
www.epikh.eu

The EPIKH Project
(Exchange Programme to advance e-Infrastructure Know-How)

Porting Application School

Cesar Fernández (cesar.fernandez@usm.cl)

Valparaíso, 30 November 2010

 gLite Advanced Job Management

Outline

•DAG
•Collection
•Parametric
•MPI
•OpenMP
•Practice

Special Jobs

Introduction to job’s types

The WMS currently supports the following types for Jobs (this does not apply to
DAGs and Collections):

Normal a simple batch job

Interactive a job whose standard streams are forwarded to the submitting client

MPICH a parallel application using MPICH-P4 implementation of MPI

Partitionable a job that can be thought as composed by a set of independent
steps/iterations, i.e. a set of independent sub-jobs, each one taking care of a step
or of a sub-set of steps, and which can be executed in parallel

Checkpointable a job able to save its state, so that the job execution can be
suspended, and resumed later, starting from the same point where it was first
stopped

Parametric a job whose JDL contains parametric attributes (e.g. Arguments, StdInput
etc.) whose values can be made vary in order to obtain submission of several
instances of similar jobs only differing for the value of the parameterized attributes

3

DAG jobs

•A DAG job is a set of jobs where input, output, or
execution of one or more jobs can depend on other
jobs
•Dependencies are represented through Directed
Acyclic Graphs, where the nodes are jobs, and the
edges identify the dependencies

node
node
A

node
B

node
C

node
D

node
E

Attribute: InputSandbox

•All nodes that do not contain the InputSandbox
attribute in their descriptions inherit the value of these
attributes from the one specified for the DAG.

•Nodes representing jobs without InputSandbox have
to contain the following specification in their
description (empy InputSandbox list):

[
…………….
InputSandbox = {};
……………

]

Attribute: Nodes

Attribute: File

•The File attribute is a string representing the path on the local
file system ofù a file containing the JDL description of a Job. It
is important to note that this kind of representation can only be
used when submitting to the WMS through a client (glite-wms-
job-submit) able to resolve the path locally and to expand the
JDL with the full description before passing it to the WMS.

•The File attribute cannot be specified together with
the Description attribute within the same node
description!

Attribute: Dependencies

DAG jdl

[
 type = "dag";
 max_nodes_running = 4;
 nodes = [
 nodeA = [
 file ="nodes/nodeA.jdl" ;
];
 nodeB = [
 file ="nodes/nodeB.jdl" ;
];
 nodeC = [
 file ="nodes/nodeC.jdl" ;
];
 nodeD = [
 file ="nodes/nodeD.jdl";
];
 dependencies = {
 {nodeA, nodeB},
 {nodeA, nodeC},
 { {nodeB,nodeC}, nodeD }
 }
];
]

Job Collection

•A job collection is a set of independent jobs that
user wants to submit and monitor as a single request
•Jobs of a collection are submitted as DAG nodes
without dependencies

[
Type = "collection";
VirtualOrganisation = “gilda";
nodes = {

 [<job descr 1 >],
 [<job descr 2 >],
 …
};

]

Input Sandboxes

•Input Sandbox can contain:
–pointer to other files within the DAG/collection
–URI pointing to files on a remote gridFTP/HTTPS server
–file paths on the UI machine (i.e. the usual way)

Only local files (file://) are uploaded to the WMS node

•File pointed by URIs are directly downloaded on the WN
by the JobWrapper just before the job is started

InputSandbox = {

 "gsiftp://neo.datamat.it:2811/var/prg/sim.sh",

 root.nodes.nodeA.description.OutputSandbox[0],

 "file:///home/pacio/myconf“ };

 Output Sandboxes
•The OutputSandbox attribute lists the files destination of
the job output

A base URI to be applied to all sandbox files can also be
specified

•Files are copied when the job has completed execution by
the JobWrapper to the specified destination without
transiting on the WMS node

OutputSandbox = { "jobOutput","run1/event1",
"jobError" };

OutputSandboxDestURI = {
"gsiftp://matrix.datamat.it/var/jobOutput",
"https://grid003.ct.infn.it:8443/home/cms/event1",
"gsiftp://matrix.datamat.it/var/jobError" };

OutputSandboxBaseDestURI = "gsiftp://neo.datamat.it/home/run1/";

Parametric Job

•A parametric job is a job where one or more of its
 attributes are parameterized

•Values of attributes vary according to a parameter

Job monitoring / managing is always done through an unique
jobID, as if the job was single (see submission of collection)

[
 JobType = "Parametric";
 Executable = "/bin/sh";
 Arguments = "md5.sh input_PARAM_.txt";
 InputSandbox = {"md5.sh", "input_PARAM_.txt"};
 StdOutput = "out_PARAM_.txt";
 StdError = "err_PARAM_.txt";
 Parameters = 4;
 ParameterStart = 1;
 ParameterStep = 1;
 OutputSandbox = {"out_PARAM_.txt",
"err_PARAM_.txt"};
]

Parametric job
•Parameter can be either a number, or a list of items
(typically strings, but not enclosed within double quotes)

•Input Sandbox (if present) has to be coherent with
parameters

> cat param2.jdl
[
 JobType = "Parametric";

 Executable = “/bin/cat";
 Arguments = “input_PARAM_.txt”;

 InputSandbox = "input_PARAM_.txt";
 StdOutput = "myoutput_PARAM_.txt";
 StdError = "myerror_PARAM_.txt";
 Parameters = {EARTH,MOON,MARS};
 OutputSandbox = {“myoutput_PARAM_.txt”};

]

> ls
inputEARTH.txt inputMARS.txt inputMOON.txt
param2.jdl

It is the list
of the values
the
parameter
must take.

Parametric job

[
JobType = "Parametric";
Executable = "myjob.exe";
StdInput = "input_PARAM_.txt";
StdOutput = "output_PARAM_.txt";
StdError = "error_PARAM_.txt";
Parameters = 100;
ParameterStart = 1;
ParameterStep = 1;
InputSandbox = {"myjob.exe", "input_PARAM_.txt";
OutputSandbox = {"output_PARAM_.txt",
"error_PARAM_.txt"};
]

The parameter is a number

the initial number of
the running
paramenter,

the increment of the
running parameter
between consecutive
jobs.

Both attributes, ParameterStart and
ParameterStep, can be set only if Parameters is

a number.

A parametric structure generates N jobs as follow:
N = (Parameters – ParameterStart)/ParameterStep

Each one containing the same JDL but the parametric attributes for
which the “_PARAM_” instruction is replaced with the actual value of
the parameter.

Also, the parameters can be represented as follow:

Arguments = "_PARAM_";
Parameters = {alpha, beta, gamma};

It can be used as a set of numbers:

Arguments = “test.sh _PARAM_";
Parameters = 1000;
ParameterStart = 1;
ParameterStep=1;

Parametric job

Parametric job

Important Issue:

Be carefull with the command glite-wms-job-output, since to recover
 all data outputs, it requires that the N jobs had finished. The command
only recovers the data outputs of the set of jobs finished.

MPI Overview

•Execution of parallel jobs is an essential issue for modern
informatics and applications.

•Most used library for parallel jobs support is MPI (Message
Passing Interface)

•At the state of the art, parallel jobs can run inside single
Computing Elements (CE) only;

•Several projects are involved into studies concerning the
possibility of executing parallel jobs on Worker Nodes (WNs)
belonging to different CEs.

The source code must have been compiled with mpicc libraries

• From the user’s point of view, jobs to be run as MPI
are specified setting the JDL JobType attribute to
MPICH and specifying the NodeNumber attribute as
well.

E.g.:

…

JobType = “MPICH”;

NodeNumber = 4;
…

This attribute defines the
required number of CPUs
needed for the application

Requirements & settings

• When the previous two attributes are included in a JDL, the
User Interface (UI) automatically adds the following expression:

to the

JDL Requirements expression in order to find out the best
resource where the job can be executed.

(other.GlueCEInfoTotalCPUs >= NodeNumber) &&

Member (“MPICH”,other.GlueHostApplicationSoftwareRunTimeEnvironment)

Requirements & settings

MPI JDL

> $ cat MPItest.jdl
[
Type = "Job";
JobType = "MPICH";
NodeNumber = 4;
Executable = "MPItest.sh";
Arguments = "MPItest";
StdOutput = "MPItest.out";
StdError = "MPItest.err";
InputSandbox = {"MPItest.sh","MPItest.c"};
OutputSandbox =
{"MPItest.err","MPItest.out","mpiexec.out"};
Requirements = (other.GlueCEInfoLRMSType ==
"PBS") || (other.GlueCEInfoLRMSType == "LSF");
]

MPI C code

Simple c program for mpi job:

#include "mpi.h"
#include <stdio.h>
int main(int argc, char *argv[])
{
 int numprocs; /* Number of processors */
 int procnum; /* Processor number */
 /* Initialize MPI */
 MPI_Init(&argc, &argv);
 /* Find this processor number */
 MPI_Comm_rank(MPI_COMM_WORLD, &procnum);
 /* Find the number of processors */
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 printf ("Hello world! from processor %d out of %d\n", procnum, numprocs);
 /* Shut down MPI */
 MPI_Finalize();
 return 0;
}

22

MPI Sample
File sh associate with mpi job:

#!/bin/sh -x
the binary to execute
EXE=$1

echo "**"
echo "Running on: $HOSTNAME"
echo "As: " `whoami`
echo "**"

echo "**"
echo "Compiling binary: $EXE"
echo mpicc -o ${EXE} ${EXE}.c
mpicc -o ${EXE} ${EXE}.c
echo "*************************************"

if ["x$PBS_NODEFILE" != "x"] ; then
 echo "PBS Nodefile: $PBS_NODEFILE"
 HOST_NODEFILE=$PBS_NODEFILE
fi

 […]

23

MPI Sample
if ["x$LSB_HOSTS" != "x"] ; then
 echo "LSF Hosts: $LSB_HOSTS"
 HOST_NODEFILE=`pwd`/lsf_nodefile.$$
 for host in ${LSB_HOSTS}
 do
 echo $host >> ${HOST_NODEFILE}
 done
fi

if ["x$HOST_NODEFILE" = "x"]; then
 echo "No hosts file defined. Exiting..."
 exit
fi

echo "**"
CPU_NEEDED=`cat $HOST_NODEFILE | wc -l`
echo "Node count: $CPU_NEEDED"
echo "Nodes in $HOST_NODEFILE: "
cat $HOST_NODEFILE
echo "***"
echo "**"

[…]

24

MPI Sample

CPU_NEEDED=`cat $HOST_NODEFILE | wc -l`
echo "Checking ssh for each node:"
NODES=`cat $HOST_NODEFILE`
for host in ${NODES}
do
 echo "Checking $host..."
 ssh $host hostname
done
echo "**"

echo "**"
echo "Executing $EXE with mpiexec"
chmod 755 $EXE
mpiexec `pwd`/$EXE > mpiexec.out 2>&1
echo "**"

echo "**"
echo "Executing $EXE with mpirun"
chmod 755 $EXE
mpirun -np $CPU_NEEDED -machinefile $HOST_NODEFILE `pwd`/$EXE
echo "**"

25

OpenMP

• The OpenMP Application Program Interface (API) supports multi-platform shared
memory parallel programming in C/C++ and Fortran on all architectures.

• OpenMP is a portable, scalable model that gives shared-memory parallel
programmers a simple and flexible interface for developing parallel applications for
platforms ranging from the desktop to the supercomputer.

• Supported by ICC and GCC (version >=4.2)

26

Multicore job example

>cat multicore.jdl

[

Type="Job";

JobType="Normal";

Executable = "multicore.sh";

StdError = "multi.e";

StdOutput = "multi.o";

InputSandbox = {"multicore.sh","multicore.cpp"};

OutputSandbox = {"multi.e", "multi.o"};

Requirements = other.GlueCEInfoLRMSType == "PBS" &&

 other.GlueCEInfoTotalCPUs >=4;

]

27

Multicore job example

#include <iostream>

#include <omp.h>

using namespace std;

int main(int argc, char *argv[]) {

 cout<<"\n Ejemplo multicore"<<endl;

 omp_set_num_threads(4);

 int i;

 double inicio1,inicio2;

 inicio1=omp_get_wtime();

 #pragma omp parallel for

 for(i=0;i<4;i++){

 cout<<"\n Hola soy el Thread: "<<omp_get_thread_num()<<endl;

 }

 inicio2=omp_get_wtime();

 cout<<"\n tiempo del loop: "<<inicio2-inicio1<<endl;

 return 0;

}

28

Multicore job example

>cat multicore.sh

#!/bin/sh -x

g++ multicore.cpp -o multicore -fopenmp

chmod 777 multicore

./multicore

>glite-wms-job-submit –o salida.txt –a multicore.jdl

>glite-wms-job-status –i salida.txt

>glite-vms-job-output –i salida.txt –dir .

>more job_id/*

29

Practical on WMS

Run an ls command on a resource
>cat ls_la.jdl

[

 Type = "Job";

 JobType = "Normal";

 Executable = "command.sh";

 Arguments = "-la";

 StdError = "stderr.e";

 StdOutput = "stdout.o";

 InputSandbox = "simple.sh";

 OutputSandbox = {"stderr.e", "stdout.o"};

]

>cat command.sh
#!/bin/sh
/bin/ls $1

30

Submit C/C++ programs

>cat hello.cpp

#include <iostream>

using namespace std;

int main(int argc, char *argv[]) {

 cout<<"\hola mundo”<<endl;

 Return 0;

 }

>cat hello.jdl

[

 Executable = "/bin/sh";

 Arguments = "hello.sh";

 StdError = "stderr.err";

 StdOutput = "stdout.out";

 InputSandbox = {"hello.sh","hello.cpp"};

 OutputSandbox = {"stderr.err", "stdout.out"};

]

31

Submit C/C++ programs

>cat hello.sh

#!/bin/sh -x

g++ lector.cpp -o lector

chmod 777 lector

./lector

Submit
glite-wms-job-submit -o jobid.txt -a hello.jdl

32

DAG Sample

[
Type = "dag";
max_nodes_running = 5;
nodes = [
 nodeA = [
 description = [
 JobType = "normal";
 Executable = "/bin/date";
 StdOutput = "t5a.out";
 StdError = "t5a.err";
 OutputSandbox = {"t5a.out","t5a.err"};];
];
nodeB = [
description = [
 JobType = "normal";
 Executable = "/bin/ls";
 Arguments = “-la”
 StdOutput = "t5b.out";
 StdError = "t5b.err";
 OutputSandbox = {"t5b.out","t5b.err"};];
];
dependencies = { { nodeA, nodeB } };];
];

33

References

gLite Workload Management System
http://glite.web.cern.ch/glite/packages/R3.0/deployment/glite-WMS/glite-WMS.asp

The Message Passing Interface (MPI) standard

http://www.mcs.anl.gov/research/projects/mpi/

The OpenMP API specification for parallel programming

http://openmp.org

34

http://glite.web.cern.ch/glite/packages/R3.0/deployment/glite-WMS/glite-WMS.asp
http://www.mcs.anl.gov/research/projects/mpi/
http://openmp.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

