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Abstract. Scheduling algorithms play an important role in heterogeneous
computing systems. Here, some recent strategies to schedule tasks in this
kind of environments are reviewed. In particular, we consider Quadratic
Self-Scheduling (QSS), Exponential Self-Scheduling (ESS) and Root Self-
Scheduling (RSS). In the tests performed QSS and ESS outperform the
other self-scheduling algorithms. However, these algorithms depend on sev-
eral parameters, which have to be optimized for the working environment.
To tackle this problem, we have developed a heuristic approach, based in
Simulated Annealing (SA), to optimize all the parameters of QSS and ESS.
We �nd that the optimal SA results permit to reduce the overall computing
time. Finally, we are working to improve this approach by considering the
changes of the environment during the execution of the tasks. The prelim-
inar results show a reduction in the overall execution time due to a better
load balance.

1 Introduction
An essential issue in distributed high-performance computing is how to allocate ef-
�ciently the workload among the processors. This is specially important when the
resources are not only distributed, but also heterogeneous, as in a computational
Grid [13]. A computational Grid is a hardware and software infrastructure pro-
viding dependable, consistent, and pervasive access to resources among di�erent
administrative domains. The objective is to enable the sharing of these resources
in a uni�ed way, maximizing their use. A Grid can be used e�ectively to support
large-scale runs of distributed applications. An ideal case to be run in Grid is that
with many large independent tasks. This case arises naturally in parameter sweep
problems. A correct assignment of tasks, so that computer loads and communi-
cation overheads are well balanced, is the way to minimize the overall computing
time. This problem belongs to the active research topic of the development and
analysis of scheduling algorithms. Di�erent scheduling strategies have been devel-
oped along the years (for the classical taxonomy see [5]). In particular, dynamic
self-scheduling algorithms are extensively used in practical applications. These al-
gorithms represent schemes where tasks are allocated in run-time. Self-scheduling
algorithms were initially developed to solve parallel loop scheduling problems in
homogeneous memory-shared systems, see for instance [17]. Here, the loop itera-
tions have not interdependencies, and they can be scheduled as independent tasks.



This kind of algorithms divides the set of tasks into subsets (chunks), and al-
locates them among the processors. In this way overheads are reduced [16]. The
simplest of these algorithms is Chunk Self-Scheduling (CSS) [21], which divides the
total number of tasks among the available processors, assigning the resulting num-
ber of tasks (the chunk) to each processor. We also have Guided Self-Scheduling
(GSS) [19] which determine the chunk size dividing the number of remaining tasks
by the total number of processors. Moreover, we have Factoring Self-Scheduling
(FSS) where the tasks are scheduled in batches (or stages) of P chunks of equal
size, where P is the number of processors [14]. The chunk size is determined by
dividing the number of remaining tasks by the product of the number of proces-
sors and by a parameter (α). The last basic approach is Trapezoid Self-Scheduling
(TSS). TSS uses a linear decreasing chunk function [22].

Although self-scheduling algorithms were derived for homogeneous systems,
these algorithms have been tested successfully in distributed memory multiproces-
sor systems and heterogeneous clusters [3, 6, 23]. In addition, some works about
their performance on heterogeneous environments such as computational Grids
have been reported [7, 8, 18, 20]. However, the problem could be the �exibility
of these algorithms (they may have not enough degrees of freedom) to adapt e�-
ciently to a heterogeneous environment. In this sense, we have previously proposed
several algorithms, which introduce additional degrees of freedom in the model.
The �rst, called Quadratic Self-Scheduling (QSS) [6, 7], is based on a quadratic
form for the chunks distribution function. Therefore, it has three degrees of free-
dom, which provide high adaptability to distributed heterogeneous systems. The
second approach, called Exponential Self-Scheduling (ESS) [8, 9], is based on the
slope of the chunks distribution function. In this case, we consider that the chunks
distribution function decreases in an exponential way. This algorithm also provides
a good adaptability in distributed heterogeneous systems using two parameters.
Both cases are reviewed in the next Section.

2 New Self-Scheduling Schemes

This section describes the two di�erent families of Self-Scheduling methods pro-
posed in [8,9]. Both of them use the chunk distribution function, C(t). This func-
tion gives the chunk size as a function of the t-chunk. The �rst family is based in
the chunks distribution function, whereas the second focuses on the slope of C(t).
Moreover, we comment the results found in the comparative study performed with
other well-established self-scheduling algorithms.

2.1 Methods based in the chunks distribution function
In this case, we look for an explicit form for C(t), which we can consider given by
a function f(t), the target function. From a general point of view, we can expand
C(t) in a Taylor series as a function of t as shown in equation (1),

C(t) = f(t0) +
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Depending on the size of the expansion we have methods of di�erent order.
Thus, for C(t) constant we have pure self-scheduling or chunk self-scheduling. For
the linear approach we have TSS. Finally, for the quadratic case a new method
called Quadratic Self-Scheduling (QSS) has been proposed [6, 7]. In QSS, C(t) is
given by equation (2)

C(t) = a + bt + ct2 (2)

where t represent the t-th chunk assigned to a processor. To apply the QSS al-
gorithm we need the a, b and c coe�cients of equation (2). Thus, we can select
three reference points (C(t), t) and solve for the resulting system of equations.
Useful points are (C0, 0), (CN/2, N/2) and (CN , N), where N is the total number
of chunks. Solving for a, b and c, we obtain,

a = C0

b = (4CN/2 − CN − 3C0)/N (3)
c = (2C0 + 2CN − 4CN/2)/N2

where N is de�ned [7] by,

N = 6I/(4CN/2 + CN + C0) (4)

The CN/2 value is given by,

CN/2 =
CN + C0

δ
(5)

where δ is a parameter. Assuming C0 and CN �xed, the CN/2 value determines the
slope of equation (2) at a given point. Therefore, depending on δ, the slope of the
quadratic function for a t value is higher or smaller than that of the linear case,
which corresponds to δ=2. In the tests shows in section 2.3, we kept the size of
the initial chunk as I/2P, which is the optimal value determined with TSS by Tzen
and Ni [22]. However, the size of the last chunk and the δ value were optimized
for the execution environment.

2.2 Methods based in the slope of the chunks distribution function

Now, the starting point is the slope of the chunks distribution function, C(t). Thus,
we are selecting the rate of variation of C(t) as a function of t. Therefore, if the
slope is given by a decreasing function, f(t), we have the general expression,

dC(t)
dt

= f(t) (6)

Equation (6) de�nes a family of di�erential equations. After integration we will
have an explicit functional form for C(t) as a function of t.



A �rst approach is to consider that the slope (negative) is proportional to the
chunk size, equation (7).

dC(t)
dt

= −kC(t) (7)

Here, k is a parameter and t represents the t-th chunk assigned to a processor.
Equation (7) can be integrated by separation of variables yielding equation (8),

C(t) =
(

I

2P

)
e−kt (8)

where we have used C(0)=I/2P, as proposed by Tzen and Ni [22], I is the total
number of chunks and P is the total number of processors. Equation (7) de�nes
a new self-scheduling method that we call Exponential Self-Scheduling (ESS). In
this method, k is a parameter that will be optimized for our working environment.

A second approach is to consider that the slope (negative) is inversely propor-
tional to C(t)

dC(t)
dt

= −k/C(t) (9)

Here, k is a parameter and t represents the t-th chunk assigned to a processor.
Equation (9) can be integrated by separation of variables yielding,

C(t) =

√(
I

2P

)2

− 2kt (10)

where we have used C(0) = I/2P , as proposed by Tzen and Ni [22]. Equation (9)
de�nes a new self-scheduling method that we call Root Self-Scheduling (RSS). As
in ESS, k is a parameter related to the working environment.

2.3 Comparative Study with other self-scheduling algorithms

In previous works [7�9], we compared at the application level, the performance
of QSS, ESS and RSS against Chunk Self-Scheduling, Guided Self-Scheduling,
Factoring Self-Scheduling and Trapezoid Self-Scheduling algorithms in an actual
Internet-based Grid of computers. The di�erent parameters of our self-scheduling
algorithms were determined experimentally, and the parameters of the other self-
scheduling algorithms were selected as theirs authors recommend. The tests were
carried out in an Internet-based Grid of computers formed by three clusters. Two of
them placed in Ciudad Real (Spain) and the other one placed in Puebla (Mexico).

In the tests, we considered sets of tasks without any prede�ned relationship
among their durations. To cover a large range of applications, we used two groups
of tests corresponding to very di�erent complexities (payloads). In the �rst case,
the application performed several times a product of square matrices of �oating
point numbers (payload of O(n3)). Each chunk size corresponded to a number
of matrix products (tasks). In the second group, the application sorted several
times a vector of �oating point numbers. The method used was heapsort (payload



of O(n · log2 n)) [15]. Each chunk size corresponded to a number of vector sorts
(tasks).

To carry out the performance study, we considered, for each test group, a total
of three test cases involving several thousand tasks. The cases correspond to di�er-
ent combinations of number of allocatable tasks and number of processors. Each
case is labeled as: number of tasks/number of processors. With this convention the
three test cases are: 2804/20, 5608/20 and 5608/26. The calculations needed for
each test were performed three times, to obtain average results. As performance
index we have used the speedup relative to the worst case.

Thus, Figure 1 and Figure 2 collect the speedups obtained in the tests per-
formed in the matrix multiplication group and in the heapsort group, respectively.

Fig. 1. Matrix multiplication group: Speedup (S), respect to CSS, for the considered
self-scheduling algorithms in the tests performed.

Fig. 2. Heapsort group: Speedup (S), respect to CSS, for the considered self-scheduling
algorithms in the tests performed.



The tests collected in Figure 1 and 2 show that QSS outperforms all the other
self-scheduling schemes and slightly ESS, because of its higher adaptability to a
heterogeneous environment. CSS and RSS present the worst behaviour in the �rst
group of tests (matrix multiplication). This is due to the use of very large chunks.
This fact produces a large load imbalance. However, in the second group (heapsort)
of tests, CSS and GSS present the worst behaviour. The poor performance of GSS
can be due to the large amount of tasks that this algorithm assigns to the �rst
chunks. Finally, FSS and TSS have similar behaviour in the di�erent tests.

3 Handling Dynamic Grid Environments
The previous results show that QSS and ESS outperform the other self-scheduling
algorithms tested, since they obtain better load balance and more reduction of the
communication overhead. However, a computational Grid is made up of a large
number of independent resource providers and consumers, which run concurrently,
change dynamically, and interact with each other. Due to these environment char-
acteristics, new approaches such as those based in heuristic algorithms [11, 24]
have been proposed to address the challenges of Grid computing. These kinds of
algorithms make realistic assumptions based on a priori knowledge of the con-
cerning processes and of the system load characteristics. Braun et al [4] presented
three basic heuristics, based on Nature, for Grid scheduling. These are Genetic
Algorithms (GA) [1], Simulated Annealing (SA) [12] and Tabu Search (TS) [2].

3.1 Heuristic Approach to Task Scheduling
As presented above, the QSS and ESS self-scheduling algorithms depend on three
and two parameters respectively. These parameters determine the behavior of the
algorithms. Therefore, for a given computational environment it is necessary to
select the most appropriate (optimal) values of these parameters to obtain a good
load balance and to minimize the overall computation time. In previous studies,
we obtained the best parameters from experimental measures on an actual sys-
tem [7�9]. However, this is a slow and hard process that we would repeat each time
the execution environment changes. In these conditions, the systematic exploration
of the parameter space when several (more than two) parameters do exist is simply
unmanageable. For this reason in [10], we presented a way to obtain optimal QSS
and ESS parameters using a heuristic approach. To such an end, we simulate the
execution environment (a computational Grid in our case). So, using the simula-
tion, we obtain the computation time of each algorithm for a given value of its
parameters. Then, we apply a heuristic algorithm to explore the behavior of the
scheduling method for di�erent values of the parameters, minimizing the overall
computation time.

The heuristic algorithm selected was Simulated Annealing (SA). We consider
that the function to minimize, the cost function (f), is the overall computation
time needed to process a set of tasks, i.e., its makespan. In turn, we consider
that the cost function depends on s, the set of parameters used by each self-
scheduling algorithm. The cost function f(s) is obtained as the simulated time (in



seconds) necessary to solve all tasks in the speci�ed execution environment. The
tasks are scheduled according to QSS or ESS, and the optimal parameters are
given by SA. The simulator is organized as follows. Each task has associated a
value, from 1 to 10, which represents its duration (in seconds). Task durations
are randomly generated. As previously commented, QSS and ESS allocate sets
of tasks (chunks). So, the duration of a chunk is the sum of all tasks durations
composing it. The computing (CPU) time for a chunk is calculated dividing its
duration by the relative computing power of the processor where the chunk is
executed. This computing power is referred to the fastest processor. Thus, lower
values correspond to slower processors. To this value we add the temporal cost
of transferring the chunk to the processor where it is executed. In addition, the
scheduling cost introduced by the local queuing software is included as well [10].

3.2 Testing the Heuristic Approach
Several tests were performed in [10] to verify the e�ect of SA optimized parameters
in the e�ciency of QSS and ESS. Tests with 1000, 2000, 5000 and 10000 tasks were
considered. The execution environment represented in the simulation was a replica
of the Internet-Based Grid of computers presented in Section 2.3. The optimal
values for the QSS and ESS parameters obtained by SA were used to compare
the behavior of QSS and ESS. Moreover, we compared these results against the
results obtained using the parameters experimentally determined for QSS and ESS
in [8]. Each test was performed 100 times to obtain average results and determine
standard deviations. Figures 3 and 4 collect the tests results.

Fig. 3. Comparison between the cost of QSS optimized using SA (QSS SA) and the cost
of QSS optimized experimentally (QSS E). The cost is given in seconds.

Figures 3 shows graphically a comparison of the QSS average results. We ob-
serve that the cost associated to the SA optimized parameters, �QSS SA�, is always
lower than that associated to the experimentally optimized QSS, �QSS E�. In par-
ticular, we �nd that SA allows for an improvement between 3% and 6%. This is



an interesting result, since SA obtains the most appropriate parameter values in
12 to 60 seconds, whereas the experimental values need a lengthy time consuming
procedure on the actual Grid system [8].

Fig. 4. Comparison between the cost of ESS optimized using SA (ESS SA) and the cost
of ESS optimized experimentally (ESS E). The cost is given in seconds.

With respect to ESS, Figure 4 shows graphically a comparison of the ESS
average results. We can appreciate that the cost of ESS with SA, �ESS SA�, is
always lower than that for the experimental parameters, �ESS E�. In this case,
simulated annealing gives us an improvement between 9% and 12%. Now, only 15
to 45 seconds are needed by SA to obtain the optimal results.

Finally, comparing the QSS and ESS behaviour, we see that both exhibit a
similar performance. This result agrees with the data obtained in the experimental
tests performed in [8].

4 Conclusions

We have considered in this work the problem of job scheduling at the application
level in heterogeneous computing systems. In particular, the work is directed to-
ward Internet-based Grids of computers. Focusing in self-scheduling schemes, we
have reviewed recent algorithms proposed by us (QSS and ESS), as well as, their
behaviour in an actual system. We have observed that they outperform the other
self-scheduling algorithms tested. However, QSS and ESS depend on three and
two parameters respectively. Therefore, for a given computational environment it
is necessary to select the most appropriate (optimal) values of these parameters
to obtain a good load balance and to minimize the overall computation time.

In this sense, we have proposed a way to obtain optimal QSS and ESS parame-
ters using a heuristic approach. We observe that optimizing the parameters using
SA permits to reduce the overall computing time up to a 12%. The performed
tests show that the simulated performance of the scheduling algorithms is similar



to the experimental observations, with QSS outperforming slightly ESS. However,
the time needed to obtain the optimal SA parameters for QSS and ESS in the
simulated environment is negligible compared with the time needed for an experi-
mental calibration in an actual Grid system. In addition, SA can optimize all the
parameters in the scheduling algorithms, despite its number. In the general case,
this is not possible using experimental measures. The test cases also show that
the present heuristic approach is very e�cient. In fact, we observe a simple linear
increase of the execution time with the problem size.

Nevertheless, if the environment characteristics change strongly, we could have
a lack of e�ciency. Thus, we are working in an adaptive approach to take into
account the possible changes in the environment during the execution. The idea is
to obtain new optimal QSS and ESS parameters when the environment changes, to
maintain a good load balance. Preliminar results show that using the new adaptive
approach, we can guarantee a better load balance than using just the heuristic one.
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