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SUMMARY

The resource management system is the central component of distributed network
computing systems. There have been many projects focused on network computing
that have designed and implemented resource management systems with a variety
of architectures and services. In this paper, an abstract model and a comprehensive
taxonomy for describing resource management architectures is developed. The taxonomy
is used to identify approaches followed in the implementation of existing resource
management systems for very large-scale network computing systems known as Grids.
The taxonomy and the survey results are used to identify architectural approaches and
issues that have not been fully explored in the research.
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1. Introduction

A distributed network computing (NC) system is a virtual computer formed by a networked
set of heterogeneous machines that agree to share their local resources with each other. A
Grid [1] is a very large-scale, generalized distributed NC system that can scale to Internet
size environments with machines distributed across multiple organizations and administrative
domains. The emergence of a variety of new applications demand that Grids support efficient
data and resource management mechanisms. Designing a Grid architecture that will meet these
requirements is challenging due to several issues [1, 2]. Some of these issues are: (a) supporting
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adaptability, extensibility, and scalability, (b) allowing systems with different administrative
policies to inter-operate while preserving site autonomy, (¢) co-allocating resources, (d)
supporting quality of service, and (e) meeting computational cost constraints.

For a Grid to efficiently support a variety of applications, the resource management system
(RMS) that is central to its operation must address the above issues in addition to issues such
as fault-tolerance and stability [3]. The RMS manages the pool of resources that are available
to the Grid, i.e. the scheduling of processors, network bandwidth, and disk storage. In a Grid,
the pool can include resources from different providers thus requiring the RMS to hold the
trust of all resource providers. Maintaining the required level of trust should not hinder the
efficiency of the RMS by increasing the overhead for basic operations. The resource providers
may not participate in the Grid unconditionally, i.e., there may be different policies that govern
how the resources should be used by the Grid such that the resources could still meet the local
resource demands. It is the responsibility of the RMS to ensure that it handles the various
resources while adhering to the different usage policies. Because of the different administrative
policies, resource heterogeneity, and expected proportions of the Grid it may be necessary to
employ a federation of RMSs instead of a single RMS. The RMSs in the federation should
interoperate using a agreed set of protocols to manage the resources.

Applications may either directly or indirectly request resources from the Grid. Such resource
requests are considered as jobs by the Grid. Depending on the application, the job may specify
quality of service (QoS) requirements or accept best-effort service levels. The RMS is required
to perform resource management decisions while maximizing the QoS metrics delivered to the
clients when jobs have QoS constraints [4]. In practice, a Grid RMS may be required to handle
different jobs using different policies. For example, some jobs may require QoS support while
others may require best-effort processing. In general, requiring the RMS to support multiple
policies can compel the scheduling mechanisms to solve a multi-criteria optimization problem.

The abstract model presented in this paper succinctly captures the essential components and
functions of a Grid RMS. The significance of the different components and functions of the
model are also discussed. A taxonomy is presented that classifies the approaches that form the
“design space” for the various components in the abstract model. The taxonomy is illustrated
by applying it to categorize the approaches taken by a selected set of existing Grid RMSs.
This application of the taxonomy also reveals some of the areas that are yet to be researched
fully.

2. Related Work

A distributed computing scheduling taxonomy is presented in [5]. This taxonomy includes
static scheduling techniques that are not addressed in our taxonomy. It also does not
consider scheduling, state estimation, and resource models separately when classifying dynamic
scheduling. The taxonomy for dynamic scheduling presented in [6] only considers two aspects of
resource management, scheduling and state estimation. Qur taxonomy provides classification of
resource models and examines scheduling and state estimation at a finer level. Several advances
in distributed resource management since the publication of [6] have also been incorporated
into our taxonomy.
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Figure 1. A Grid systems taxonomy.

A taxonomy for heterogeneous computing environments is presented in [7]. The taxonomy
covers the application model, target platform model, and mapping heuristic model. Application
models are not covered in our taxonomy and there is no differentiation on target platform model
because the focus is on issues relevant to the designers of RMSs rather than issues relevant to
application and toolkit designers.

Several taxonomies for characterizing a distributed system are presented in [8] and [9]. The
EM?3 taxonomy in [8] classifies a heterogeneous computing system based on the number of
execution modes and machine models. An extended version of the taxonomy developed in [5]
is also presented in [8] to characterize the scheduling algorithms in heterogeneous computing
systems. OQur taxonomy is focused on RMS design issues and thus differs from the taxonomies
presented in [8]. The taxonomy presented in [9] provides a broad characterization based
on the external interfaces, internal system design, class of hardware and software resource
support, and resource management issues. Our taxonomy of RMS is more detailed than the
one presented in [9)].

3. Grid System Taxonomy

The design objectives and target applications for a Grid motivate the architecture of the RMS.
This paper groups design objectives into three themes: (a) improving application performance,
(b) data access, and (c) enhanced services. Using these themes, Grid systems are placed into
the categories shown in Figure 1.

The computational Grid category denotes systems that have higher aggregate computational
capacity available for single applications than the capacity of any constituent machine in the
system. Depending on how this capacity is utilized, these systems can be further subdivided
into distributed supercomputing and high throughput categories. A distributed supercomputing
Grid executes the application in parallel on multiple machines to reduce the completion time
of a job. Typically, applications that require distributed supercomputing are grand challenge
problems such as weather modeling and nuclear simulation. A high throughput Grid increases
the completion rate of a stream of jobs and are well suited for “parameter sweep” type
applications such as monte carlo simulations [10, 11].
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The data Grid category is for systems that provide an infrastructure for synthesizing
new information from data repositories such as digital libraries or data warehouses that
are distributed in a wide area network. Computational Grids also need to provide data
services but the major difference between a data Grid and a computational Grid is the
specialized infrastructure provided to applications for storage management and data access.
In a computational Grid the applications implement their own storage management schemes
rather than use Grid provided services. Typical applications for these systems include special
purpose data mining that correlates information from multiple different data sources. The data
Grid initiatives, European DataGrid Project [12] and Globus [13], are working on developing
large-scale data organization, catalog, management, and access technologies.

The service Grid category is for systems that provide services that are not provided
by any single machine. This category is further subdivided as on-demand, collaborative,
and multimedia Grid systems. A collaborative Grid connects users and applications into
collaborative workgroups. These systems enable real time interaction between humans and
applications via a virtual workspace. An on-demand Grid category dynamically aggregates
different resources to provide new services. A data visualization workbench that allows a
scientist to dynamically increase the fidelity of a simulation by allocating more machines to a
simulation would be an example of an on-demand Grid system. A multimedia Grid provides
an infrastructure for real-time multimedia applications. This requires supporting QoS across
multiple different machines whereas a multimedia application on a single dedicated machine
may be deployed without QoS [14].

Most ongoing research activities developing Grid systems fall into one of the above categories.
Development of truly general-purpose Grid systems that can support multiple or all of these
categories remains a hard problem.

4. RMS Definitions and Requirements

This section develops an abstract model for resource management systems to outline the
different architectural choices made in several existing and upcoming RMSs. To keep the
abstract model compact, only the core functions of an RMS are included. Essential definitions
and key resource management issues are presented before describing the proposed model.

In Grids, a resource is a reusable entity that is employed to fulfill a job or resource request.
It could be a machine, network, or some service that is synthesized using a combination of
machines, networks, and software. The resource provider is defined as an agent that controls
the resource. For example, a resource broker that acts as the resource provider for a resource
could provide the consumers with a “value added” abstract resource [15]. Similarly, a resource
consumer is defined as an agent that controls the consumer. A resource management system
is defined as a service that is provided by a distributed NC system that manages a pool of
named resources that is available to the NC such that a system- or job-centric performance
metric is optimized.

Due to issues such as extensibility, adaptability, site autonomy, QoS, and co-allocation,
resource management in Grid systems is more challenging than in traditional distributed
computing environments (DCEs) [3]. In addition to the issues such as scalability,
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responsiveness, fault-tolerance, and stability that are encountered by the RMSs of traditional
DCEs, the Grid RMSs have to deal with the issues that arise due to distributed ownership
of the resources. Further, an issue may be addressed differently by DCE and Grid RMSs. For
example, traditional DCE RMSs may be work conserving whereas Grid RMSs may not be
work conserving. In Grids, due to resource heterogeneity and security concerns it may be best
to execute a job only on a subset of resources. Another example would be the way QoS issue
is handled. Traditional DCEs typically span a single administrative domain and are likely to
handle jobs that originate from clients that belong to the organization. Therefore, QoS could
be implemented in such systems, to a certain extent using job priorities.

However, in a Grid with jobs from different owners, providing QoS is more challenging. It is
essential for the RMS to consider the jobs’ access privileges, type of subscription, and resource
requirements while determining the level of QoS. Depending on the type of QoS assurances
given, a contract may be formed between the RMS and job. In this contract, the assurances
given by the RMS may be contingent upon the job operating within some predefined resource
limits. In order to forge a meaningful contract the expected resource usage of the job should be
determined. However, accurately predicting the resource requirements of network applications
remains a hard problem. When a job overruns its resource usage predictions, the RMS should
ensure that it does not infringe on the resource allocations of other jobs, i.e., the Grid RMSs
should provide “isolation” among the jobs for fair resource management.

In general, a Grid application can have several components with the different components
mapped onto different resources. In such situations, the RMS should use a global abstraction
of the application to accredit and allocate resources [16]. The abstraction should be able to
handle various application requirements such as co-allocation, QoS, and deadlines.

5. RMS Abstract Model

Experience with large scale network computing systems has shown that efficient application
and system performances are not necessarily the same [17]. More specifically, it may not be
possible for the same scheduler to optimize application and system performances. One solution
is to have a multi-layer RMS [18]. For example, to use an application scheduler such as AppLeS
[19] in conjunction with a resource scheduler such as Globus [20] to form a two-layer RMS.
Further, due to the expected scale of Grid systems, a Grid RMS is most likely to be an
interconnection of various RMSs that are cooperating with one another within an accepted
framework. Figure 2 shows a block diagram for a system with multiple interconnected RMSs
and each RMS having multiple levels. User applications use the services of grid toolkits to
implement their functionality. The grid toolkits use the RMS service interfaces to present
suitable application layer abstractions. In the above figure, the same abstract model is used
to represent the different instances of the RMSs and the different layers within an instance.
However, the different instances may implement the abstract model distinctly.

Figure 3 shows the abstract model for the core functions supported by an RMS. The abstract
model is intended to be generic enough to be specialized as an application-specific manager or
resource-specific manager. The model contains several functional units and four interfaces: (1)
resource consumer interface (RCI), (2) resource provider interface (RPI), (3) resource manager
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Figure 2. RMS system context.
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support interface (RMSI), and (4) resource manager peer interface (RMPI). The resource
consumers that interface via RCI can be either actual applications or another RMS that
implements a “higher” layer. Similarly, the resource provider that interfaces via the RPI can
be an actual resource or another RMS that implements a “lower” layer. The support functions
such as naming and security that are essential for the operation of the RMS interface via the
RMSI. If needed, other support functions may also interface via RMSI. The RMPI provides
the protocols to interconnect with other RMSs. Several protocols including resource discovery,
resource dissemination, trading, resolution, and co-allocation may be supported by the RMPI.

The resource dissemination and discovery protocols provide a way for an RMS to determine
the state of the resources that are managed by it and other RMSs that interoperate with it.
The resource dissemination protocol provides information about the resources or a pointer
to a information server. The resource discovery protocol provides a mechanism by which
resource information can be found on demand. In some RMS architectures, no distinction
is made between these two protocols. For example, an RMS could use a replicated network
directory that contains resource information. The resource dissemination protocol could be
implemented as a directory replication protocol. The resource discovery function would then
consist of searching the nearest network directory. Alternatively, a Grid could maintain a
central network directory where dissemination consists of advertising the resource status and
discovery consists of querying the central directory.

Instead of resource dissemination and discovery protocols, some RMSs use resource trading
protocols [11]. Typically, trading protocols encapsulate the resource capabilities and statuses
using price. The resource trading takes place based on price differentials. The price itself may
be fixed by auctioning mechanisms or price functions.
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Figure 3. RMS system abstract structure.

Other peer protocols include resource resolution and co-allocation protocols. Once an RMS
becomes aware of a “remote” resource that is more suitable to service a job than any of the
local resources, it should contact the remote RMS to schedule the job at the remote resource.
The resource resolution protocol among the RMSs supports this process. The operation of this
protocol depends on the organization of the RMSs, i.e., whether the RMSs are hierarchically
or flatly organized. For some jobs, it may be necessary to simultaneously acquire multiple
resources. The resource co-allocation protocol supports this process. In some implementations,
the resolution and co-allocation protocols may be combined together.

The RMSI is an extensible interface and supports functions that are essential for the
operation of the RMS. In Figure 3, naming and security are placed as support functions with
a proxy inside the RMS for efficient operation. The naming function enforces the namespace
rules for resources and maintains a database for resource information. The structure, content,
and maintenance of the resource database are important differentiating factors. An external
instead of an internal naming function facilitates interoperability of the RMSs because the
resources will have uniform naming.

The resource/ QoS broker function is responsible for examining the resource requests that are
specified in some resource specification language and translating the requests into the internal
resource management protocols used within the RMS.
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6. RMS Taxonomy Overview

The taxonomy classifies RMSs by characterizing different attributes. The intent of the different
parts of the taxonomy is to differentiate RMS implementations with a view to impact
on overall Grid system scalability and reliability. Thus a RMS is classified according to
machine organization within the Grid, resource model, dissemination protocols, namespace
organization, data store organization, resource discovery, QoS support, scheduler organization,
scheduling policy, state estimation, and rescheduling approach.

In the following sections, resource requester identifies the machine that is requesting a
resource, resource provider identifies the machine that is providing the resource, and resource
controller identifies the machine that is responsible for allocating the resource. Current Grid
systems have machines that function in one or more of these roles.

7. Machine Organization

The organization of the machines in the Grid affects the communication patterns of the RMS
and thus determines the scalability of the resultant architecture. Figure 4 shows the taxonomy
for the machine organization. The organization describes how the machines involved in resource
management make scheduling decisions, the communication structure between these machines,
and the different roles the machines play in the scheduling decision.

Previous taxonomies used centralized and decentralized categories. In a centralized
organization a single controller or designated set of controllers performs the scheduling for
all machines. This approach is not used in Grid systems since centralized organizations suffer
from scalability issues. In a decentralized organization the roles are distributed among machines
in the Grid. Decentralized organizations have been previously divided into sender and receiver
initiated categories. This is too simple since there is a need to distinguish how the resource
requesters, resource providers, and the resource controllers organize their dialogue.

For example, a resource requester may utilize an agent-based approach to search out resource
providers and allocate the resources on behalf of the originator. This is a sender-initiated
approach. A resource requester may consult locally or globally available resources and then
makes requests to the resource providers. This is also a sender-initiated approach with a
significantly different architecture than the agent-based approach. In this paper a different
approach is used. The organization structure and resource management implementation are
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characterized separately. This section describes the organization and the next section describes
the resource management implementation.

In a flat organization all machines can directly communicate with each other without going
through an intermediary. In a hierarchical organization machines in the same level can directly
communicate with the machines directly above them or below them, or peer to them in the
hierarchy. The fan out below a machine in the hierarchy is not relevant to the classification.
Most current Grid systems use this organization since it has proven scalability.

In a cell structure, the machines within the cell communicate between themselves using flat
organization. Designated machines within the cell function acts as boundary elements that
are responsible for all communication outside the cell. The internal structure of a cell is not
visible from another cell, only the boundary machines are. Cells can be further organized in
a flat or hierarchical structures. A Grid that has a flat cell structure has only one level of
cells whereas a hierarchical cell structure can have cells that contain other cells. The major
difference between a cell structure and hierarchical structure is that a cell structure has a
designated boundary with a hidden internal structure whereas in a hierarchical structure the
structure of the hierarchy is visible to all elements in the Grid.

8. Resources

The taxonomies in this section describe the different aspects of the RMS that provide the
interface to the resources managed by the Grid RMS. Arguably the interfaces to resource
components are even more important than the scheduling components because they are
ultimately what the applications or toolkits use to implement their functionality. If the resource
interfaces do not provide the correct abstractions and efficient implementations it is unlikely
that a Grid will be used effectively.

8.1. Resource Model

The resource model determines how applications and the RMS describe Grid resources. Figure
5 shows the resource model taxonomy. The taxonomy is focused on how the resources and
operations on the resources are described.
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In a schema based approach, the data that comprises a resource is described via a description
language along with some integrity constraints. In some systems, a query language is integrated
with the schema language. The schema languages are further characterized by the ability to
extend the schemas. In an extensible schema, new schema types for resource descriptions can
be added. Predefined attribute-value based resource models are in the fixed schema category.
The Condor ClassAd approach using semi-structured data approach is in the extensible schema
category.

In an object model, the operations on the resources are defined as part of the resource model.
As with schemas the object model can be predetermined and fixed as part of the definition of
the RMS. In the object model extensible approach the resource model provides a mechanism
to extend the definition of the object model managed by the RMS. The Legion approach
provides an extensible object model oriented around resource management. It may be difficult
to implement a high performance extensible object model. The current fixed object models
are basic and provide few primitive operations on resources.

8.2. Resource Namespace Organization

A Grid RMS operates on a pool of globally named resources. The organization of the namespace
that could be created and maintained by an entity external to RMS greatly influences the
design of the resource management protocols and affects the discovery methods. Figure 6
shows the taxonomy for namespace organization.

A relational namespace divides the resources into relations and uses concepts from relational
databases to indicate relationships between tuples in different relations. A hierarchical
namespace divides the resources in the Grid into hierarchies. The hierarchies are typically
organized around the physical or logical network structures. The relational/hierarchical
namespace hybrid consists of relations where the contents of the relations are broken into a
hierarchy in order to distribute them across the machines in the Grid. Most network directory
based namespaces utilize a hybrid structure. Globus MDS is an example of a network directory
that utilizes a hybrid structure.

A graph-based namespace uses nodes and pointers where the nodes may or may not
be complex entities. Namespaces that are implemented using an object-oriented paradigm
typically use graph namespaces with object as nodes and inter-object references being the
pointers. 2K provides a graph based namespace based on the CORBA object model. A given
resource in a hierarchical namespace may occur more than once in different part of the hierarchy
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with an embedded reference to another part of the hierarchy. This is not considered a graph
namespace since the fundamental navigation method is to descend the hierarchy rather than
to chase references as in object oriented approaches.

8.3. Quality of Service Support

In Grid systems, QoS is not limited to network bandwidth but extends to the processing
and storage capabilities of the nodes. Thus the focus is on the degree a Grid can provide
end-to-end QoS rather than providing only QoS on the network. When a Grid job has QoS
requirements, it may be necessary to negotiate a service level agreement (SLA) to enforce the
desired level of service. Resource reservation is one of the ways of providing guaranteed QoS
in a Grid with dedicated resources. Globus provides some resource reservation capabilities.
It is very inefficient to guarantee network bandwidth and not guarantee processing cycles
for the application components communicating over this link. Resource reservation is also
considered to be fundamental QoS attribute. A Grid that provides the ability to specify QoS
at job submission time but cannot reserve resources in advance is considered to provide only
a partial solution to QoS. Most current Grid implementations can only provide partial QoS
since most processor operating system do not provide strict performance guarantees.

There are two parts to QoS, admission control and policing. Admission control determines
if the requested level of service can be given and policing ensures that the job does not violate
its agreed upon level of service. Figure 7 shows the taxonomy for QoS support. A RMS that
provides explicit QoS attributes for resource requests but cannot enforce SLAs via policing
provides soft QoS support. Hard QoS support is provided when all nodes in the Grid can police
the SLAs guaranteed by the RMS. Darwin and GOPI provide hard QoS support since they
are oriented towards supporting network applications.

8.4. Resource Information Store Organization

The resource information store organization determines the cost of implementing the resource
management protocols because resource dissemination and discovery may be provided by the
data store implementation. Figure 8 shows the taxonomy for resource information data store
organizations. Distributed object data stores utilize persistent object services that are provided
by language independent object models such as CORBA or a language based model such as that
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provided by persistent Java object implementations. 2K and Javelin provide object oriented
information stores based around their respective underlying object models.

Network directory data stores are based on a database engine and utilize a standard
interface language to operate on the schema data. Many existing network directories use
X.500/LDAP interfaces to access an underlying relational database or a specialized distributed
database implementation. Network directories may also provide access to underlying databases
using query interfaces other than X.500/LDAP. Network directories implemented using
relational databases may provide access using SQL or a restricted subset of it. The original
implementation of Globus MDS was based on a standard LDAP implementation but this was
converted to a specialized implementation to increase performance.

The important difference between distributed object and network directory approaches is
that in network directories the schema and operations are separated with the operations defined
externally to the data store schema. In an object oriented approach the schema defines the
data and the operations together. Other approaches such as Sun Microsystem’s Jini provide
a network information store oriented around the underlying language facilities. Jini utilizes
the features of Java such as RMI and code mobility. Jini could be used to implement a more
generalized Grid resource information store.

8.5. Resource Discovery and Dissemination

Resource discovery and dissemination may be viewed as providing complementary functions.
Discovery is initiated by a network application to find suitable resources within the Grid.
Dissemination is initiated by a resource trying to find a suitable application that can utilize
it. Figure 9 shows the taxonomy for resource discovery and Figure 10 shows the taxonomy for
resource dissemination.

The implementation of the resource description database in current systems seems to
determine the approach to resource discovery. Network directory based systems mechanisms
such as Globus MDS use parameterized queries that are sent across the network to the nearest
directory. Query based systems are further characterized depending on whether the query
is executed against a distributed database or a centralized database. The updating of the
resource description database is characterized by the resource dissemination approaches. Agent
based approaches send active code fragments across machines in the Grid that are interpreted
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locally on each machine. The Bond system is based on agents that use KQML as an agent
communication language. Agents can also passively monitor and either periodically distribute
resource information or in response to another agent. Thus agents can mimic a query based
resource discovery scheme. The major difference between a query based approach and an agent
based approach is that agent based systems allow the agent to control the query process and
make resource discovery decisions based on its own internal logic rather than rely on an a fixed
function query engine.

Resource dissemination is categorized by the approach taken for updating the resource
information. The mechanisms used to implement dissemination determine the amount of data
that is sent between machines in the Grid. For example, aggregate resource status may be sent
using a different protocol than detailed resource description information in order to reduce the
data transferred and the latency time.

In a batch/periodic approach, resource information is batched up on each Grid machine and
then periodically disseminated through the Grid. Information can be sent from the originating
machine to other machines in which case it is pushing the information or another machine in
the Grid can request the information from the originating machine in which case it pulls the
information from the machine. Condor and the European DataGrid are examples that utilize
the batch approach. In an online or on-demand approach information is disseminated from
the originating machine immediately. In this case the information is pushed to other machines
in the Grid. The set of machines that the information is sent to depends on the organization
of the Grid and the resource database implementation. The 2K system uses a demand based
resource dissemination model.
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8.6. Summary and Research Issues

This section presented taxonomies for describing resource models, resource namespace
organization, QoS support, resource information store organization, resource discovery and
resource dissemination. The solutions to these problems determine the functionality of the
resources and the efficiency by which they can be managed by other components of the RMS.
For example, the QoS support issue determines what kind of QoS support an application could
receive from an resource. The organization of the resource information store could determine
the efficiency of the scheduling or allocation algorithms. Following is a sampling of research
issues in the area of the problems considered in this subsection that need further examination.

This paper assumes that the RMS operates on a “globally” named pool of resources. Several
current generation RMSs have naming as an internal function to the RMS. Further research
is necessary to closely examine the trade-offs of placing the naming function. One motivation
for making naming a global function is it facilitates interoperability of different RMSs which
may be essential for the Grid to scale to Internet proportions.

Resource discovery and dissemination are two key functions for a wide-area RMS. The status
information of the resources that is central to these functions change dynamically. Hence the
above schemes should consider the fact that the information will become stale after a certain
time period [21]. Further, a Grid RMS is likely to handle a highly heterogeneous set of resources
with some more significant than others [22]. For dissemination schemes to reduce the message
overhead and become scalable, issues such as how to quantify significance and measure it
efficiently should be addressed.

QoS support is another significant issue in Grids. There is variety of resources that are
capable of supporting QoS to varying degrees so it is essential to develop flexible QoS
abstraction mechanisms.

9. Scheduling

The previous section examined several taxonomies that described the functionality of the
resources both for the management system as well as the end-user applications. This section
examines taxonomies that describe the scheduling and resource allocation operation of the
RMS and discusses how these management schemes relate to some of the schemes examined in
previous sections. In particular, taxonomies for the organization of the scheduling components,
degree of extensibility, rescheduling approaches, and state estimation are presented.

9.1. Scheduler Organization

The scheduling component of the RMS can be organized in three different ways as shown
in Figure 11. In the centralized organization, there is only one scheduling controller that is
responsible for the system-wide decision making. Such an organization has several advantages
including easy management, simple deployment, and the ability to co-allocate resources. In a
Grid RMS the disadvantages of this organization such as the lack of scalability, lack of fault-
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Figure 11. Scheduler organization taxonomy.

tolerance, and the difficulty in accommodating multiple policies outweigh the advantages.
Condor utilizes a centralized scheme based on around the ClassAd matchmaker.

The other two organizations, hierarchical [23] and decentralized have more suitable
properties for a Grid RMS scheduler organization. In a hierarchical organization, the scheduling
controllers are organized in a hierarchy. One obvious way of organizing the controllers would
be to let the higher level controllers manage larger sets of resources and lower level controllers
manage smaller sets of resources. Compared with the centralized scheduling this mode of
hierarchical scheduling addresses the scalability and fault-tolerance issues. It also retains some
of the advantages of the centralized scheme such as co-allocation. Many of the Grid systems
such as 2K, Darwin, and Legion utilize a hierarchical scheduler.

One of the key issues with the hierarchical scheme is that it still does not provide site
autonomy and multi-policy scheduling. This might be a severe drawback for Grids because
the various resources that participate in the Grid would want to preserve control over their
usage to varying degrees. Many Grid resources would not dedicate themselves only to the Grid
applications. Therefore hierarchical scheduling schemes should deal with dynamic resource
usage policies.

The decentralized organization is another alternative. It naturally addresses several
important issues such as fault-tolerance, scalability, site-autonomy, and multi-policy
scheduling. However, decentralized organizations introduces several problems of their own some
of them include management, usage tracking, and co-allocation. This scheme is expected to
scale to large network sizes but it is necessary for the scheduling controllers to coordinate with
each other via some form resource discovery or resource trading protocols. The overhead of
operation of these protocols will be the determining factor for the scalability of the overall
system. Lack of such protocols may reduce the overhead but the efficiency of scheduling
may also decrease. Systems such as Bond, MOL, and Ninf utilize decentralized scheduling
approaches.

9.2. State Estimation

Previous taxonomies of state estimation concentrated on the degree of information available for
estimated state and the communication organization by which this information was distributed.
In Grid systems, state estimation is always done on partial or stale information due to
information propagation delay in large distributed systems. The focus of this taxonomy is
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Figure 12. State estimation taxonomy.

on the mechanism used to estimate state that affects the implementation of the current and
historical data stores in our abstract model. Figure 12 shows the state estimation taxonomy.

Non-predictive state estimation uses only the current job and resource status information
since there is no need to take into account historical information. Non-predictive approaches
use either heuristics based on job and resource characteristics or a probability distribution
model based on an offline statistical analysis of expected job characteristics. A predictive
approach takes current and historical information such as previous runs of an application
into account in order to estimate state. Predictive models use either heuristic, pricing model
or machine learning approaches. In a heuristic approach, predefined rules are used to guide
state estimation based on some expected behavior for Grid applications. In a pricing model
approach, resources are bought and sold using market dynamics that take into account resource
availability and resource demand [2]. In machine learning, online or offline learning schemes
are used to estimate the state using potentially unknown distributions. Note that heuristics or
statistics-based techniques can be used for both predictive and non-predictive state estimation
approaches. The Punch system uses machine learning based predictive approach and the Ninf
system uses pricing model approach for state estimation.

9.3. Rescheduling

The rescheduling characteristic of a RMS determines when the current schedule is re-examined
and the job executions reordered. The jobs can be reordered to maximize resource utilization,
job throughput, or other metrics depending on the scheduling policy. The rescheduling
approach determines the suitability of a RMS for different types of Grid systems. Figure 13
shows the rescheduling taxonomy. Periodic or batch rescheduling approaches group resource
requests and system events which are then processed at intervals. This interval may be periodic
or may be triggered by certain system events. The key point is that rescheduling is done to
batches instead of individual requests or events. Event driven online rescheduling performs
rescheduling as soon the RMS receives the resource request or system event.

Batch rescheduling allows potentially more effective utilization of the Grid resources since
more requests can be considered at one time. Predictive state estimation schemes may also
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work better with periodic or batch rescheduling. Hard QoS would be difficult to provide using
a batch rescheduling approach since the violation of service level would not cause immediate
rescheduling of the offending job. Online schemes can be more reactive and show less latency
for jobs. It may be quite difficult to implement a general-purpose online RMS scheme that
can address the different types of Grid systems. It is difficult to determine the rescheduling
approach of most Grid systems since it is usually not explicitly stated. Systems such as Darwin
provide online scheduling whereas some application oriented Grids such as PUNCH seem to
utilize a more batch oriented rescheduling approach.

9.4. Scheduling Policy

The RMS uses the scheduling policy to determine the relative ordering of requests and jobs
when rescheduling. Figure 14 shows the scheduling policy taxonomy. This taxonomy focuses
the degree that the scheduling policy can be altered by entities outside the RMS. Large Grid
systems with many different administrative domains will most likely have different resource
utilization policies. Thus it is unlikely that an unalterable scheduling policy will suffice for the
different needs.

In a fixed approach the policy implemented by the resource manager is predetermined. Fixed
policies are further subdivided into maximizing system throughput schemes or maximizing
application oriented schemes. Application oriented schemes try to optimize some specific metric
such as application completion time. Some fixed policy schemes allow fine-tuning by providing
specific control parameters to fine-tune the gross level scheduling objective such as maximizing
overall resource utilization. Many application oriented schedulers such as Netsolve and AppLeS
have more fixed scheduling policies.
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Extensible scheduling policy schemes allow external entities the ability to change the
scheduling policy. In the ad-hoc extensible scheme the resource manager implements a fixed
scheduling policy but provides an interface whereby an external agent can change the resulting
schedule. This is typically done only for specific resources that demand special treatment.
In a structured extensible scheme the resource manager provides a model of the scheduling
process with associated semantics. External agents are allowed to override the default RMS
supplied behaviors with their own thus changing the default scheduling policy. The Legion
system provides a well structured extensible scheduling scheme. Most of the other Grid system
provide some level of ad-hoc scheduling extensibility.

9.5. Summary and Research Issues

This subsection discusses taxonomies that describe the approaches for scheduling and
state estimation in an RMS. In a wide-area RMS such as a Grid RMS, a resource
discovery/dissemination protocol is expected to work in conjunction with the state estimation.
This concept is very different from previous generation DCEs such as Utopia [24]. In such
systems the state estimation algorithms maintain the “state” of the system which is used by
the scheduling algorithm to allocate jobs to resources. In a wide-area RMS, the state estimation
schemes may maintain distributed and independent status databases that may interoperate
using the resource discovery/dissemination protocols.

Although scheduling is an area that has been investigated for a long time in distributed
computing and other areas, the Grid computing systems present unique characteristics that
demand a reexamination. Some of the issues in the area of scheduling include: development
of Grid level resource container abstractions similar to the resource containers developed for
uni-processor machines [25] and multi-policy scheduling schemes.

10. Grid Resource Management Systems Survey

The example system surveyed in this section is not exhaustive, but comprehensive enough
to cover many of the classes developed in our taxonomy. A summary of architectural design
choices made by the representative set of Grid systems is shown in Table I.

The table groups the choices into three groups, Grid, Resources, and Scheduling. The Grid
group classifies the system according to Grid type and the machine organization taxonomies.
Some systems support more than one Grid type. The Resource group specifies the values
for the resource taxonomies in section 8. The Scheduling group specifies the values for the
scheduling taxonomies presented in section 9. Many systems are not fully classified since some
of the information required to completely place them into taxonomies could not be determined
from the references, they operate in conjunction with other Grid RMS systems, or they do not
provide all the RMS features considered in this taxonomy.
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Table I: Grid RMSs and their architecture choices.

System Grid Type Resources Scheduling
Extensible object model,
graph namespace, soft | Hierarchical network resource
On-demand . -
2K . . network QoS, object model | scheduler, Decentralized
Hierarchical . .
store, agent discovery, online | scheduler for other resources
dissemination
Hierarchical scheduler,
AppLeS High-throughput Resource model provided by | predictive heuristics,
PP Globus, Legion, or Netsolve online rescheduling, fixed
application oriented policy
Extensible ~object model, Decentralized scheduler, pre-
graph namespace, hard QoS, L. ..
On-demand . dictive pricing models, on-
Bond language based object store, | .. . .
Flat . . line rescheduling, fixed appli-
agent discovery, periodic . . .
. AR cation oriented policy
push dissemination
Extensible schema model, hy-
Computational brid namespace, no QoS, net-
Condor Flat p work directory store, central- | Centralized scheduler
ized queries discovery, peri-
odic push dissemination
Hierarchical scheduler, non-
Darwin Multimedia Fixed schema model, graph | predictive, online reschedul-
Hierarchical namespace, hard QoS ing, fixed system oriented pol-
icy
Extensible schema model,
EuroPe;.in Data hierarchical Namespace, 10 | pyerarchical scheduler, exten-
DataGrid ) . QOS, network directory store, . . .
Hierarchical S . . sible scheduling policy
distributed queries discovery,
periodic push dissemination
. E.X ten51ble schema  model, Decentralized scheduler in-
Various hierarchical namespace, soft -
. . . frastructure, scheduling pro-
Globus Hierarchical QoS, network directory store, .
C S . . vided by external schedulers
ell distributed queries discovery, (AppLeS,Nimrod/G)
periodic push dissemination pp ’
Fixed object model, graph
. Computational namespace, soft QoS, oth-er Decentralized scheduler, fixed
Javelin - . network directory store, dis- L . .
Hierarchical . . . application oriented policy
tributed queries discovery, pe-
riodic push dissemination
GOPI Multimedia Extensible object model, | Decentralized scheduler, ad-
Flat graph namespace, hard QoS hoc extensible policy
Extensible object model,
. graph namespace, soft | Hierarchical scheduler, exten-
. Computational . . .
Legion . . QoS, object model store, | sible structured scheduling
Hierarchical L . . .
distributed queries discovery, | policy

periodic pull dissemination
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Table I: Grid RMSs and their architecture choices.

System Grid Type Resources Scheduling
Extensible schema model,
Computational hierarchical namespace, | Decentralized scheduler,
MOL ompusa object model store, | extensible ad-hoc scheduling
Hierarchical Cell A . . -
distributed queries discovery, | policies
periodic push dissemination
Extensible schema model,
Computational hlera.rchlcg | Hamespace, S(.)ft Decentralized scheduler, fixed
NetSolve . . QoS, distributed queries L. . .
Hierarchical : . application oriented policy
discovery, periodic  push
dissemination
Extensible schema model,
hierarchical namespace, | Hierarchical decentralized
Nimrod/G High-throughput | relational network directory | scheduler, predictive pricing
Hierarchical Cell data  store, soft QoS, | models, fixed application
distributed queries discovery, | oriented policy
periodic dissemenation
Fixed schema model, rela-
Ninf Co'mputz'monal tional namespace,  no QoS, Decentralized scheduler
Heirarchical centralized queries discovery,
periodic push dissemination
Extensible schema model, hy- | Hierarchical decentralized
PUNCH Computational brid namespace, soft QoS, dis- | scheduler, predictive machine
Hierarchical tributed queries discovery, pe- | learning, fixed application
riodic push dissemination oriented policy

10.1. 2K: A Distributed Operating System

The 2K system is a distributed operating system [26, 27] that provides a flexible and adaptable
architecture for providing distributed services across a wide variety of platforms ranging from a
personal digital assistants (PDAs) to large scale computers. 2K intended for development and
deployment of distributed service applications rather than high performance grand challenge
applications.

The core of 2K is a dynamic reflective CORBA object request broker (ORB) called
dynamicTAO that is an extension of the TAO ORB [28]. The dynamicTAO ORB provides
the ability to dynamically create environments for applications and move them across the
2K Grid machines using mobile reconfiguration agents. Code and service distribution is also
managed using the 2K facilities.

The classification comes mainly from the use of CORBA as the underlying substrate for the
system. The 2K system can be considered to be a demand service Grid that uses a flat RMS
organization. In [29], an extension to the current flat model to hierarchical model is described
using CORBA traders and name servers. The 2K system uses an extensible object model with
a graph based resource namespace and provides soft network QoS. The resource information
store is object model based using the CORBA object model. Resource discovery is performed
through agents. Locating services and resource is also performed using the CORBA trading
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services. Resource dissemination is performed on demand by injecting mobile agents into the
system.

The 2K system uses a one level hierarchical controller for scheduling network bandwidth.
Other resources are scheduled locally using the dynamic soft real time (DSRT) scheduling at
each resource provider. Thus 2K uses a decentralized controller for all other resources. There
does not appear to be any state estimation function or rescheduling approach in the 2K system
other than those provided by the underlying native operating system. The scheduling policy
in the 2K system seems to be fixed.

10.2. AppLeS: A Network Enabled Scheduler

The application level scheduling (AppLeS) [19] project primarily focuses on developing
scheduling agents for individual applications on production computational Grids. AppLeS
agents use application and system information to select a viable set of resources. AppLeS uses
the services of other RMSs such as Globus, Legion, and NetSolve to execute application tasks.
Applications have embedded AppLeS agents that performing resource scheduling on the Grid.
AppLeS has been used in several applications areas including magnetohydrodynamics [30],
gene sequence comparison, satellite radar images visualization, and tomography [31].

The AppLeS framework contains templates that can be applied to applications that are
structurally similar and have the same computational model. The templates allow the reuse of
the application specific schedulers in the AppLeS agents. Templates have been developed for
parametric and master-slave type of applications.

The focus of AppLeS is on scheduling and thus it follows the resource management model
supported by the underlying Grid middleware systems. An AppLeS scheduler is central to
the application that performs mapping of jobs to resources, but the local resource schedulers
perform the actual execution of application units. AppLeS schedulers do not offer QoS support.
AppLeS can classified with a predictive heuristic state estimation model, online rescheduling
and fixed application oriented scheduling policy.

10.3. Bond: Java Distributed Agents

Bond is a Java based object oriented middleware system for network computing [32].
Bond is based on agents [33] that communicate using the knowledge querying and
manipulation language (KQML) for inter object communication. KQML is used for inter agent
communications rather than the lower level Java mechanisms in order to provide a uniform
base of operation semantics between agents. Bond defines a uniform agent structure and agent
extension mechanism. Agents are structured into finite state machines and strategy objects that
define behavior in different states. External events cause state transitions that in turn trigger
the strategy objects. Agents are dynamically assembled from components using a “blueprint.”
Agents can be checkpointed and migrated by Bond. Agents can discover interface information
via an interface discovery service that is accessed via a KQML message. Agent extensions
are done using subprotocols. Subprotocols are small closed subsets of KQML commands and
are used to dynamically extend the objects provided by the Bond library. Bond has a two
level scheduler based on a stock market or computational economy approach. The Concerto
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extension of Bond [34] supports hard QoS and provides a general-purpose real time OS platform
for multi-resource reservation, scheduling and signaling. Tempo is the bandwidth manager
component and schedules network bandwidth. It is implemented as an extension of Sun Solaris.

Bond provides the infrastructure for an on-demand service Grid with a flat organization
because there is no concept of autonomous domains with a border. Other organizations can be
implemented on top of Bond but require extending the resource management function substrate
provided by Bond. The resource model is extensible object model, with hard QoS support,
and a graph namespace. The resource information store is language based distributed objects.
Resources implement their interfaces in Java but exchange information between themselves
using KQML. Resource discovery is agent based. Resource dissemination is accomplished
through periodic push using probes. Schedulers are decentralized and use predictive pricing
models for state estimation. Rescheduling is online. The scheduling policy seems to be fixed
and application oriented.

10.4. Condor: Cycle Stealing Technology for High Throughput Computing

Condor [35, 36] is a high-throughput computing environment that can manage a large collection
of diversely owned machines and networks. Although it is well known for harnessing idle
computers, it can be configured to share resources. The Condor environment follows a layered
architecture and supports sequential and parallel applications. The Condor system allocates
the resources in the Condor pool as per the usage conditions defined by resource owners.
Through its remote system call capabilities, Condor preserves the job’s originating machine
environment on the execution machine, even if the originating and execution machines do not
share a common file system and/or user ID scheme. Condor jobs with a single process are
automatically checkpointed and migrated between workstations as needed to ensure eventual
completion.

Condor can have multiple Condor pools and each pool follows a flat RMS organization. The
Condor collector, which provides the resource information store, listens for advertisements of
resource availability. A Condor resource agent runs on each machine periodically advertising its
services to the collector. Customer agents advertise their requests for resources to the collector.
The Condor matchmaker queries the collector for resource discovery that it uses to determine
compatible resource requests and offers. Compatible agents contact each other directly and if
they are satisfied the customer agents initiate computation on the resources.

Resource requests and offers are described in the Condor classified advertisement (ClassAd)
language [37]. ClassAds use a semi-structured data model for resource description. The ClassAd
language includes a query language as part of the data model, allowing advertising agents to
specify their compatibility by including constraints in their resource offers and requests. Condor
can be considered as a computational Grid with a flat organization. It uses an extensible
schema with a hybrid namespace. It has no QoS support and the information store is a network
directory that does not use X.500/LDAP technology. Resource discovery is centralized queries
with periodic push dissemination. The scheduler is centralized.
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10.5. Darwin: Resource Management for Network Services

Darwin is a customizable RMS [38] for creating value added network services. It is oriented
towards resource management in network based equipment, but does provide mechanisms for
scheduling computation in non-network nodes. Darwin provides a virtual network or mesh to
distributed applications. An application provides an application input graph that describes the
resource requirement. The input graph describes a set of end nodes and the network connections
between them. The graph is annotated with QoS specifications that are used by Darwin in
allocating resources. Darwin can provide hard network QoS since Darwin components run in
routers and can control bandwidth at the network flow level using the built-in router functions.

The core component of Darwin is Xena, a request broker, which performs global allocation
of resources. Control delegates perform runtime adaptations of the initial resource assignment.
Data delegates operate on the network flows and provide services such as encryption,
decryption, and data compression. Local resource managers provide low-level resource
allocation and coordinate their activity using the Beagle signaling protocol [39]. Darwin uses a
hierarchical fair service curve scheduling algorithm (H-FSC) for higher level resource allocation.
The H-FSC algorithm was designed to efficiently support virtual networks for distributed
applications.

The RMS is organized in Darwin as a one level hierarchy because all requests are sent to a
Xena request broker that interacts with its peer request brokers. The resource model is a fixed
schema with hard QoS support and the resource namespace is a graph. Darwin does not provide
a separate resource information store, resource discovery protocol, or resource dissemination
protocol. Scheduling is hierarchical with non-predictive state estimation. Rescheduling is event
driven and implemented by the control delegates. The scheduling policy is fixed and system
oriented.

10.6. European DataGrid: Global Physics Data Storage and Analysis

The European DataGrid Project [12] focuses on the development of middleware services in
order to enable distributed analysis of physics data. The core middleware system is the Globus
toolkit with hooks for data Grids. Data on the order of several petabytes will be distributed in a
hierarchical fashion to multiple sites worldwide. Global namespaces are required to handle the
creation of and access to distributed and replicated data items. Special workload distribution
facilities will balance the analysis jobs from several hundred physicists to different places in
the Grid in order to have maximum throughput for a large user community. Application
monitoring as well as collecting of user access patterns will provide information for access and
data distribution optimization.

The DataGrid project has a multi-tier hierarchical RMS organization. For example, tier-0 is
CERN, which stores almost all relevant data, several tier-1 regional centers (in Italy, France,
UK, USA, Japan) will support smaller amounts of data, and so on. It has an extensible schema
based resource model with a hierarchical namespace organization. It does not offer any QoS
and the resource information store is expected to be based on an LDAP network directory.
Resource dissemination is batched and periodically pushed to other parts of the Grid. Resource
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discovery in the Data Grid is decentralized and query based. The scheduler uses a hierarchical
organization with an extensible scheduling policy.

10.7. Globus: A Toolkit for Grid Computing

The Globus system enables modular deployment of Grid systems by providing the required
basic services and capabilities in the Globus Metacomputing Toolkit (GMT). The toolkit
consists of a set of components that implement basic services, such as security, resource
location, resource management, data management, resource reservation, and communications.
Globus is constructed as a layered architecture in which higher level services can be developed
using the lower level core services [40]. Its emphasis is on the hierarchical integration of Grid
components and their services.

Globus offers Grid information services via an LDAP-based network directory called
Metacomputing Directory Services (MDS) [41]. MDS currently consists of two components:
Grid Index Information Service (GIIS) and Grid Resource Information Service (GRIS). GRIS
provides resources discovery services on a Globus based Grid. The directory information is
provided by a Globus component running on a resource or other external information providers.
The resource information providers use a push protocol to update GRIS periodically. GIIS
provides a global view of the Grid resources and pulls information from multiple GRIS to
combine into a‘ single coherent view of the Grid. Globus is placed into the push resource
dissemination category since the resource information is initially periodically pushed from the
resource providers. Resource discovery by performed by querying MDS.

Globus supports soft QoS via resource reservation [42]. The predefined Globus scheduling
policies can be extended by using application level schedulers such as the Nimrod/G, AppLeS,
and Condor/G. The Globus scheduler in the absence of application level scheduler has a
decentralized organization with an ad-hoc extensible scheduling policy.

10.8. Javelin: Java Parallel Computing

Javelin [43] is a Java based infrastructure for Internet-wide parallel computing. The Javelin
consists of clients that seek resources, hosts that offer resources, and brokers that coordinate
the allocations. Javelin supports piecework and branch and bound computational models.
In the piecework model, adaptively parallel computations are decomposed into a set of sub-
computations. The sub-computations are each autonomous in terms of communication, apart
from scheduling work and communicating results. This model is suitable for parameter sweep
(master-work) applications such as ray tracing and Monte Carlo simulations. The branch-and-
bound model achieves scalability and fault-tolerance by integrating distributed deterministic
work stealing with a distributed deterministic eager scheduler. An additional fault-tolerance
mechanism is implemented for replacing hosts that have failed or retreated.

The Javelin system can be considered a computational Grid for high-throughput computing.
It has a hierarchical RMS organization where each broker manages a tree of hosts. The resource
model is simple fixed objects with graph based namespace organization. The resources are
simply the hosts that are attached to a broker.
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Any host that wants to be part of Javelin contacts the JavelinBNS system, a Javelin
information backbone that maintains list of available brokers. The host communicates with
brokers, chooses a suitable broker, and then becomes part of the broker’s managed resources.
Thus the information store is a network directory implemented by JavelinBNS components.
Hosts and brokers update each other as a result of scheduling work thus Javelin uses demand-
based resource dissemination. Resource discovery uses the decentralized query based approach
since queries are handled by the distributed set of brokers. Javelin follows a decentralized
approach in scheduling with a fixed application oriented scheduling policy.

10.9. GOPI: Generic Object Platform Infrastructure

The Generic Object Platform Infrastructure (GOPI) project developed a platform based
on CORBA with RM-ODP extension that provides an extensible architecture for adaptive
multimedia applications [44, 45]. GOPI provides an API and core services that are extended
using network protocol extensions called application specific protocols. These extensions are
stacked on top of transport protocols and implement application specific scheduling policies
with the scheduling framework provided by GOPI. The resource namespace is based on the
RM-ODP computational model and is specified using CORBA IDL. Reflective middleware
and open bindings support QoS annotation on interfaces and the ability for an application to
inspect and adapt its behavior to the underlying network.

The organization is flat with an extensible object oriented resource model since it is based
on CORBA. Thus the resource namespace is a graph. The system provides hard QoS if the
underlying operating systems and network provide support. The research has been focused
on delivering multimedia application support and thus lacks infrastructure for a resource
information directory, resource discovery protocol, and resource dissemination protocol. A
scheduler framework is provided into which application specific schedulers are loaded. The
scheduler framework and scheduling extensions operate on a per node basis thus the scheduler
organization is decentralized with an ad-hoc extensible scheduling policy. State estimation
and rescheduling are determined by the application specification extensions and thus cannot
be classified.

10.10. Legion: A Grid Operating System

Legion [46] is an object-based metasystem that provides the software infrastructure for a Grid.
In a Legion based Grid, objects represent the different components of the Grid. The Legion
objects are defined and managed by the corresponding class or metaclass. Classes create
new instances, schedule them for execution, activate or deactivate the object, and provide
state information to client objects. Each object is an active process that responds to method
invocations from other objects within the system. Legion defines an API for object interaction,
but not specify the programming language or communication protocol.

Although Legion appears as a complete vertically integrated system, its architecture follows
the hierarchical model. It uses an object based information store organization through the
Collection objects. Collections periodically pull resource state information from host objects.
Host objects track load and users can call the individual host directly to get the resource
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information. Information about multiple objects is aggregated into Collection objects. Users
or system administrators can organize collections into suitable arrangements.

All Classes in Legion are organized hierarchically with LegionClass at the top and the
host and vault classes at the bottom. It supports a mechanism to control the load on hosts.
It provides resource reservation capability and the ability for application level schedulers
to perform periodic or batch scheduling. Legion machine architecture is hierarchical with
decentralized scheduler. Legion supplies default system oriented scheduling policies, but it
allows policy extensibility via a structured scheduling extension interface.

10.11. MOL: Metacomputing Online

The Metacomputing Online (MOL) [47] system follows a toolkit approach with the MOL-
Kernel as the central component. The MOL-Kernel services provide resource management
supporting dynamic communication, fault management, and access provision.

The MOL-Kernel follows a three-tier architecture consisting of resource abstraction,
management, and access layers containing resource module (RM), center management modules
(CMMs), and access module (AM) respectively along with customizable and predefined event
handlers. The RMs encapsulate metacomputing resources or services. Different RMs in an
institution are coordinated by a CMM. The CMM is responsible for keeping the network
components and resources in a consistent state. CMM also acts as a gatekeeper to control
access to the resources from external networks. Large institutions can have multiple CMMs
per institution.

If any MOL-Kernel components fails, only one institute becomes inaccessible. As long as
a single CMM available, the MOL-kernel remains operational. The MOL-Kernel dynamically
reconfigures itself as the organizations come online and go offline. The MOL-Kernel guarantees
that the collective CMMSs maintain consistent state by using a transaction-oriented protocol
on top of the virtual shared memory objects associated with each CMM. Mirror instances of
shared active objects are maintained at each CMM in order to make the global state available
at all entry points.

Higher level functionality of the MOL-Kernel is based on typed messages and event handlers.
Any module in the kernel can send messages to any other component. This is usually triggered
by either a user interacting with an AM, by another incoming message or by a changed state
at one of the available resources or services. The event management unit associated with each
kernel module checks for incoming messages and invokes appropriate event handlers.

The MOL follows a service Grid model with hierarchical cell-based machine organization.
It has a schema based resource model with a hierarchical name space organization. The
object based resource state information is maintained in the shared objects of each CMM.
The resources and services themselves utilize a push protocol for resource dissemination. The
AMs/schedulers perform resource discovery and scheduling by querying shared objects.

10.12. NetSolve: A Network Enabled Computational Kernel

Netsolve [48] is a client-agent-server paradigm based network enabled application server. It is
designed to solve computational science problems in a distributed environment. The Netsolve
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system integrates network resources including hardware and computational software packages
into a desktop application. Netsolve clients can be written in C, FORTRAN, Matlab or Web
pages to interact with the server. A Netsolve server can use any scientific package to provide
its computational software. Communications between Netsolve clients, agents, and servers are
performed using TCP /TP sockets. Netsolve agents can search for resources on a network, choose
the best one available, execute the client request, and then return the answer to the user.

The Netsolve system is a computational Grid with hierarchical based machine organization.
Netsolve agents maintain information about resources available in the network. The Netsolve
servers which are the resources in a Netsolve Grid are responsible for making their existence
aware to Netsolve Agent and thus use a push protocol for resource dissemination. Netsolve
Agents also perform resource discovery and scheduling. An agent may request assistance of
other Agents in identifying the best resources and scheduling. Thus Netsolve can be considered
to use a network directory implemented by the Netsolve agents, decentralized scheduling with
a fixed application oriented scheduling policy.

10.13. Nimrod/G: Resource Broker and Economy Grid

Nimrod/G [11, 2] is a Grid resource broker for managing and steering task farming applications
such as parameter studies on computational Grids. It follows an computational market-
based model for resource management. Nimrod/G provides support for formulation of
parameter studies, a single window to manage and control experiments, resource discovery,
resource trading, and scheduling. The task farming engine of Nimrod/G coordinates resource
management and results gathering. This engine can be used for creating user-defined scheduling
policies. For example, ActiveSheets are used execute Microsoft Excel computations/cells on
the Grid [49]. Nimrod/G is being used as scheduling component in a new framework called
Grid Architecture for Computational Economy (GRACE) which is based on using economic
theories for a Grid resource management system.

Nimrod/G has a hierarchical machine organization and uses a computational market model
model for resource management [2]. It uses the services of other systems such as Globus
and Legion for resource discovery and dissemination. State estimation is performed through
heuristics using historical pricing information. The scheduling policy is fixed application
oriented and is driven by user defined requirements such as deadline and budget limitations.
Load balancing is performed through periodic rescheduling.

10.14. Ninf: A Network Enabled Server

Ninf is a client-server based network infrastructure for global computing [50]. The Ninf system
functionality is similar to NetSolve. Ninf allows access to multiple remote compute and
database servers. Ninf clients can semi-transparently access remote computational resources
from languages such as C and FORTRAN. Programmers can build a global computing
application by using the Ninf remote libraries as its components, without being aware of the
complexities of the underlying system they are programming. Procedural parameters, including
arrays, are marshaled and sent to the Ninf server on a remote host responsible for executing
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the requested library functions and returning the results. The Ninf client library calls can be
synchronous or asynchronous in nature.

The key components of Ninf system include: Ninf client interfaces, Ninf Metaserver, and the
Ninf remote libraries. Ninf applications invoke Ninf library functions which generate requests
that go to the metaserver that maintains the a network directory of Ninf servers in the network.
The metaserver allocates resources for the remote library calls by routing them to appropriate
servers by querying its information store on behalf of the client request. Thus Ninf utilizes a
centralized query based resource discovery. Ninf computational resources themselves register
details of available library services with the Ninf metaserver thus using a push protocol for
resource dissemination. Ninf follows a flat model in machine organization, fixed schema resource
model, and has a relational name space organization. The Ninf metaserver performs some level
of scheduling by routing the requests but the actual scheduling of client request is performed
by the server thus resulting in a decentralized scheduler organization.

10.15. PUNCH: The Purdue University Network Computing Hubs

PUNCH [51, 52] is a middleware testbed that provides operating system services in a
network-based computing environment. It provides transparent access to remote programs
and resources, access control and job control functionality in a multi-user, multi-process
environment. PUNCH supports a virtual Grid organization by supporting decentralized and
autonomous management of resources.

The PUNCH infrastructure consists of a collection services that allow management of
applications, data, and machines distributed across wide-area networks. User applications are
accessed via standard Web browsers. Applications do not have to be written in any particular
language and access to source or object code is not required thus allowing PUNCH to use
existing applications and Grid enabling them.

PUNCH employs a hierarchically distributed architecture with several layers. A computing
portal services layer provides Web-based access to a distributed, network-computing
environment. This layer primarily deals with content management and user-interface issues.
A network OS layer provides distributed process management and data browsing services. An
application middleware layer allows the infrastructure to interoperate with other application-
level support systems such as the Message Passing Interface [53]. A virtual file system layer
consists of services that provide local access to distributed data in an application-transparent
manner. Finally, an OS middleware layer interfaces with local OS services available on
individual machines or clusters of machines. The layers interoperate with a distributed RMS
and a predictive performance modeling sub-system in order to make intelligent decisions in
terms of selecting from different application implementations, data storage sites, and hardware
resources. For example PUNCH can choose between a sequential or parallel implementation
running on a dedicated server or a Condor pool [35].

PUNCH uses a hierarchical decentralized scheduler, predictive machine learning state
estimation for matching user requests to the most appropriate Grid resources, and fixed
application oriented scheduler policy.
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11. Discussion and Conclusion

There are many different approaches and models for developing Grid resource management
systems. The systems surveyed have for the most part focused on either a computational Grid
or a service Grid. The only Data Grid project surveyed is the European DataGrid Project
which is in the initial stages of development. The other category of system is the Grid scheduler
such as Nimrod/G and AppLeS that is integrated with another Grid RMS such as Globus or
Legion. These combinations are then used to create application oriented computational Grids
that provide certain levels of QoS.

Extensibility of the resource model is a feature of all the surveyed RMS with the exception
of Darwin and Javelin. Darwin is oriented towards network services and thus does not require
extensibility and Javelin is oriented towards Internet parallel computing and thus does not
require a rich resource model. The degree of extensibility is quite different between systems.
Extensible schema based models range from the semi-structured data models of Condor to the
LDAP based structure for Globus. Object based model extensibility typically follows what is
available in the underlying technology, which is either CORBA or Java. The Legion system is
an exception to this since it builds its object model from its own primitives. A topic for further
research is to investigate the extent to which the extensible features of the various resource
models are used by Grid applications. It may be possible the resource model extensions are
only used internally by the RMS components.

Most systems employ a periodic push approach to resource dissemination within a
hierarchical machine organization. The resource discovery approach is correlated with the
resource model. Schema based system use queries whereas object model sometimes uses an
agent-based approach. There are no systems that we are aware of that use a schema based
resource model with agent based queries. A topic of further research is to investigate the relative
efficiency of different dissemination schemes in conjunction with the machine organization and
resource model.

The survey indicates that most of the different aspects of the taxonomy have been explored in
the different systems. The flat and hierarchical machine organizations are quite common. Cell
based organizations have so far appeared in only schema based resource models. Different
resource models have been developed but there have been no comparisons between the
performances of the schemes. The scheduling aspect of the taxonomy has not been fully
explored. A decentralized, online rescheduling system with an extensible scheduling policy
has, to our knowledge, not been developed for a Grid system.

This paper presented a taxonomy for Grid RMSs. Requirements for RMSs were described and
an abstract functional model developed. The requirements and model were used to develop the
taxonomy. The taxonomy focused on the type of Grid system, machine organization, resource
model characterization, and scheduling characterization. Representative Grid systems were
then surveyed and placed into the different categories. This helped in identifying some of the
key Grid resource management approaches and issues that are yet to be explored as topics of
future research.
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