluation.

For valid XPath queries that doesn’t require evaluating the whole document,
lazy parsing proves to make a significant difference, dependant on the relative
position of the queried elements in the document. The proof for this property
are examples 3 (Section 2) and 4 (Section 2), where indexing selects elements
in starting positions of the input document and queries take both 0s for any
database size.

For examples 2 (Section 2) and 5 (Section 2), lazy parsing still performs
significant improvements, but Saxon is much faster for greater database sizes in
both cases.

Concluding, despite the lack of optimizations and specializations, Saxon SA
proves to be faster than our implementation and has better scalability. Our

1The complete profiling data, can be obtain at our darcs repository

18

compiled programs, although very slow in XML parsing, are instantaneous for
smaller files or for queries that allow high laziness. Since parsing times are
responsible for > 90% of the total time, we can still conclude that our tool is
still useful, showing interesting results, and should be further develop.

Despite the great dependence on parsing times, our experimental system in
the Haskell functional language can compete with Saxon SA, an already very
optimized library for Java, a fast and very optimized language. The most rele-
vant feature for determining this theory success is the precise cost of evaluating
an XPath query in relation to the query’s complexity. The rewrite system and
the front-end can still be greatly improved, by refining transformation rules and
internal representations.

We have studied the efficiency of our implementation, specially in relation
to the XML database size. More theoretical tests should be done in the near
future, inspired on Gottlob et al continuous study on the precise complexity of
Xpath query processing [17] [16] [15].

8 Related work

Type-directed partial evaluation Partial evaluation is a technique for spe-
cializing programs with knownledge of some of it’s input data. It can be seen as
a special case of program transformation, but emphasizes full automation and
generation of program generators as well as transformation of single programs.
Further, it is adopted by compilers and interpreters and gives insight into the
properties of programming languages themselves.

Danvy [8] presents a type-directed partial evaluator backed on typed lambda-
calculus. More recently, Ens-Lyon [11] has published an implementation inspired
on Danvy’s concept. Type-directed partial evaluation uses no symbolic evalu-
ation for specialization, and naturally processes static computational effects.
Therefore, source programs must be closed and monomorphically typeable.

Our rewrite system is somehow similar to type-directed partial evaluation in
the sense that we perform optimizations on queries, based on their composite
type definition and preprocess their structure-shyness by partially evaluating
generic traversals. By generating specialized and optimized programs, it resem-
bles the effort of partial evaluation in program optimization and compilation.

XML algebras Through years, many algebras for XML queries have been
formulated, either as independent processors, either for optimization of standard
algebras (XPath and XQuery). The most relevant for our paper are XML query
optimization algebras, from which we chose the PAT [3] and XAL [12] algebras.
For both, algebraic equivalences can be conveniently expressed and grouped into
a transformation system for query optimization. A large set of equivalences and
corresponding rules are presented.

PAT-algebra expressions return node sets of a single static type. Optimiza-
tion rules exploit schema information, increase the structure-shyness of queries
and introduce structure-indices to short-cut navigation.

19

XAL algebra resides on the notion of collection. Operators are classified in
three clusters, being the two most relevant ones extraction operators (select the
desired information from XML documents) and construction operators (build
new XML documents from extracted data). Optimizations are implemented for
extraction operators and include monad laws and generalizations of relational
laws to an object algebra context.

Our model of XPath, using strategy combinators and dynamic types, is
more faithful, since it doesn’t offer a limited set of axes but allows arbitrary
functions and, more importantly, is completely extensible to non-XPath queries.
It is applicable to any hierarchical data structure and eases conversions between
structure-shy and structure-sensitive programs. One example of this is that we
have the PAT-algebra combinators and rules encoded in our system.

Saxon compiled queries Kay is the creator of Saxon [20], a very popular
XSLT and XQuery Processor that claims an important role on XML processing
over Java and .NET. Since it’s last version, Saxon Schema-Aware features direct
compilation of XQuery queries (and ,consequently, XPath) into Java source
code, reducing execution times.

The main difference to our strategy is in the notion of schema-aware opti-
mizations. Saxon improves execution times mainly by removing the overhead
of parsing the XPath query and performing some optimizations over it without
schema-awareness [21], what tells that these optimizations are mostly related to
java code and algorithmic optimizations. Schema-awareness implies validating
the input and output documents against schema’s type definition, what repre-
sents a cost in efficiency, compared to a non-schema-validating scenario.

In our approach, schema-awareness not only allows XML validation, but
most of all consists on the specialization of queries according to the schema
definition. The final result is a straightforward selection function with a built-in
type representation, against which the input XML document is parsed.

Being the most similar to ours, with the same goals, this approach represents
an important comparison reference, relevant in the testing of our solution and
final conclusions about efficiency and usability.

Xpath core language Genevès et al [14] propose a method for normalizing
XML queries into a minimal “core“ language, as specified in the XPath/XQuery
formal semantics [9]. This translation is achieved through a three-staged ap-
proach. The first step is to normalize the expression into a minimal but fully
expressive “XPath core“ expression, before replacing all the context position
references for equivalents computed from the context node. At last, steps in-
volving reverse axis are converted to steps using the corresponding forward
axis [27]. Normalized XPath queries in the “core“ language belong to a state-
less forward-only subset, and therefore, are more straightforward and optimized
queries.

Although not formally defined, this approach addresses the possibility to
transform XPath queries into simpler and faster programs, preserving their se-

20

mantics. Such normalizations may inspire new rules for our model, for example,
avoid evaluating backward axis by converting them to the most similar forward
axis representation.

Logic-based Xpath Genevés et al [13] describe a logic-based optimization
system for XPath queries. Optimizations are performed by static analysis on
the containment relations inherent to the XML tree model, at syntactic level. A
containment relation p1 6 p2 holds true when, for a node t, the set of nodes se-
lected by p1(t) is included in the set by p2(t). Rules are provided for redundancy
elimination, that handle union and eliminate qualifier conditions induced nat-
urally in the path or by composition, and for void path elimination, by finding
implicit contradictions in the path expressions.

Our rewriting system follows a completely different approach. Specializa-
tion is performed at the semantic level, taking in account the structural and
semantic connections described in the schema. Although their system proposes
to be universal, possibly embedded in any XPath engine, we tackle optimiza-
tion through specialization into Haskell source code. The generated code can be
seen as a processor for a specific query in a specific schema, what allows native
schema-validation of input XML documents.

Such behaviour, schema-awareness and semantic integration, can be useful
for exploiting schema and ontology hierarchies in XPath queries.

In our case, void path detection comes for free by matching the query against
the schema definition.

Coupled transformations Previously, we have implemented a front-end for
performing format evolution and data mappings [2], based on a type-safe, type-
changing strategic rewrite system for two-level transformations [4]. In [6], this
system has been extended with transformation of corresponding data processing
programs. Format evolutions require associated migration functions for coupled
values. Programs over the original type are then composed with these migra-
tion functions in order to create programs over the evolution. These resulting
point-free programs have an explicit reference to the intermediate type, and
can be optimized through generalization to structure-shy data processors by
[7]. Coupled transformations now also encompasses migration and mapping of
structure-shy data consumers and producers.

9 Concluding Remarks

9.1 Contributions

In this report, we discuss the practical application of our Haskell-based query
optimization system. In particular, we make these contributions to the 2LT
project:

21

1. We have created a complete XPath 2.0 parser, upgraded the old XML
Schema parser to HaXml 1.17 and adapted the old XML to Type conver-
sion modules for support of lazy parsing.

2. We have extended the program transformation kernel with rules for han-
dling XPath new combinators.

3. We embed the general transformation kernel into a XPath query trans-
formation framework, including a frontend for evaluating XPath queries
based on schema-validation and for automated generating of structure-
sensitive point-free programs.

4. We illustrate by example how the framework can be used to optimize
different queries.

5. We have improved the maintainability of the 2LT suite, by refactoring it’s
structure, upgrading all the code to GHC version 6.6 and creating a darcs
online repository that we maintain.

9.2 Future Work

Though already useful in practise, our approach suffers from various limitations
that we intend to overcome.

Further combinators and languages Although studies prove that people
tend not to use many Xpath 2.0 functionalities, and although our current so-
lution covers most of most used, it is still limited. New combinators should be
added, specially XPath native functions and operators in the form of point-free
combinators.

Actually, our rewrite system is directed to optimization of queries as selec-
tion functions. Adding support for XML transformations and evolutions under
XQuery or XSLT would prove the potentially of this approach in XML process-
ing.

Improve internal representations Actually, XSD schemas are represented
as instances of a generalized algebraic data type with basic constructors. How-
ever, many XML Schema constraints get lost in the conversion, such as type
restrictions. The existant Type representation should be extended in order to
support type constraints.

The actual representation of XML attributes is as a predefined prefix. At-
tributes don’t have a specific namespace and share element’s childhood with
other non-attribute nodes. This representation is no more than an assumption,
and should be formalized. One example for addressing this problem is with the
Child axis. It matches all the child nodes of a certain element, independently
of being attributes or not. This could lead to some loss in efficiency on the
combinator and, worst of all, if an user queries for a node that matches the
representation of an attribute with the constant prefix, he may fetch an element
that doesn’t exist but is in fact an attribute.

22

XML Parsing Parsing times represents the most significant share n the exe-
cution time of optimized queries. This is the most crucial aspect to be improved
in the near future, if we want this tool to have impact in current XML process-
ing techniques. Better parsing performance may be achieved by changing to the
Haskell XML Toolbox parser (http://www.fh-wedel.de/~si/HXmlToolbox/),
or by manually improving the actual HaXml version. Moreover, much of these
limitations are bound to the language itself, reason for which we are seriously
considering in mapping these type-safe structures, rewrite system and algebraic
laws into an object oriented-language, with much more efficient and elaborated
parsing libraries. This approach is not intended to replace the current Haskell
implementation.

Coupled transformations integration This project was born as an exten-
sion to provide our coupled transformations rewrite system with the ability to
refine not only data structures, but also migration functions for values bound
to those structures. In the same line of the previous work [7], the developed
program rewrite system could be adapted and linked with the two-level trans-
formation framework, in order to allow optimization of the migration functions.
Conversions between structure-shy and structure-sensitive are also applicable to
migration functions.

The addition of a strategy for optimization of SQL queries would provide
the two-level transformation framework with the ability to optimize transformed
queries specifically for the destination model. There are many literary resources
on approaches for optimization of relational queries.

Acknowledgments

Thanks to Alcino Cunha and Joost Visser for supervision, dedication and in-
spiring discussion about representation and transformation of XPath.

References

[1] HaXml 1.17. Haxml: Haskell and XML, 2006.

[2] Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser. Coupled
schema transformation and data: Conversion for xml and sql. In PADL
2007, pages 290–304. Springer-Verlag, LNCS 4085, February 2007.

[3] Dunren Che, Karl Aberer, and Tamer Özsu. Query optimization
in xml structured-document databases. The VLDB Journal, 15(3):263–289,
2006.

[4] A. Cunha, J.N. Oliveira, and J. Visser. Type-safe two-level data transfor-
mation. In J. Misra, T. Nipkow, and E. Sekerinski, editors, Proc. Formal
Methods, 14th Int. Symp. Formal Methods Europe, volume 4085 of LNCS,
pages 284–299. Springer, 2006.

23

http://www.fh-wedel.de/~si/HXmlToolbox/

[5] A. Cunha and J. Sousa Pinto. Point-free program transformation. Fundam.
Inform., 66(4):315–352, 2005.

[6] A. Cunha and J. Visser. Strongly typed rewriting for coupled software
transformation. In M. Fernandez and R. Lämmel, editors, Proc. 7th Int.
Workshop on Rule-Based Programming (RULE 2006), ENTCS. Elsevier,
2006. To appear.

[7] A. Cunha and J. Visser. Transformation of structure-shy programs: Ap-
plied to xpath queries and strategic functions. In ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation, 2006.

[8] Olivier Danvy. Type-directed partial evaluation. In POPL ’96: Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 242–257, New York, NY, USA, 1996. ACM Press.

[9] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler. Xquery 1.0 and xpath 2.0 formal semantics,
2002.

[10] R. Ennals and S. Jones. Optimistic evaluation: an adaptive evaluation
strategy for non-strict programs, 2003.

[11] Kristoffer Rose Ens-Lyon. Type-directed partial evaluation in haskell.

[12] Flavius Frasincar, Geert-Jan Houben, and Cristian Pau. Xal: an algebra for
xml query optimization. In ADC ’02: Proceedings of the 13th Australasian
database conference, pages 49–56, Darlinghurst, Australia, Australia, 2002.
Australian Computer Society, Inc.

[13] Pierre Genevés and Jean-Yves Vion-Dury. Logic-based xpath optimization.
In DocEng ’04: Proceedings of the 2004 ACM symposium on Document
engineering, pages 211–219, New York, NY, USA, 2004. ACM Press.

[14] Pierre GenevÃĺs and Kristoffer Rose. Compiling xpath into a state-less
forward-only subset. Technical report, IBM T. J. Watson Research Center,
2004.

[15] G. Gottlob, C. Koch, and R. Pichler. Xpath query evaluation: Improving
time and space efficiency, 2003.

[16] Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms
for processing xpath queries. ACM Trans. Database Syst., 30(2):444–491,
2005.

[17] Georg Gottlob, Christoph Koch, Reinhard Pichler, and Luc Segoufin. The
complexity of xpath query evaluation and xml typing. J. ACM, 52(2):284–
335, 2005.

24

[18] Sven Helmer, Carl-Christian Kanne, and Guido Moerkotte. Optimized
translation of xpath into algebraic expressions parameterized by programs
containing navigational primitives. In WISE ’02: Proceedings of the 3rd
International Conference on Web Information Systems Engineering, pages
215–224, Washington, DC, USA, 2002. IEEE Computer Society.

[19] R. Hinze, A. Löh, and B.C.d.S. Oliveira. ”Scrap your boilerplate” reloaded.
In M. Hagiya and P. Wadler, editors, Proc. Functional and Logic Program-
ming, 8th Int. Symp., volume 3945 of LNCS, pages 13–29. Springer, 2006.

[20] Michael Kay. Saxon: Anatomy of an xslt processor. In IBM developer-
Works, 2001.

[21] Michael Kay. Xslt and xpath optimization. In XML Europe, 2004.

[22] A. Kwong and M. Gertz. Schema-based optimization of xpath expressions,
2002.

[23] R. Lämmel. Scrap your boilerplate with XPath-like combinators, 15 July
2006. Draft, 6 pages, Accepted as short paper at POPL 2007.

[24] R. Lämmel, E. Visser, and J. Visser. Strategic programming meets adaptive
programming, 2003.

[25] Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combi-
nators for the real world. Technical Report UU-CS-2001-27, Department
of Computer Science, Universiteit Utrecht, 2001.

[26] Philippe Michiels. Xquery optimization. Technical report, University of
Antwerp, Belgium, 2003.

[27] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry. Xpath:
Looking forward. In EDBT ’02: Proceedings of the Worshops XMLDM,
MDDE, and YRWS on XML-Based Data Management and Multimedia
Engineering-Revised Papers, pages 109–127, London, UK, 2002. Springer-
Verlag.

[28] S. Peyton Jones, G. Washburn, and S. Weirich. Wobbly types: type infer-
ence for generalised algebraic data types. Technical Report MS-CIS-05-26,
Univ. of Pennsylvania, July 2004.

[29] Joost Visser. Structure metrics for xml schema. Technical report, Proceed-
ings of XATA 2006, 2006.

[30] W3C. XML path language (XPath) 2.0, W3C candidate recommendation,
2006.

25

A Generated (lazy) code for the (//movie/title) [1]
query

module Main where
import Type (Type (. .),Typeable (. .),EP (. .),Dynamic (. .))
import Text .XML.HaXml .Types (Document)
import XPathResult
import Pointless.Combinators
import Text .XML.HaXml .Posn
import PreludeXptoLazy
import Transform.XML.XMLtoTypeLazy (xml2values)
newtype Eimdb = Eimdb{unEimdb :: ([Emovie], [Eactor])}
instance Typeable Eimdb where

typeof = Data "imdb" (EP unEimdb Eimdb) typeof
instance Show Eimdb where

show (Eimdb a) = "Eimdb " ++ show a
mapEimdb ::

(([Emovie], [Eactor])→ ([Emovie], [Eactor]))→ Eimdb → Eimdb
mapEimdb f = Eimdb ◦ f ◦ unEimdb
newtype Emovie = Emovie{unEmovie ::

(Etitle, (Eyear , ([Ereview], (Edirector , [Ebox office]))))}
instance Typeable Emovie where

typeof = Data "movie" (EP unEmovie Emovie) typeof
instance Show Emovie where

show (Emovie a) = "Emovie " ++ show a
mapEmovie ::

((Etitle, (Eyear , ([Ereview], (Edirector , [Ebox office]))))→
(Etitle, (Eyear , ([Ereview], (Edirector , [Ebox office])))))
→ Emovie → Emovie

mapEmovie f = Emovie ◦ f ◦ unEmovie
newtype Etitle = Etitle{unEtitle :: String }
instance Typeable Etitle where

typeof = Data "title" (EP unEtitle Etitle) typeof
instance Show Etitle where

show (Etitle a) = "Etitle " ++ show a
mapEtitle :: (String → String)→ Etitle → Etitle
mapEtitle f = Etitle ◦ f ◦ unEtitle
newtype Eyear = Eyear{unEyear :: Int }
instance Typeable Eyear where

typeof = Data "year" (EP unEyear Eyear) typeof
instance Show Eyear where

26

show (Eyear a) = "Eyear " ++ show a
mapEyear :: (Int → Int)→ Eyear → Eyear
mapEyear f = Eyear ◦ f ◦ unEyear
newtype Ereview = Ereview{unEreview :: String }
instance Typeable Ereview where

typeof = Data "review" (EP unEreview Ereview) typeof
instance Show Ereview where

show (Ereview a) = "Ereview " ++ show a
mapEreview :: (String → String)→ Ereview → Ereview
mapEreview f = Ereview ◦ f ◦ unEreview
newtype Edirector = Edirector{unEdirector :: String }
instance Typeable Edirector where

typeof = Data "director" (EP unEdirector Edirector) typeof
instance Show Edirector where

show (Edirector a) = "Edirector " ++ show a
mapEdirector :: (String → String)→ Edirector → Edirector
mapEdirector f = Edirector ◦ f ◦ unEdirector
newtype Ebox office = Ebox office{unEbox office ::

(Either (Edate) (()), (Ecountry ,Evalue))}
instance Typeable Ebox office where

typeof = Data "box_office" (EP unEbox office Ebox office) typeof
instance Show Ebox office where

show (Ebox office a) = "Ebox_office " ++ show a
mapEbox office ::

((Either (Edate) (()), (Ecountry ,Evalue))→
(Either (Edate) (()), (Ecountry ,Evalue)))
→ Ebox office → Ebox office

mapEbox office f = Ebox office ◦ f ◦ unEbox office
newtype Edate = Edate{unEdate :: String }
instance Typeable Edate where

typeof = Data "date" (EP unEdate Edate) typeof
instance Show Edate where

show (Edate a) = "Edate " ++ show a
mapEdate :: (String → String)→ Edate → Edate
mapEdate f = Edate ◦ f ◦ unEdate
newtype Ecountry = Ecountry{unEcountry :: String }
instance Typeable Ecountry where

typeof = Data "country" (EP unEcountry Ecountry) typeof
instance Show Ecountry where

show (Ecountry a) = "Ecountry " ++ show a
mapEcountry :: (String → String)→ Ecountry → Ecountry

27

mapEcountry f = Ecountry ◦ f ◦ unEcountry
newtype Evalue = Evalue{unEvalue :: Int }
instance Typeable Evalue where

typeof = Data "value" (EP unEvalue Evalue) typeof
instance Show Evalue where

show (Evalue a) = "Evalue " ++ show a
mapEvalue :: (Int → Int)→ Evalue → Evalue
mapEvalue f = Evalue ◦ f ◦ unEvalue
newtype Eactor = Eactor{unEactor :: (Ename, [Eplayed])}
instance Typeable Eactor where

typeof = Data "actor" (EP unEactor Eactor) typeof
instance Show Eactor where

show (Eactor a) = "Eactor " ++ show a
mapEactor ::

((Ename, [Eplayed])→ (Ename, [Eplayed]))→ Eactor → Eactor
mapEactor f = Eactor ◦ f ◦ unEactor
newtype Ename = Ename{unEname :: String }
instance Typeable Ename where

typeof = Data "name" (EP unEname Ename) typeof
instance Show Ename where

show (Ename a) = "Ename " ++ show a
mapEname :: (String → String)→ Ename → Ename
mapEname f = Ename ◦ f ◦ unEname
newtype Eplayed = Eplayed{unEplayed ::

(Etitle, (Eyear , (Erole, [Eaward])))}
instance Typeable Eplayed where

typeof = Data "played" (EP unEplayed Eplayed) typeof
instance Show Eplayed where

show (Eplayed a) = "Eplayed " ++ show a
mapEplayed ::

((Etitle, (Eyear , (Erole, [Eaward])))→
(Etitle, (Eyear , (Erole, [Eaward]))))
→ Eplayed → Eplayed

mapEplayed f = Eplayed ◦ f ◦ unEplayed
newtype Erole = Erole{unErole :: String }
instance Typeable Erole where

typeof = Data "role" (EP unErole Erole) typeof
instance Show Erole where

show (Erole a) = "Erole " ++ show a
mapErole :: (String → String)→ Erole → Erole
mapErole f = Erole ◦ f ◦ unErole

28

newtype Eaward = Eaward{unEaward :: (Eaward name,Eresult)}
instance Typeable Eaward where

typeof = Data "award" (EP unEaward Eaward) typeof
instance Show Eaward where

show (Eaward a) = "Eaward " ++ show a
mapEaward ::

((Eaward name,Eresult)→ (Eaward name,Eresult))→
Eaward → Eaward

mapEaward f = Eaward ◦ f ◦ unEaward
newtype Eaward name = Eaward name{unEaward name :: String }
instance Typeable Eaward name where

typeof = Data "award_name" (EP unEaward name Eaward name) typeof
instance Show Eaward name where

show (Eaward name a) = "Eaward_name " ++ show a
mapEaward name :: (String → String)→ Eaward name → Eaward name
mapEaward name f = Eaward name ◦ f ◦ unEaward name
newtype Eresult = Eresult{unEresult :: String }
instance Typeable Eresult where

typeof = Data "result" (EP unEresult Eresult) typeof
instance Show Eresult where

show (Eresult a) = "Eresult " ++ show a
mapEresult :: (String → String)→ Eresult → Eresult
mapEresult f = Eresult ◦ f ◦ unEresult
parseEimdb :: Document Posn → Eimdb
parseEimdb = xml2values typeof
fXPath :: Eimdb → [Dynamic]
fXPath

= ((listmap (mkDyn ◦ (fst ◦ unEmovie))) ◦ (index 1 ◦ (fst ◦ unEimdb)))
main :: IO ()
main

= getXMLFile >>= xmlmparse >>=
sequence ◦map (putStrLn ◦ showResultSpace ◦ fXPath ◦ parseEimdb)

29

	Introduction
	Motivating Example
	Type-safe Representation of Types and Queries
	Point-free query calculus and rewriting
	One-level transformation
	Front-end
	Tests and Benchmarking
	Related work
	Concluding Remarks
	Contributions
	Future Work

	Generated (lazy) code for the (//movie/title)[1.5mu 11.5mu] query

