
A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems

Thomas L. Casavant

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Jon G. Kuhl

Department of Electrical and Computer Engineering
University of Iowa

Iowa City, Iow a

ABSTRACT

One measure of usefulness of a general-purpose distributed comput-
ing system is the system’s ability to provide a level of performance com-
mensurate to the degree of multiplicity of resources present in the system.
Many different approaches and metrics of performance have been pro-
posed in an attempt to achieve this goal in existing systems. In addition,
analogous problem formulations exist in other fields such as control the-
ory, operations research and production management. However, due to the
wide variety of approaches to this problem, it is difficult to meaningfully
compare different systems since there is no uniform means for qualita-
tively or quantitatively evaluating them. It is difficult to successfully build
upon existing work or identify areas worthy of additional effort without
some understanding of the relationships between past efforts. In this
paper, a taxonomy of approaches to the resource management problem is
presented in an attempt to provide a common terminology and classifica-
tion mechanism necessary in addressing this problem. The taxonomy,
while presented and discussed in terms of distributed scheduling, is also
applicable to most types of resource management. As an illustration of the
usefulness of the taxonomy an annotated bibliography is giv en which clas-
sifies a large number of distributed scheduling approaches according to the
taxonomy.

May 1, 1996



A Taxonomy of Scheduling in General-Purpose Distributed
Computing Systems

Thomas L. Casavant

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Jon G. Kuhl

Department of Electrical and Computer Engineering
University of Iowa

Iowa City, Iow a

1. Introduction

The study of distributed computing has grown to include a large range of applica-

tions[16, 17, 31, 32, 37, 54, 55]. However, at the core of all the efforts to exploit the

potential power of distributed computation are issues related to the management and allo-

cation of system resources relative to the computational load of the system. This is par-

ticularly true of attempts to construct large general-purpose multiprocessors [3, 8, 25,

26, 44, 45, 46, 50, 61, 67].

The notion that a loosely-coupled collection of processors could function as a more

powerful general-purpose computing facility has existed for quite some time. A large

body of work has focused on the problem of managing the resources of a system in such

a way as to effectively exploit this power. The result of this effort has been the proposal

of a variety of widely differing techniques and methodologies for distributed resource

management. Along with these competing proposals has come the inevitable prolifera-

tion of inconsistent and even contradictory terminology, as well as a number of slightly

differing problem formulations, assumptions etc. Thus, it is difficult to analyze the rela-

tive merits of alternative schemes in a meaningful fashion. It is also difficult to focus

common effort on approaches and areas of study which seem most likely to prove fruit-

ful.



- 2 -

This paper attempts to tie the area of distributed scheduling together under a com-

mon, uniform set of terminology. In addition, a taxonomy is given which allows the clas-

sification of distributed scheduling algorithms according to a reasonably small set of

salient features. This allows a convenient means of quickly describing the central aspects

of a particular approach, as well as a basis for comparison of commonly classified

schemes.

Earlier work has attempted to classify certain aspects of the scheduling problem. In

[9], Casey giv es the basis of a hierarchical categorization. The taxonomy presented here

agrees with the nature of Casey’s categorization. However, a large number of additional

fundamental distinguishing features are included which differentiate between existing

approaches. Hence, the taxonomy given here provides a more detailed and complete look

at the basic issues addressed in that work. Such detail is deemed necessary to allow

meaningful comparisons of different approaches. In contrast to the taxonomy of Casey,

Wang[65] provides a taxonomy of load-sharing schemes. Wang’s taxonomy succinctly

describes the range of approaches to the load-sharing problem. The categorization pre-

sented describes solutions as being either source initiative or server initiative. In addi-

tion, solutions are characterized along a continuous range according to the degree of

information dependency inv olved. The taxonomy presented here takes a much broader

view of the distributed scheduling problem in which load-sharing is only one of several

possible basic strategies available to a system designer. Thus the classifications discussed

by Wang describe only a narrow category within the taxonomy.

Among existing taxonomies, one can find examples of flat and hierarchical classifi-

cation schemes. The taxonomy proposed here is a hybrid of these two -- hierarchical as

long as possible in order to reduce the total number of classes, and flat when the descrip-

tors of the system may be chosen in an arbitrary order. The levels in the hierarchy hav e

been chosen in order to keep the description of the taxonomy itself small, and do not nec-

essarily reflect any ordering of importance among characteristics. In other words, the



- 3 -

descriptors comprising the taxonomy do not attempt to hierarchically order the character-

istics of scheduling systems from more to less general. This point should be stressed

especially with respect to the positioning of the flat portion of the taxonomy near the bot-

tom of the hierarchy. For example, load balancing is a characteristic which pervades a

large number of distributed scheduling systems, yet for the sake of reducing the size of

the description of the taxonomy, it has been placed in the flat portion of the taxonomy

and, for the sake of brevity, the flat portion has been placed near the bottom of the hierar-

chy.

The remainder of the paper is organized as follows. In section 2, the scheduling

problem is defined as it applies to distributed resource management. In addition, a taxon-

omy is presented which serves to allow qualitative description and comparison of dis-

tributed scheduling systems. Section 3 will present examples from the literature to

demonstrate the use of the taxonomy in qualitatively describing and comparing existing

systems. Section 4 presents a discussion of issues raised by the taxonomy and also sug-

gests areas in need of additional work.

In addition to the work discussed in the text of the paper, an extensive annotated bib-

liography is giv en in an appendix. This appendix further demonstrates the effectiveness

of the taxonomy in allowing standardized description of existing systems.

2. The Scheduling Problem and Describing its Solutions

The general scheduling problem has been described a number of times and in a

number of different ways in the literature[12, 22, 63] and is usually a restatement of the

classical notions of job sequencing[13] in the study of production management[7]. For

the purposes of distributed process scheduling, we take a broader view of the scheduling

function as a resource management resource. This management resource is basically a

mechanism or policy used to efficiently and effectively manage the access to and use of a

resource by its various consumers. Hence, we may view every instance of the scheduling

problem as consisting of three main components.



- 4 -

1) Consumer(s).
2) Resource(s).
3) Policy.

Like other management or control problems, understanding the functioning of a scheduler

may best be done by observing the effect it has on its environment. In this case, one can

observe the behavior of the scheduler in terms of how the policy affects the resources and

consumers. Note that although there is only one policy, the scheduler may be viewed in

terms of how it affects either or both resources and consumers. This relationship between

the scheduler, policies, consumers and resources is shown in figure 1.

Consumers

Scheduler

ResourcesPolicy

Figure 1. Scheduling System
In light of this description of the scheduling problem, there are two properties which

must be considered in evaluating any scheduling system i) the satisfaction of the con-

sumers with how well the scheduler manages the resource in question(performance), and

ii) the satisfaction of the consumers in terms of how difficult or costly it is to access the

management resource itself(efficiency). In other words, the consumers want to be able to

quickly and efficiently access the actual resource in question, but do not desire to be hin-

dered by overhead problems associated with using the management function itself.

One by-product of this statement of the general scheduling problem is the unifica-

tion of two terms in common use in the literature. There is often an implicit distinction

between the terms scheduling and allocation. Howev er, it can be argued that these are

merely alternative formulations of the same problem, with allocation posed in terms of

resource allocation(from the resources’ point of view), and scheduling viewed from the



- 5 -

consumer’s point of view. In this sense, allocation and scheduling are merely two terms

describing the same general mechanism, but described from different viewpoints.

2.1. The Classification Scheme

The usefulness of the four-category taxonomy of computer architecture presented by

Flynn[20] has been well demonstrated by the ability to compare systems through their

relation to that taxonomy. The goal of the taxonomy given here is to provide a commonly

accepted set of terms and to provide a mechanism to allow comparison of past work in

the area of distributed scheduling in a qualitative way. In addition, it is hoped that the

categories and their relationships to each other have been chosen carefully enough to

indicate areas in need of future work as well as to help classify future work.

The taxonomy will be kept as small as possible by proceeding in a hierarchical fash-

ion for as long as possible, but some choices of characteristics may be made independent

of previous design choices, and thus will be specified as a set of descriptors from which a

subset may be chosen. The taxonomy, while discussed and presented in terms of dis-

tributed process scheduling, is applicable to a larger set of resources. In fact, the taxon-

omy could usefully be employed to classify any set of resource management systems.

However, we will focus our attention on the area of process management since it is in this

area which we hope to derive relationships useful in determining potential areas for future

work.

2.1.1. Hierarchical Classification

The structure of the hierarchical portion of the taxonomy is shown in figure 2. A

discussion of the hierarchical portion then follows.

Local vs. Global

At the highest level, we may distinguish between local and global scheduling.

Local scheduling is involved with the assignment of processes to the time-slices of a



- 6 -

Approximate Heuristic

SuboptimalOptimal

Cooperative Non-cooperative

Physically Distributed

GlobalLocal

Static Dynamic

Physically
Non-Distributed

Suboptimal

HeuristicApproximate

Optimal

Enumerative Queuing TheoryMath. PgmgGraph Theory

Figure 2. Task Scheduling Characteristics
single processor. Since the area of scheduling on single-processor systems [12, 62] as

well as the area of sequencing or job-shop scheduling[13, 18] has been actively studied

for a number of years, this taxonomy will focus on global scheduling. Global scheduling

is the problem of deciding where to execute a process, and the job of local scheduling is

left to the operating system of the processor to which the process is ultimately allocated.

This allows the processors in a multiprocessor increased autonomy while reducing the

responsibility (and consequently overhead) of the global scheduling mechanism. Note

that this does not imply that global scheduling must be done by a single central authority,

but rather, we view the problems of local and global scheduling as separate issues, and (at

least logically) separate mechanisms are at work solving each.

Static vs. Dynamic

The next level in the hierarchy (beneath global scheduling) is a choice between

static and dynamic scheduling. This choice indicates the time at which the scheduling or

assignment decisions are made.

In the case of static scheduling, information regarding the total mix of processes in

the system as well as all the independent subtasks involved in a job or task force[26, 44]



- 7 -

is assumed to be available by the time the program object modules are linked into load

modules. Hence, each executable image in a system has a static assignment to a particu-

lar processor, and each time that process image is submitted for execution, it is assigned

to that processor. A more relaxed definition of static scheduling may include algorithms

that schedule task forces for a particular hardware configuration. Over a period of time,

the topology of the system may change, but characteristics describing the task force

remain the same. Hence, the scheduler may generate a new assignment of processes to

processors to serve as the schedule until the topology changes again.

Note here that the term static scheduling as used in this paper has the same meaning

as deterministic scheduling in [22] and task scheduling in [56]. These alternative terms

will not be used, however, in an attempt to develop a consistent set of terms and taxon-

omy.

Optimal vs. Sub-Optimal

In the case that all information regarding the state of the system as well as the

resource needs of a process are known, an optimal assignment can be made based on

some criterion function [5, 14, 21, 35, 40, 48]. Examples of optimization measures are

minimizing total process completion time, maximizing utilization of resources in the sys-

tem, or maximizing system throughput. In the event that these problems are computa-

tionally infeasible, sub-optimal solutions may be tried[2, 34, 47]. Within the realm of

sub-optimal solutions to the scheduling problem, we may think of two general categories.

Approximate vs. Heuristic

The first is to use the same formal computational model for the algorithm, but

instead of searching the entire solution space for an optimal solution, we are satisfied

when we find a "good" one. We will categorize these solutions as sub-optimal-approxi-

mate. The assumption that a good solution can be recognized may not be so insignificant,

but in the cases where a metric is available for evaluating a solution, this technique can be



- 8 -

used to decrease the time taken to find an acceptable solution (schedule). The factors

which determine whether this approach is worthy of pursuit include:

1) Availability of a function to evaluate a solution.
2) The time required to evaluate a solution.
3) The ability to judge according to some metric the value of an optimal solution.
4) Availability of a mechanism for intelligently pruning the solution space.
The second branch beneath the sub-optimal category is labeled heuristic[15, 30, 66].

This branch represents the category of static algorithms which make the most realistic

assumptions about a priori knowledge concerning process and system loading character-

istics. It also represents the solutions to the static scheduling problem which require the

most reasonable amount of time and other system resources to perform their function.

The most distinguishing feature of heuristic schedulers is that they make use of special

parameters which effect the system in indirect ways. Often, the parameter being moni-

tored is correlated to system performance in an indirect instead of a direct way, and this

alternate parameter is much simpler to monitor or calculate. For example, clustering

groups of processes which communicate heavily on the same processor and physically

separating processes which would benefit from parallelism[52] directly decreases the

overhead involved in passing information between processors, while reducing the inter-

ference among processes which may run without synchronization with one another. This

result has an impact on the overall service that users receive, but cannot be directly

related (in a quantitative way) to system performance as the user sees it. Hence, our intu-

ition, if nothing else, leads us to believe that taking the aforementioned actions when pos-

sible will improve system performance. However, we may not be able to prove that a

first-order relationship between the mechanism employed and the desired result exists.

Optimal and Sub-Optimal Approximate Techniques

Regardless of whether a static solution is optimal or sub-optimal-approximate, there

are four basic categories of task allocation algorithms which can be used to arrive at an

assignment of processes to processors.

1) Solution Space Enumeration and Search[48].



- 9 -

2) Graph Theoretic[4, 57, 58].
3) Mathematical Programming[5, 14, 21, 35, 40].
4) Queuing Theoretic[10, 28, 29].

Dynamic Solutions

In the dynamic scheduling problem, the more realistic assumption is made that very

little a priori knowledge is available about the resource needs of a process. It is also

unknown in what environment the process will execute during its lifetime. In the static

case, a decision is made for a process image before it is ever executed, while in the

dynamic case no decision is made until a process begins its life in the dynamic environ-

ment of the system. Since it is the responsibility of the running system to decide where a

process is to execute, it is only natural to next ask where the decision itself is to be made.

Distributed vs. Non-Distributed

The next issue (beneath dynamic solutions) involves whether the responsibility for

the task of global dynamic scheduling should physically reside in a single processor[44]

(physically non-distributed) or whether the work involved in making decisions should be

physically distributed among the processors[17]. Here the concerne is with the logical

authority of the decision-making process.

Cooperative vs. Non-Cooperative

Within the realm of distributed dynamic global scheduling, we may also distinguish

between those mechanisms which involve cooperation between the distributed compo-

nents(cooperative) and those in which the individual processors make decisions indepen-

dent of the actions of the other processors(non-cooperative). The question here is one of

the degree of autonomy which each processor has in determining how its own resources

should be used. In the non-cooperative case individual processors act alone as

autonomous entities and arrive at decisions regarding the use of their resources indepen-

dent of the effect of their decision on the rest of the system. In the cooperative case each

processor has the responsibility to carry out its own portion of the scheduling task, but all



- 10 -

processors are working toward a common system-wide goal. In other words, each pro-

cessor’s local operating system is concerned with making decisions in concert with the

other processors in the system in order to achieve some global goal, instead of making

decisions based on the way in which the decision will affect local performance only. As

in the static case, the taxonomy tree has reached a point where we may consider optimal,

sub-optimal-approximate, and sub-optimal-heuristic solutions. The same discussion as

was presented for the static case applies here as well.

In addition to the hierarchical portion of the taxonomy already discussed, there are a

number of other distinguishing characteristics which scheduling systems may have. The

following sections will deal with characteristics which do not fit uniquely under any par-

ticular branch of the tree-structured taxonomy given thus far, but are still important in the

way that they describe the behavior of a scheduler. In other words, the following could

be branches beneath several of the leaves shown in figure 2 and in the interest of clarity

are not repeated under each leaf, but are presented here as a flat extension to the scheme

presented thus far. It should also be noted that these attributes represent a set of charac-

teristics, and any particular scheduling subsystem may possess some subset of this set.

Finally, the placement of these characteristics near the bottom of the tree is not intended

to be an indication of their relative importance or any other relation to other categories of

the hierarchical portion. Their position was determined primarily to reduce the size of

the description of the taxonomy.

2.1.2. Flat Classification Characteristics

2.1.2.1. Adaptive vs. Non-Adaptive

An adaptive solution to the scheduling problem is one in which the algorithms and

parameters used to implement the scheduling policy change dynamically according to the

previous and current behavior of the system in response to previous decisions made by

the scheduling system. An example of such an adaptive scheduler would be one which



- 11 -

takes many parameters into consideration in making its decisions[52]. In response to the

behavior of the system, the scheduler may start to ignore one parameter or reduce the

importance of that parameter if it believes that parameter is either providing information

which is inconsistent with the rest of the inputs or is not providing any information

regarding the change in system state in relation to the values of the other parameters

being observed. A second example of adaptive scheduling would be one which is based

on the stochastic learning automata model[39]. An analogy may be drawn here between

the notion of an adaptive scheduler and adaptive control[38], although the usefulness of

such an analogy for purposes of performance analysis and implementation are question-

able[51]. In contrast to an adaptive scheduler, a non-adaptive scheduler would be one

which does not necessarily modify its basic control mechanism on the basis of the history

of system activity. An example would be a scheduler which always weighs its inputs in

the same way regardless of the history of the system’s behavior.

2.1.2.2. Load Balancing

This category of policies, which has received a great deal of attention recently[10,

11, 36, 40, 41, 42, 46, 53], approaches the problem with the philosophy that being fair to

the hardware resources of the system is good for the users of that system. The basic idea

is to attempt to balance(in some sense) the load on all processors in such a way as to

allow progress by all processes on all nodes to proceed at approximately the same rate.

This solution is most effective when the nodes of a system are homogeneous since this

allows all nodes to know a great deal about the structure of the other nodes. Normally,

information would be passed about the network periodically or on demand[1, 60] in order

to allow all nodes to obtain a local estimate concerning the global state of the system.

Then the nodes act together in order to remove work from heavily loaded nodes and place

it at lightly loaded nodes. This is a class of solutions which relies heavily on the assump-

tion that the information at each node is quite accurate in order to prevent processes from

endlessly being circulated about the system without making much progress. Another



- 12 -

concern here is deciding on the basic unit used to measure the load on individual nodes.

As was pointed out in section 1, the placement of this characteristic near the bottom

of the hierarchy in the flat portion of the taxonomy is not related to its relative importance

or generality compared with characteristics at higher levels. In fact, it might be observed

that at the point that a choice is made between optimal and sub-optimal characteristics,

that a specific objective or cost function must have already been made. However, the pur-

pose of the hierarchy is not so much to describe relationships between classes of the tax-

onomy, but to reduce the size of the overall description of the taxonomy so as to make it

more useful in comparing different approaches to solving the scheduling problem.

2.1.2.3. Bidding

In this class of policy mechanisms, a basic protocol framework exists which

describes the way in which processes are assigned to processors. The resulting scheduler

is one which is usually cooperative in the sense that enough information is exchanged

(between nodes with tasks to execute and nodes which may be able to execute tasks) so

that an assignment of tasks to processors can be made which is beneficial to all nodes in

the system as a whole.

To illustrate the basic mechanism of bidding, the framework and terminology of [49]

will be used. Each node in the network is responsible for two roles with respect to the

bidding process: manager and contractor. The manager represents the task in need of a

location to execute, and the contractor represents a node which is able to do work for

other nodes. Note that a single node takes on both of these roles, and that there are no

nodes which are strictly managers or contractors alone. The manager announces the exis-

tence of a task in need of execution by a task announcement, then receives bids from the

other nodes (contractors). A wide variety of possibilities exist concerning the type and

amount of information exchanged in order to make decisions[53, 59]. The amount and

type of information exchanged are the major factors in determining the effectiveness and

performance of a scheduler employing the notion of bidding. A very important feature of



- 13 -

this class of schedulers is that all nodes generally have full autonomy in the sense that the

manager ultimately has the power to decide where to send a task from among those nodes

which respond with bids. In addition, the contractors are also autonomous since they are

never forced to accept work if they do not choose to do so.

2.1.2.4. Probabilistic

This classification has existed in scheduling systems for some time[13]. The basic

idea for this scheme is motivated by the fact that in many assignment problems the num-

ber of permutations of the available work and the number of mappings to processors so

large, that in order to analytically examine the entire solution space would require a pro-

hibitive amount of time.

Instead, the idea of randomly (according to some known distribution) choosing

some process as the next to assign is used. Repeatedly using this method, a number of

different schedules may be generated, and then this set is analyzed to choose the best

from among those randomly generated. The fact that an important attribute is used to

bias the random choosing process would lead one to expect that the schedule would be

better than one chosen entirely at random. The argument that this method actually pro-

duces a good selection is based on the expectation that enough variation is introduced by

the random choosing to allow a good solution to get into the randomly chosen set.

An alternative view of probabilistic schedulers are those which employ the princi-

ples of decision theory in the form of team theory[24]. These would be classified as

probabilistic since sub-optimal decisions are influenced by prior probabilities derived

from best-guesses to the actual states of nature. In addition, these prior probabilities are

used to determine (utilizing some random experiment) the next action (or scheduling

decision).



- 14 -

2.1.2.5. One-time Assignment vs. Dynamic Reassignment

In this classification, we consider the entities to be scheduled. If the entities are jobs

in the traditional batch processing sense of the term[19, 23], then we consider the single

point in time in which a decision is made as to where and when the job is to execute.

While this technique technically corresponds to a dynamic approach, it is static in the

sense that once a decision is made to place and execute a job, no further decisions are

made concerning the job. We would characterize this class as one-time assignments.

Notice that in this mechanism, the only information usable by the scheduler to make its

decision is the information given it by the user or submitter of the job. This information

might include estimated execution time or other system resource demands. One critical

point here is the fact that once users of a system understand the underlying scheduling

mechanism, they may present false information to the system in order to receive better

response. This point fringes on the area of psychological behavior, but human interaction

is an important design factor to consider in this case since the behavior of the scheduler

itself is trying to mimic a general philosophy. Hence, the interaction of this philosophy

with the system’s users must be considered.

In contrast, solutions in the dynamic reassignment class try to improve on earlier

decisions by using information on smaller computation units - the executing subtasks of

jobs or task forces. This category represents the set of systems which 1) do not trust their

users to provide accurate descriptive information, and 2) use dynamically created infor-

mation to adapt to changing demands of user processes. This adaptation takes the form

of migrating processes (including current process state information). There is clearly a

price to be paid in terms of overhead, and this price must be carefully weighed against

possible benefits.

An interesting analogy exists between the differentiation made here and the question

of preemption vs. non-preemption in uniprocessor scheduling systems. Here, the differ-

ence lies in whether to move a process from one place to another once an assignment has



- 15 -

been made, while in the uniprocessor case the question is whether to remove the running

process from the processor once a decision has been made to let it run.

3. Examples

In this section, examples will be taken from the published literature to demonstrate

their relationships to one another with respect to the taxonomy detailed in section 2. The

purpose of this section is twofold. The first is to show that many different scheduling

algorithms can fit into the taxonomy and the second is to show that the categories of the

taxonomy actually correspond, in most cases, to methods which have been examined.

3.1. Global Static

In [48], we see an example of an optimal, enumerative approach to the task assign-

ment problem. The criterion function is defined in terms of optimizing the amount of

time a task will require for all interprocess communication and execution, where the tasks

submitted by users are assumed to be broken into suitable modules before execution. The

cost function is called a minimax criterion since it is intended to minimize the maximum

execution and communication time required by any single processor involved in the

assignment. Graphs are then used to represent the module to processor assignments and

the assignments are then transformed to a type of graph matching known as weak homo-

morphisms. The optimal search of this solution space can then be done using the A*

algorithm from artificial intelligence[43]. The solution also achieves a certain degree of

processor load balancing as well.

[4] gives a good demonstration of the usefulness of the taxonomy in that the paper

describes the algorithm given as a solution to the optimal dynamic assignment problem

for a two processor system. However, in attempting to make an objective comparison of

this paper with other dynamic systems, we see that the algorithm proposed is actually a

static one. In terms of the taxonomy of section 2, we would categorize this as a static,

optimal, graph theoretical approach in which the a priori assumptions are expanded to



- 16 -

include more information about the set of tasks to be executed. The way in which reas-

signment of tasks is performed during process execution is decided upon before any of

the program modules begin execution. Instead of making reassignment decisions during

execution, the stronger assumption is simply made that all information about the dynamic

needs of a collection of program modules is available a priori. This assumption says that

if a collection of modules possess a certain communication pattern at the beginning of

their execution, and this pattern is completely predictable, that this pattern may change

over the course of execution and that these variations are predictable as well. Costs of

relocation are also assumed to be available, and this assumption appears to be quite rea-

sonable.

The model presented in [35] represents an example of an optimum mathematical

programming formulation employing a branch and bound technique to search the solution

space. The goals of the solution are to minimize inter-processor communications, bal-

ance the utilization of all processors, and satisfy all other engineering application require-

ments. The model given defines a cost function which includes inter-processor communi-

cation costs and processor execution costs. The assignment is then represented by a set

of zero-one variables, and the total execution cost is then represented by a summation of

all costs incurred in the assignment. In addition to the above, the problem is subject to

constraints which allow the solution to satisfy the load balancing and engineering appli-

cation requirements. The algorithm then used to search the solution space (consisting of

all potential assignments) is derived from the basic branch and bound technique.

Again, in [10], we see an example of the use of the taxonomy in comparing the pro-

posed system to other approaches. The title of the paper - "Load Balancing in Distributed

Systems" - indicates that the goal of the solution is to balance the load among the proces-

sors in the system in some way. Howev er, the solution actually fits into the static, opti-

mal, queuing theoretical class. The goal of the solution is to minimize the execution time

of the entire program to maximize performance and the algorithm is derived from results



- 17 -

in Markov Decision Theory. In contrast to the definition of load balancing given in sec-

tion 2, where the goal was to even the load and utilization of system resources, the

approach in this paper is consumer oriented.

An interesting approximate mathematical programming solution, motivated from the

viewpoint of fault-tolerance, is presented in [2]. The algorithm is suggested by the com-

putational complexity of the optimal solution to the same problem. In the basic solution

to a mathematical programming problem, the state space is either implicitly or explicitly

enumerated and searched. One approximation method mentioned in this paper[64]

involves first removing the integer constraint, solving the continuous optimization prob-

lem, discretizing the continuous solution, and obtaining a bound on the discretization

error. Whereas this bound is with respect to the continuous optimum, the algorithm pro-

posed in this paper directly uses an approximation to solve the discrete problem and

bound its performance with respect to the discrete optimum.

The last static example to be given here appears in [66]. This paper gives a heuris-

tic-based approach to the problem by using extractable data and synchronization require-

ments of the different subtasks. The three primary heuristics used are:

1) Loss of Parallelism
2) Synchronization
3) Data Sources

The way in which loss of parallelism is used is to assign tasks to nodes one at a time in

order to affect the least loss of parallelism based on the number of units required for

execution by the task currently under consideration. The synchronization constraints are

phrased in terms of firing conditions which are used to describe precedence relationships

between subtasks. Finally, data source information is used in much the same way a func-

tional program uses precedence relations between parallel portions of a computation

which take the roles of varying classes of suppliers of variables to other subtasks. The

final heuristic algorithm involves weighting each of the previous heuristics, and combin-

ing them. A distinguishing feature of the algorithm is its use of a greedy approach to

finding a solution, when at the time decisions are made, there can be no guarantee that a



- 18 -

decision is optimal. Hence, an optimal solution would more carefully search the solution

space using a back track or branch and bound method, as well as using exact optimization

criterion instead of the heuristics suggested.

3.2. Global Dynamic

Among the dynamic solutions presented in the literature, the majority fit into the

general category of physically distributed, cooperative, sub-optimal, heuristic. There are,

however, examples for some of the other classes.

First, in the category of physically non-distributed, one of the best examples is the

experimental system developed for the Cm* architecture - Medusa[44]. In this system,

the functions of the operating system (e.g. - file system, scheduler) are physically parti-

tioned and placed at different places in the system. Hence, the scheduling function is

placed at a particular place and is accessed by all users at that location.

Another rare example exists in the physically distributed non-cooperative class. In

this example[27], random level-order scheduling is employed at all nodes independently

in a tightly-coupled MIMD machine. Hence, the overhead involved in this algorithm is

minimized since no information need be exchanged to make random decisions. The

mechanism suggested is thought to work best in moderate to heavily loaded systems since

in these cases, a random policy is thought to give a reasonably balanced load on all pro-

cessors. In contrast to a cooperative solution, this algorithm does not detect or try to

avoid system overloading by sharing loading information among processors, but makes

the assumption that it will be under heavy load most of the time and bases all of its deci-

sions on that assumption. Clearly, here, the processors are not necessarily concerned with

the utilization of their own resources, but neither are they concerned with the effect their

individual decisions will have on the other processors in the system.

It should be pointed out that although the above two algorithms (and many others)

are given in terms relating to general-purpose distributed processing systems, that they do



- 19 -

not strictly adhere to the definition of distributed data processing system as given in [17].

In [57], another rare example exists in the form of a physically distributed, coopera-

tive, optimal solution in a dynamic environment. The solution is given for the two-pro-

cessor case in which critical load factors are calculated prior to program execution. The

method employed is to use a graph theoretical approach to solving for load factors for

each process on each processor. These load factors are then used at run time to determine

when a task could run better if placed on the other processor.

The final class (and largest in terms of amount of existing work) is the class of phys-

ically distributed, cooperative, sub-optimal, heuristic solutions.

In [53] a solution is given which is adaptive, load balancing, and makes one-time

assignments of jobs to processors. No a priori assumptions are made about the character-

istics of the jobs to be scheduled. One major restriction of these algorithms is the fact

that they only consider assignment of jobs to processors and once a job becomes an active

process, no reassignment of processes is considered regardless of the possible benefit.

This is very defensible, though, if the overhead involved in moving a process is very high

(which may be the case in many circumstances). Whereas this solution cannot exactly be

considered as a bidding approach, exchange of information occurs between processes in

order for the algorithms to function. The first algorithm (a copy of which resides at each

host) compares its own busyness with its estimate of the busyness of the least busy host.

If the difference exceeds the bias (or threshold) designated at the current time, one job is

moved from the job queue of the busier host to the less busy one. The second algorithm,

allows each host to compare itself with all other hosts and involves two biases. If the dif-

ference exceeds bias1 but not bias2, then one job is moved. If the difference exceeds

bias2, then two jobs are moved. There is also an upper limit set on the number of jobs

which can move at once in the entire system. The third algorithm is the same as algo-

rithm one except that an anti-thrashing mechanism is added to account for the fact that a

delay is present between the time a decision is made to move a job, and the time it arrives



- 20 -

at the destination. All three algorithms had an adaptive feature added which would turn

off all parts of the respective algorithm except the monitoring of load when system load

was below a particular minimum threshold. This had the effect of stopping processor

thrashing whenever it was practically impossible to balance the system load due to lack

of work to balance. In the high load case, the algorithm was turned off to reduce extrane-

ous overhead when the algorithm couldn’t affect any improvement in the system under

any redistribution of jobs. This last feature also supports the notion in the non-coopera-

tive example given earlier that the load is usually automatically balanced as a side effect

of heavy loading. The remainder of the paper focuses on simulation results to reveal the

impact of modifying the biasing parameters.

The work reported in [6] is an example of an algorithm which employs the heuristic

of load-balancing, and probabilistically estimates the remaining processing times of pro-

cesses in the system. The remaining processing time for a process was estimated by one

of the following methods:

memoryless: Re(t) = E{S}
pastrepeats: Re(t) = t
distribution: Re(t) = E{S - t | S > t}
optimal: Re(t) = R(t)

where R(t) is the remaining time needed given that t seconds have already elapsed, S is

the service time random variable, and Re(t) is the scheduler’s estimate of R(t). The algo-

rithm then basically uses the first three methods to predict response times in order to

obtain an expected delay measure which in turn is used by pairs of processors to balance

their load on a pairwise basis. This mechanism is adopted by all pairs on a dynamic basis

to balance the system load.

Another adaptive algorithm is discussed in [52] and is based on the bidding concept.

The heuristic mentioned here utilizes prior information concerning the known character-

istics of processes such as resource requirements, process priority, special resource needs,

precedence constraints, and the need for clustering and distributed groups. The basic

algorithm periodically evaluates each process at a current node to decide whether to



- 21 -

transmit bid requests for a particular process. The bid requests include information

needed for contractor nodes to make decisions regarding how well they may be able to

execute the process in question. The manager receives bids and compares them to the

local evaluation and will transfer the process if the difference between the best bid and

the local estimate is above a certain threshold. The key to the algorithm is the formula-

tion of a function to be used in a modified McCulloch-Pitts neuron. The neuron (imple-

mented as a subroutine) evaluates the current performance of individual processes. Sev-

eral different functions were proposed, simulated and discussed in this paper. The adap-

tive nature of this algorithm is in the fact that it dynamically modifies the number of hops

that a bid request is allowed to travel depending on current conditions. The most signifi-

cant result was that the information regarding process clustering and distributed groups

seemed to have had little impact on the overall performance of the system.

The final example to be discussed here[55] is based on a heuristic derived from the

area of Bayesian decision theory[33]. The algorithm uses no a priori knowledge regard-

ing task characteristics, and is dynamic in the sense that the probability distributions

which allow maximizing decisions to be made based on the most likely current state of

nature are updated dynamically. Monitor nodes make observations every p seconds and

update probabilities. Every d seconds the scheduler itself is invoked to approximate the

current state of nature and make the appropriate maximizing action. It was found that the

parameters p and d could be tuned to obtain maximum performance for a minimum cost.

4. Discussion

In this section, we will attempt to demonstrate the application of the qualitative

description tool presented earlier to a role beyond that of classifying existing systems. In

particular, we will utilize two behavior characteristics -- performance and efficiency, in

conjunction with the classification mechanism presented in the taxonomy, to identify gen-

eral qualities of scheduling systems which will lend themselves to managing large num-

bers of processors. In addition, the uniform terminology presented will be employed to to



- 22 -

show that some earlier-thought-to-be-synonymous notions are actually distinct, and to

show that the distinctions are valuable. Also, in at least one case, two earlier-thought-to-

be-different notions will be shown to be much the same.

4.1. Decentralized vs. Distributed Scheduling

When considering the decision-making policy of a scheduling system, there are two

fundamental components -- responsibility and authority. When responsibility for making

and carrying out policy decisions is shared among the entities in a distributed system, we

say that the scheduler is distributed. When authority is distributed to the entities of a

resource management system, we call this decentralized. This differentiation exists in

many other organizational structures. Any system which possesses decentralized author-

ity must have distributed responsibility, but it is possible to allocate responsibility for

gathering information and carrying out policy decisions, without giving the authority to

change past or make future decisions.

4.2. Dynamic vs. Adaptive Scheduling

The terms dynamic scheduling and adaptive scheduling are quite often attached to

various proposed algorithms in the literature, but there appears to be some confusion as to

the actual difference between these two concepts. The more common property to find in

a scheduler (or resource management subsystem) is the dynamic property. In a dynamic

situation, the scheduler takes into account the current state of affairs as it perceives them

in the system. This is done during the normal operation of the system under a dynamic

and unpredictable load. In an adaptive system, the scheduling policy itself reflects

changes in its environment -- the running system. Notice that the difference here is one

of level in the hierarchical solution to the scheduling problem. Whereas a dynamic solu-

tion takes environmental inputs into account when making its decisions, an adaptive solu-

tion takes environmental stimuli into account to modify the scheduling policy itself.



- 23 -

4.3. The Resource/Consumer Dichotomy in Performance Analysis

As is the case in describing the actions or qualitative behavior of a resource manage-

ment subsystem, the performance of the scheduling mechanisms employed may be

viewed from either the resource or consumer point of view. When considering perfor-

mance from the consumer (or user) point of view, the metric involved is often one of min-

imizing individual program completion times -- response. Alternately, the resource point

of view also considers the rate of process execution in evaluating performance, but from

the view of total system throughput. In contrast to response, throughput is concerned

with seeing that all users are treated fairly and that all are making progress. Notice that

the resource view of maximizing resource utilization is compatible with the desire for

maximum system throughput. Another way of stating this, however, is that all users,

when considered as a single collective user, are treated best in this environment of maxi-

mizing system throughput or maximizing resource utilization. This is the basic philoso-

phy of load-balancing mechanisms. There is an inherent conflict, though, in trying to

optimize both response and throughput.

4.4. Focusing on Future Directions

In this section, the earlier presented taxonomy, in conjunction with two terms used

to quantitatively describe system behavior, will be used to discuss possibilities for dis-

tributed scheduling in the environment of a large system of loosely-coupled processors.

In previous work related to the scheduling problem, the basic notion of performance

has been concerned with evaluating the way in which users’ individual needs are being

satisfied. The metrics most commonly applied are response and throughput[23]. While

these terms accurately characterize the goals of the system in terms of how well users are

served, they are difficult to measure during the normal operation of a system. In addition

to this problem, the metrics do not lend themselves well to direct interpretation as to the

action to be performed to increase performance when it is not at an acceptable level.



- 24 -

These metrics are also difficult to apply when analysis or simulation of such systems

is attempted. The reason for this is that two important aspects of scheduling are necessar-

ily intertwined. These two aspects are performance and efficiency. Performance is the

part of a system’s behavior that encompasses how well the resource to be managed is

being used to the benefit of all users of the system. Efficiency, though, is concerned with

the added cost (or overhead) associated with the resource management facility itself. In

terms of these two criteria, we may think of desirable system behavior as that which has

the highest level of performance possible, while incurring the least overhead in doing it.

Clearly, the exact combination of these two which brings about the most desirable behav-

ior is dependent on many factors and in many ways resembles the space/time trade-off

present in common algorithm design. The point to be made here is that simultaneous

evaluation of efficiency and performance is very difficult due to this inherent entangle-

ment. What we suggest is a methodology for designing scheduling systems in which effi-

ciency and performance are separately observable.

Current and future investigations will involve studies to better understand the rela-

tionships between performance, efficiency, and their components as they effect quantita-

tive behavior. It is hoped that a much better understanding can be gained regarding the

costs and benefits of alternative distributed scheduling strategies.

5. Conclusion

This paper has sought to bring together the ideas and work in the area of resource

management generated in the last 10 to 15 years. The intention has been to provide a

suitable framework for comparing past work in the area of resource management, while

providing a tool for classifying and discussing future work. This has been done through

the presentation of common terminology and a taxonomy on the mechanisms employed

in computer system resource management. While the taxonomy could be used to discuss

many different types of resource management, the attention of the paper and included

examples have been on the application of the taxonomy to the processing resource.



- 25 -

Finally, recommendations regarding possible fruitful areas for future research in the area

of scheduling in large scale general-purpose distributed computer systems have been dis-

cussed.

As is the case in any survey, there are many pieces of work to be considered. It is

hoped that the examples presented fairly represent the true state of research in this area,

while it is acknowledged that not all such examples have been discussed. In addition to

the references at the end of this paper, the appendix contains an annotated bibliography

for work not explicitly mentioned in the text but which have aided in the construction of

this taxonomy through the support of additional examples. The exclusion of any particu-

lar results has not been intentional nor should it be construed as a judgment of the merit

of that work. Decisions as to which papers to use as examples were made purely on the

basis of their applicability to the context of the discussion in which they appear.



- 26 -

REFERENCES

[1] A.K. Agrawala, S.K. Tripathi, G. Ricart, Adaptive Routing Using a Virtual Wait-
ing Time Technique, IEEE Trans. on Software Eng., Vol. SE-8, No. 1, Jan. 1982,
pp. 76-81.

[2] J.A. Bannister, K.S. Trivedi, Task Allocation in Fault-Tolerant Distributed Sys-
tems, Acta Informatica, Vol. 20, 1983, pp. 261-281, Springer-Verlag.

[3] J.F. Bartlett, A NonStop Kernel, Proc. 8th Symp. on O.S. Principles, Dec. 1981,
pp. 22-29.

[4] S.H. Bokhari, Dual Processor Scheduling with Dynamic Reassignment, IEEE
Trans. on Software Eng., Vol. SE-5, No. 4, Jul. 1979, pp. 326-334.

[5] S.H. Bokhari, A Shortest Tree Algorithm for Optimal Assignments Across Space
and Time in a Distributed Processor System, IEEE Trans. on Software Eng., Vol.
SE-7, No. 6, Nov. 1981, pp. 335-341.

[6] R.M. Bryant, R.A. Finkel, A Stable Distributed Scheduling Algorithm, Proc. 2nd
Intl. Conf. on Dist. Comp., Apr. 1981, pp. 314-323.

[7] E.S. Buffa, Modern Production Management 5ed, 1977, John Wiley & Sons, New
York.

[8] T.L. Casavant, J.G. Kuhl, Design of a Loosely-Coupled Distributed Multiprocess-
ing Network, 1984 Intl. Conf on Parallel Proc., Aug. 1984, pp. 42-45.

[9] L.M. Casey, Decentralized Scheduling, Australian Computing Journal, Vol. 13,
May 1981, pp. 58-63.

[10] T.C.K. Chou, J.A. Abraham, Load Balancing in Distributed Systems, IEEE Trans.
on Software Eng., Vol. SE-8, No. 4, Jul. 1982, pp. 401-412.

[11] Y.C. Chow, W.H. Kohler, Models for Dynamic Load Balancing in a Hetero-
geneous Multiple Processor System, IEEE Trans. on Comp., Vol. C-28, No. 5,
May 1979, pp. 354-361.

[12] E.G. Coffman, P.J. Denning, Operating Systems Theory, 1973, Prentice-Hall,
Englewood Cliffs, N.J.

[13] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling, 1967, Addison-
Wesley, Reading, Mass.

[14] K.W. Doty, P.L. McEntire, J.G. O’Reilly, Task Allocation in a Distributed Com-
puter System, IEEE InfoCom, 1982, pp. 33-38.

[15] K. Efe, Heuristic Models of Task Assignment Scheduling in Distributed Systems
Computer, Vol. 15, Jun. 1982, pp. 50-56.



- 27 -

[16] C.S. Ellis, J.A. Feldman, J.E. Heliotis, Language Constructs and Support Systems
for Distributed Computing, ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Aug. 1982, pp. 1-9.

[17] P.H. Enslow Jr., What is a "Distributed" Data Processing System, Computer, Vol.
11, No. 1, Jan. 1978, pp. 13-21.

[18] J.R. Evans et al, Applied Production and Operations Management, 1984, West
Publishing Co., St. Paul, Minn.

[19] I. Flores, OSMVT, 1973, Allyn and Bacon, Boston MA.

[20] M.J. Flynn, Very High-Speed Computing Systems, Proceedings of IEEE, Vol. 54,
Dec. 1966, pp. 1901-1909.

[21] A. Gabrielian, D.B. Tyler, Optimal Object Allocation in Distributed Computer
Systems, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp. 84-95.

[22] M.J. Gonzalez, Deterministic Processor Scheduling, ACM Computing Surveys,
Vol. 9, No. 3, Sep. 1977, pp. 173-204.

[23] H. Hellerman, T.F. Conroy, Computer System Performance, 1975, McGraw-Hill,
New York.

[24] Y. Ho, Team Decision Theory and Information Structures, Proceedings of the
IEEE, Vol. 68, No. 6, Jun. 1980, pp. 644-654.

[25] E.D. Jensen, The Honeywell Experimental Distributed Processor -- An Overview,
Computer, Vol. 11, Jan. 1978, pp. 28-38.

[26] A.K. Jones et al, StarOS, a Multiprocessor Operating System for the Support of
Task Forces, Proc. 7th Symp. on Operating System Prin., Dec. 1979, pp. 117-127.

[27] D. Klappholz, H.C. Park, Parallelized Process Scheduling for a Tightly-Coupled
MIMD Machine, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 315-321.

[28] L. Kleinrock, Queuing Systems, Vol 2: Computer Applications, 1976, Wiley, New
York.

[29] L. Kleinrock, A. Nilsson, On Optimal Scheduling Algorithms for Time-Shared
Systems, JA CM, Vol. 28, No. 3, Jul. 1981, pp. 477-486.

[30] C.P. Kruskal, A. Weiss, Allocating Independent Subtasks on Parallel Processors
Extended Abstract, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 236-240.

[31] R.E. Larsen, Tutorial: Distributed Control, 1979, IEEE Press, New York.

[32] G. Le Lann, Motivations, Objectives and Characterizations of Distributed Sys-
tems, Lecture Notes in Computer Science - 105, 1981, pp. 1-9, Springer-Verlag.



- 28 -

[33] B.W. Lindgren, Elements of Decision Theory, 1971, MacMillan, New York.

[34] V.M. Lo, Heuristic Algorithms for Task Assignment in Distributed Systems, Proc.
4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp. 30-39.

[35] P.Y.R. Ma, E.Y.S. Lee, J. Tsuchiya, A Task Allocation Model for Distributed Com-
puting Systems, IEEE Transactions on Computers, Vol. C-31, No. 1, Jan. 1982,
pp. 41-47.

[36] R. Manner, Hardware Task/Processor Scheduling in a Polyprocessor Environ-
ment, IEEE Trans. on Comp., Vol. C-33, No. 7, Jul. 1984, pp. 626-636.

[37] P.L. McEntire, J.G. O’Reilly, R.E. Larson, Distributed Computing: Concepts and
Implementations, 1984, IEEE Press, New York.

[38] E. Mishkin, L. Braun Jr., Adaptive Control Systems, 1961, McGraw-Hill, New
York.

[39] K. Narendra, Learning Automata - A Survey, IEEE Transactions on Systems, Man,
and Cybernetics, Vol. SMC-4, No. 4, Jul. 1974, pp. 323-334.

[40] L.M. Ni, K. Hwang, Optimal Load Balancing Strategies for a Multiple Processor
System, Proc. Intl. Conf. on Parallel Proc., 1981, pp. 352-357.

[41] L.M. Ni, K. Abani, Nonpreemptive Load Balancing in a Class of Local Area Net-
works, Proc. Comp. Networking Symp., Dec. 1981, pp. 113-118.

[42] L.M. Ni, K. Hwang, Optimal Load Balancing in a Multiple Processor System with
Many Job Classes, IEEE Transactions on Software Engineering, Vol. SE-11, No.
5, May. 1985, pp. 491-496.

[43] N.J. Nilsson, Principles of Artificial Intelligence, 1980, Tioga Publishing Co.,
Palo Alto, CA.

[44] J. Ousterhout, D. Scelza, P. Sindhu, Medusa: An Experiment in Distributed Oper-
ating System Structure, CACM, Vol. 23, No. 2, Feb. 1980, pp. 92-105.

[45] G. Popek et al, LOCUS: A Network Transparent, High Reliability Distributed Sys-
tem, Proc. 8th Symp. on O.S. Principles, Dec. 1981, pp. 169-177.

[46] M.L. Powell, B.P. Miller, Process Migration in DEMOS/MP, Proc. 9th Symp. on
Operating Systems Principles, OS Review, Vol. 17, No. 5, Oct. 1983, pp. 110-119.

[47] C.C. Price, S. Krishnaprasad, Software Allocation Models for Distributed Com-
puting Systems, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp.
40-48.

[48] C. Shen, W. Tsai, A Graph Matching Approach to Optimal Task Assignment in
Distributed Computing Systems Using a Minimax Criterion, IEEE Trans. on
Comp., Vol. C-34, No. 3, Mar. 1985, pp. 197-203.



- 29 -

[49] R.G. Smith, The Contract Net Protocol: High-Level Communication and Control
in a Distributed Problem Solver, IEEE Trans. on Comp., Vol. C-29, No. 12, Dec.
1980, pp. 1104-1113.

[50] M.H. Solomon, R.A. Finkel, The ROSCOE Distributed Operating System, Proc.
7th Symp. on O.S. Principles, Dec. 1979, pp. 108-114.

[51] J.A. Stankovic et al, An Evaluation of the Applicability of Different Mathematical
Approaches to the Analysis of Decentralized Control Algorithms, Proceedings of
IEEE COMPSAC 82, Nov. 1982, pp. 62-69.

[52] J.A. Stankovic, I. S. Sidhu, An Adaptive Bidding Algorithm for Processes, Clus-
ters and Distributed Groups, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May
1984, pp. 49-59.

[53] J.A. Stankovic, Simulations of Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms, Computer Networks, Vol. 8, No. 3, Jun. 1984, pp.
199-217.

[54] J.A. Stankovic, A Perspective on Distributed Computer Systems, IEEE Trans. on
Comp., Vol. C-33, No. 12, Dec. 1984, pp. 1102-1115.

[55] J.A. Stankovic, An Application of Bayesian Decision Theory to Decentralized
Control of Job Scheduling, IEEE Trans. on Comp., Vol. C-34, No. 2, Feb. 1985,
pp. 117-130.

[56] J.A. Stankovic et al, A Review of Current Research and Critical Issues in Dis-
tributed System Software, IEEE Computer Society Distributed Processing Techni-
cal Committee Newsletter, Vol. 7, No. 1, Mar. 1985, pp. 14-47.

[57] H.S. Stone, Critical Load Factors in Two-Processor Distributed Systems, IEEE
Trans. on Software Eng., Vol. SE-4, No. 3, May 1978, pp. 254-258.

[58] H.S. Stone, S.H. Bokhari, Control of Distributed Processes, Computer, Vol. 11,
Jul. 1978, pp. 97-106.

[59] H. Sullivan, T. Bashkow, A Large-Scale Homogeneous, Fully Distributed Machine
- II, Proc. 4th Symp. on Computer Architecture, Mar. 1977, pp. 118-124.

[60] A.S. Tanenbaum, Computer Networks, 1981, Prentice-Hall, Englewood Cliffs,
N.J.

[61] D.P. Tsay, M.T. Liu, MIKE: A Network Operating System for the Distributed Dou-
ble-Loop Computer Network, IEEE Transactions on Software Engineering, Vol.
SE-9, No. 2, Mar. 1983, pp. 143-154.

[62] D.C. Tsichritzis, P.A. Bernstein, Operating Systems, 1974, Academic Press, New
York.



- 30 -

[63] K. Vairavan, R.A. DeMillo, On the Computational Complexity of a Generalized
Scheduling Problem, IEEE Transactions on Computers, Vol. C-25, No. 11, Nov.
1976, pp. 1067-1073.

[64] R.A. Wagner, K.S. Trivedi, Hardware Configuration Selection Through Discretiz-
ing a Continuous Variable Solution, Proc. 7th IFIP Symp. on Comp. Performance
Modeling, Measurement and Evaluation, Toronto, Canada, 1980, pp. 127-142.

[65] Y.T. Wang, R.J.T. Morris, Load Sharing in Distributed Systems, IEEE Trans. on
Comp., Vol. C-34, No. 3, Mar. 1985, pp. 204-217.

[66] M.O. Ward, D.J. Romero, Assigning Parallel-Executable, Intercommunicating
Subtasks to Processors, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp.
392-394.

[67] L.D. Wittie, A.M. Van Tilborg, MICROS: A Distributed Operating System for
MICRONET, A Reconfigurable Network Computer, IEEE Transactions on Com-
puters, Vol. C-29, No. 12, Dec. 1980, pp. 1133-1144.



- 31 -

APPENDIX

Annotated Bibliography

APPLICATION OF TAXONOMY TO EXAMPLES FROM LITERATURE
This appendix contains references to additional examples not included in section 3

well as abbreviated descriptions of those examples discussed in detail in the text of the
paper. The purpose is to demonstrate the use of the taxonomy of section 2 in classifying
a large number of examples from the literature.

1. G.R. Andrews, D.P. Dobkin, P.J. Downey, Distributed Allocation with Pools of
Servers, ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, Aug. 1982, pp. 73-83.
Global, dynamic, distributed(however in a limited sense), cooperative, sub-opti-
mal, heuristic, bidding, non-adaptive, dynamic reassignment.

2. J.A. Bannister, K.S. Trivedi, Task Allocation in Fault-Tolerant Distributed Sys-
tems, Acta Informatica, Vol. 20, 1983, pp. 261-281, Springer-Verlag.
Global, static, sub-optimal, approximate, mathematical programming.

3. F. Berman, L. Snyder, On Mapping Parallel Algorithms into Parallel Architec-
tures, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 307-309.
Global, static, optimal, graph theory.

4. S.H. Bokhari, Dual Processor Scheduling with Dynamic Reassignment, IEEE
Trans. on Software Eng., Vol. SE-5, No. 4, Jul. 1979, pp. 326-334.
Global, static, optimal, graph theoretic.

5. S.H. Bokhari, A Shortest Tree Algorithm for Optimal Assignments Across Space
and Time in a Distributed Processor System, IEEE Trans. on Software Eng., Vol.
SE-7, No. 6, Nov. 1981, pp. 335-341.
Global, static, optimal, mathematical programming, intended for tree-structured
applications.

6. R.M. Bryant, R.A. Finkel, A Stable Distributed Scheduling Algorithm, Proc. 2nd
Intl. Conf. on Dist. Comp., Apr. 1981, pp. 314-323.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, prob-
abilistic, load-balancing.

7. T.L. Casavant, J.G. Kuhl, Design of a Loosely-Coupled Distributed Multiprocess-
ing Network, 1984 Intl. Conf on Parallel Proc., Aug. 1984, pp. 42-45.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, load-
balancing, bidding, dynamic reassignment.

8. L.M. Casey, Decentralized Scheduling, Australian Computing Journal, Vol. 13,
May 1981, pp. 58-63.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, load-
balancing.



- 32 -

9. T.C.K. Chou, J.A. Abraham, Load Balancing in Distributed Systems, IEEE Trans.
on Software Eng., Vol. SE-8, No. 4, Jul. 1982, pp. 401-412.
Global, static, optimal, queuing theoretical.

10. T.C.K. Chou, J.A. Abraham, Load Redistribution Under Failure in Distributed
Systems, IEEE Transactions on Computers, Vol. C-32, No. 9, Sep. 1983, pp.
799-808.
Global, dynamic(but with static parings of supporting and supported processors),
distributed, cooperative, sub-optimal, provides 3 separate heuristic mechanisms,
motivated from fault recovery aspect.

11. Y.C. Chow, W.H. Kohler, Models for Dynamic Load Balancing in a Hetero-
geneous Multiple Processor System, IEEE Trans. on Comp., Vol. C-28, No. 5,
May 1979, pp. 354-361.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, load-
balancing, (part of the heuristic approach is based on results from queuing the-
ory).

12. W.W. Chu et al, Task Allocation in Distributed Data Processing, Computer, Vol.
13, No. 11, Nov. 1980, pp. 57-69.
Global, static, optimal, sub-optimal, heuristic, heuristic approached based on
graph theory and mathematical programming are discussed.

13. K.W. Doty, P.L. McEntire, J.G. O’Reilly, Task Allocation in a Distributed Com-
puter System, IEEE InfoCom, 1982, pp. 33-38.
Global, static, optimal, mathematical programming(non-linear spatial dynamic
programming).

14. K. Efe, Heuristic Models of Task Assignment Scheduling in Distributed Systems
Computer, Vol. 15, Jun. 1982, pp. 50-56.
Global, static, sub-optimal, heuristic, load-balancing.

15. J.A.B. Fortes, F. Parisi-Presicce, Optimal Linear Schedules for the Parallel Execu-
tion of Algorithms, 1984 Intl. Conf on Parallel Proc., Aug. 1984, pp. 322-329.
Global, static, optimal, Uses results from mathematical programming for a large
class of data-dependency driven applications.

16. A. Gabrielian, D.B. Tyler, Optimal Object Allocation in Distributed Computer
Systems, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp. 84-95.
Global, static, optimal, mathematical programming, uses a heuristic to obtain a
solution close to optimal, employs backtracking to find optimal one from that.

17. C. Gao, J.W.S. Liu, M. Railey, Load Balancing Algorithms in Homogeneous Dis-
tributed Systems, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 302-306.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, probabilistic.

18. W. Huen et al, TECHNEC, A Network Computer for DIstributed Task Control,
Proceedings 1st Rocky Mountain Symposium on Microcomputers, Aug. 1977, pp.
233-237.
Global, static, sub-optimal, heuristic.



- 33 -

19. K. Hwang et al, A Unix-Based Local Computer Network with Load Balancing,
Computer, Vol. 15, No. 4, Apr. 1982, pp. 55-65.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, load-
balancing.

20. D. Klappholz, H.C. Park, Parallelized Process Scheduling for a Tightly-Coupled
MIMD Machine, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 315-321.
Global, dynamic, physically distributed, non-cooperative.

21. C.P. Kruskal, A. Weiss, Allocating Independent Subtasks on Parallel Processors
Extended Abstract, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp. 236-240.
Global, static, sub-optimal, but optimal for a set of optimistic assumptions, heuris-
tic, problem stated in terms of queuing theory.

22. V.M. Lo, Heuristic Algorithms for Task Assignment in Distributed Systems, Proc.
4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp. 30-39.
Global, static, sub-optimal, approximate, graph theoretic.

23. V.M. Lo, Task Assignment to Minimize Completion Time, 5th International Con-
ference on Distributed Computing Systems, May 1985, pp. 329-336.
Global, static, optimal, mathematical programming for some special cases, but in
general is sub-optimal, heuristic using the LPT algorithm.

24. P.Y.R. Ma, E.Y.S. Lee, J. Tsuchiya, A Task Allocation Model for Distributed Com-
puting Systems, IEEE Transactions on Computers, Vol. C-31, No. 1, Jan. 1982,
pp. 41-47.
Global, static, optimal, mathematical programming(branch and bound).

25. S. Majumdar, M.L. Green, A Distributed Real Time Resource Manager, Proc.
IEEE Symp. on Distributed Data Acquisition, Computing and Control, 1980, pp.
185-193.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, load balancing,
non-adaptive.

26. R. Manner, Hardware Task/Processor Scheduling in a Polyprocessor Environ-
ment, IEEE Trans. on Comp., Vol. C-33, No. 7, Jul. 1984, pp. 626-636.
Global, dynamic, distributed control and responsibility, but centralized informa-
tion in hardware on bus lines. Cooperative, optimal, (priority) load balancing.

27. L.M. Ni, K. Hwang, Optimal Load Balancing for a Multiple Processor System,
Proc. Intl. Conf. on Parallel Proc., 1981, pp. 352-357.
Global, static, optimal, mathematical programming.

28. L.M. Ni, K. Abani, Nonpreemptive Load Balancing in a Class of Local Area Net-
works, Proc. Comp. Networking Symp., Dec. 1981, pp. 113-118.
Global, dynamic, distributed, cooperative, optimal and sub-optimal solutions
given - mathematical programming, and adaptive load balancing respectively.

29. J. Ousterhout, D. Scelza, P. Sindhu, Medusa: An Experiment in Distributed Oper-
ating System Structure, CACM, Vol. 23, No. 2, Feb. 1980, pp. 92-105.
Global, dynamic, physically non-distributed.



- 34 -

30. M.L. Powell, B.P. Miller, Process Migration in DEMOS/MP, Proc. 9th Symp. on
Operating Systems Principles, OS Review, Vol. 17, No. 5, Oct. 1983, pp. 110-119.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, load balancing
but no specific decision rule given.

31. C.C. Price, S. Krishnaprasad, Software Allocation Models for Distributed Com-
puting Systems, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp.
40-48.
Global, static, optimal, mathematical programming, but also suggest heuristics.

32. C.V. Ramamoorthy et al, Optimal Scheduling Strategies in a Multiprocessor Sys-
tem, IEEE Transactions on Computers, Vol. C-21, No. 2, Feb. 1972, pp. 137-146.
Global, static, optimal solution presented for comparison with the heuristic one
also presented. Graph theory is employed in the sense that it uses task precedence
graphs.

33. K. Ramamritham, J.A. Stankovic, Dynamic Task Scheduling in Distributed Hard
Real-Time Systems, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May 1984, pp.
96-107.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, bidding, one-
time assignments, (a real time guarantee is applied before migration).

34. J. Reif, P. Spirakis, Real-Time Resource Allocation in a Distributed System, ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Aug.
1982, pp. 84-94.
Global, dynamic, distributed, non-cooperative, probabilistic.

35. S. Sahni, Scheduling Multipipeline and Multiprocessor Computers, 1984 Intl.
Conf. on Parallel Processing, Aug. 1984, pp. 333-337.
Global, static, sub-optimal, heuristic.

36. T.G. Saponis, P.L. Crews, A Model for Decentralized Control in a Fully Dis-
tributed Processing System, Fall COMPCON, 1980, pp. 307-312.
Global, static, sub-optimal, heuristic based on load balancing. Also intended for
applications of the nature of coupled recurrence systems.

37. C.C. Shen, W.H. Tsai, A Graph Matching Approach to Optimal Task Assignment
in Distributed Computing Systems Using a Minimax Criterion, IEEE Trans. on
Comp., Vol. C-34, No. 3, Mar. 1985, pp. 197-203.
Global, static, optimal, enumerative.

38. J.A. Stankovic, The Analysis of a Decentralized Control Algorithm for Job
Scheduling Utilizing Bayesian Decision Theory, Proc. Intl. Conf. on Parallel
Proc., 1981, pp. 333-337.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, one-time assign-
ment, probabilistic.

39. J.A. Stankovic, A Heuristic for Cooperation Among Decentralized Controllers,
IEEE INFOCOM 1983, Apr. 1983, pp. 331-339.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, one-time assign-
ment, probabilistic.



- 35 -

40. J.A. Stankovic, I. S. Sidhu, An Adaptive Bidding Algorithm for Processes, Clus-
ters and Distributed Groups, Proc. 4th Intl. Conf. on Dist. Comp. Systems, May
1984, pp. 49-59.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, adap-
tive, bidding, additional heuristics regarding clusters and distributed groups.

41. J.A. Stankovic, Simulations of Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms, Computer Networks, Vol. 8, No. 3, Jun. 1984, pp.
199-217.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, adap-
tive, load-balancing, one-time assignment. Three variants of this basic approach
given.

42. J.A. Stankovic, An Application of Bayesian Decision Theory to Decentralized
Control of Job Scheduling, IEEE Trans. on Comp., Vol. C-34, No. 2, Feb. 1985,
pp. 117-130.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic based
on results from Bayesian Decision Theory.

43. J.A. Stankovic, Stability and Distributed Scheduling Algorithms, Proc. ACM
National Conference, New Orleans, Mar. 1985.
Here there are two separate algorithms specified. The first is a Global, dynamic,
physically distributed, cooperative, heuristic, adaptive, dynamic reassignment
example based on stochastic learning automata. The second is a Global, dynamic,
physically distributed, cooperative, heuristic, bidding, one-time assignment
approach.

44. H.S. Stone, Critical Load Factors in Two-Processor Distributed Systems, IEEE
Trans. on Software Eng., Vol. SE-4, No. 3, May 1978, pp. 254-258.
Global, dynamic, physically distributed, cooperative, optimal, (graph theory
based).

45. H.S. Stone, S.H. Bokhari, Control of Distributed Processes, Computer, Vol. 11,
Jul. 1978, pp. 97-106.
Global, static, optimal, graph theoretical.

46. H. Sullivan, T. Bashkow, A Large-Scale Homogeneous, Fully Distributed Machine
- I, Proc. 4th Symp. on Computer Architecture, Mar. 1977, pp. 105-117.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, bid-
ding.

47. A.M. VanTilborg, L.D. Wittie, Wave Scheduling--Decentralized Scheduling of
Task Forces in Multicomputers, IEEE Trans. on Comp., C-33, 9, Sep. 1984, pp.
835-844.
Global, dynamic, distributed, cooperative, sub-optimal, heuristic, probabilistic,
adaptive. Assumes tree-structured (logically) task-forces.

48. R.A. Wagner, K.S. Trivedi, Hardware Configuration Selection Through Discretiz-
ing a Continuous Variable Solution, Proc. 7th IFIP Symp. on Comp. Performance
Modeling, Measurement and Evaluation, Toronto, Canada, 1980, pp. 127-142.
Global, static, sub-optimal, approximate, mathematical programming.



- 36 -

49. Y.T. Wang, R.J.T. Morris, Load Sharing in Distributed Systems, IEEE Trans. on
Comp., Vol. C-34, No. 3, Mar. 1985, pp. 204-217.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, one-
time assignment, load-balancing.

50. M.O. Ward, D.J. Romero, Assigning Parallel-Executable, Intercommunicating
Subtasks to Processors, 1984 Intl. Conf. on Parallel Proc., Aug. 1984, pp.
392-394.
Global, static, sub-optimal, heuristic.

51. L.D. Wittie, A.M. Van Tilborg, MICROS, A Distributed Operating System for
MICRONET, A Reconfigurable Network Computer, IEEE Transactions on Com-
puters, Vol. C-29, No. 12, Dec. 1980, pp. 1133-1144.
Global, dynamic, physically distributed, cooperative, sub-optimal, heuristic, load-
balancing(also with respect to message traffic).


