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Abstract 
In both e-business and e-science, we often need to integrate services across distributed, 
heterogeneous, dynamic “virtual organizations” formed from the disparate resources within a 
single enterprise and/or from external resource sharing and service provider relationships. This 
integration can be technically challenging because of the need to achieve various qualities of 
service when running on top of different native platforms. We present an Open Grid Services 
Architecture that addresses these challenges. Building on concepts and technologies from the 
Grid and Web services communities, this architecture defines a uniform exposed service 
semantics (the Grid service); defines standard mechanisms for creating, naming, and discovering 
transient Grid service instances; provides location transparency and multiple protocol bindings 
for service instances; and supports integration with underlying native platform facilities. The 
Open Grid Services Architecture also defines, in terms of Web Services Description Language 
(WSDL) interfaces and associated conventions, mechanisms required for creating and composing 
sophisticated distributed systems, including lifetime management, change management, and 
notification. Service bindings can support reliable invocation, authentication, authorization, and 
delegation, if required. Our presentation complements an earlier foundational article, “The 
Anatomy of the Grid,” by describing how Grid mechanisms can implement a service-oriented 
architecture, explaining how Grid functionality can be incorporated into a Web services 
framework, and illustrating how our architecture can be applied within commercial computing as 
a basis for distributed system integration—within and across organizational domains. 
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1 Introduction 
Until recently, application developers could usually assume a target environment that was (to a 
useful extent) homogeneous, reliable, secure, and centrally managed. Increasingly, however, 
computing is concerned with collaboration, data sharing, and other new modes of interaction that 
involve distributed resources. The result is an increased focus on the interconnection of systems 
both within and across enterprises, whether in the form of intelligent networks, switching devices, 
caching services, appliance servers, storage systems, or storage area network management 
systems. In addition, companies are realizing that they can achieve significant cost savings by 
outsourcing nonessential elements of their IT environment to various forms of service providers. 

These evolutionary pressures generate new requirements for distributed application development 
and deployment. Today, applications and middleware are typically developed for a specific 
platform (e.g., Windows NT, a flavor of Unix, a mainframe, J2EE, Microsoft .NET) that provides 
a hosting environment for running applications. The capabilities provided by such platforms may 
range from integrated resource management functions to database integration, clustering services, 
security, workload management, and problem determination—with different implementations, 
semantic behaviors, and APIs for these functions on different platforms. But in spite of this 
diversity, the continuing decentralization and distribution of software, hardware, and human 
resources make it essential that we achieve desired qualities of service (QoS)—whether measured 
in terms of common security semantics, distributed workflow and resource management 
performance, coordinated fail-over, problem determination services, or other metrics—on 
resources assembled dynamically from enterprise systems, service provider systems, and 
customer systems. We require new abstractions and concepts that allow applications to access and 
share resources and services across distributed, wide area networks. 

Such problems have been for some time a central concern of the developers of distributed 
systems for large-scale scientific research. Work within this community has led to the 
development of Grid technologies [26, 29], which address precisely these problems and which 
are seeing widespread and successful adoption for scientific and technical computing. 

In an earlier article, we defined Grid technologies and infrastructures as supporting the sharing 
and coordinated use of diverse resources in dynamic, distributed “virtual organizations” (VOs) 
[29]. We defined essential properties of Grids and introduced key requirements for protocols and 
services, distinguishing among connectivity protocols concerned with communication and 
authentication, resource protocols concerned with negotiating access to individual resources, and 
collective protocols and services concerned with the coordinated use of multiple resources. We 
also described the Globus ToolkitTM 1 [25], an open source reference implementation of key Grid 
protocols that supports a wide variety of major e-science projects. 

Here we extend this argument in three respects to define more precisely how a Grid functions and 
how Grid technologies can be implemented and applied. First, while [29] was structured in terms 
of the protocols required for interoperability among VO components, we focus here on the nature 
of the services that respond to protocol messages. We view a Grid as an extensible set of Grid 
services that may be aggregated in various ways to meet the needs of VOs, which themselves can 
be defined in part by the services that they operate and share. We then define the behaviors that 
such Grid services should possess in order to support distributed systems integration. By stressing 
functionality (i.e., “physiology”), this view of Grids complements the previous protocol-oriented 
(“anatomical”) description. 

                                                 
1 Globus Project and Globus Toolkit are trademarks of the University of Chicago. 
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Second, we explain how Grid technologies can be aligned with Web services technologies [34, 
41] to capitalize on desirable Web services properties, such as service description and discovery; 
automatic generation of client and server code from service descriptions; binding of service 
descriptions to interoperable network protocols; compatibility with emerging higher-level open 
standards, services and tools; and broad commercial support. We call this alignment—and 
augmentation—of Grid and Web services technologies an Open Grid Services Architecture 
(OGSA), with the term architecture denoting here a well-defined set of basic interfaces from 
which can be constructed interesting systems, and open being used to communicate extensibility, 
vendor neutrality, and commitment to a community standardization process. This architecture 
uses the Web Services Description Language (WSDL) to achieve self-describing, discoverable 
services and interoperable protocols, with extensions to support multiple coordinated interfaces 
and change management. OGSA leverages experience gained with the Globus Toolkit to define 
conventions and WSDL interfaces for a Grid service, a (potentially transient) stateful service 
instance supporting reliable and secure invocation (when required), lifetime management, 
notification, policy management, credential management, and virtualization. OGSA also defines 
interfaces for the discovery of Grid service instances and for the creation of transient Grid service 
instances. The result is a standards-based distributed service system (we avoid the term 
distributed object system due to its overloaded meaning) that supports the creation of the 
sophisticated distributed services required in modern enterprise and interorganizational 
computing environments. 

Third, we focus our discussion on commercial applications rather than the scientific and technical 
applications emphasized in [26, 29]. We believe that the same principles and mechanisms apply 
in both environments. However, in commercial settings we need, in particular, seamless 
integration with existing resources and applications, and with tools for workload, resource, 
security, network QoS, and availability management. OGSA’s support for the discovery of 
service properties facilitates the mapping or adaptation of higher-level Grid service functions to 
such native platform facilities. OGSA’s service orientation also allows us to virtualize resources 
at multiple levels, so that the same abstractions and mechanisms can be used both within 
distributed Grids supporting collaboration across organizational domains and within hosting 
environments spanning multiple tiers within a single IT domain. A common infrastructure means 
that differences (e.g., relating to visibility and accessibility) derive from policy controls 
associated with resource ownership, privacy, and security, rather than interaction mechanisms. 
Hence, as today’s enterprise systems are transformed from separate computing resource islands to 
integrated, multitiered distributed systems, service components can be integrated dynamically and 
flexibly, both within and across various organizational boundaries.  

The rest of this article is as follows. In Section 2, we examine the issues that motivate the use of 
Grid technologies in commercial settings. In Section 3, we review the Globus Toolkit and Web 
services, and in Section 4, we motivate and introduce our Open Grid Services Architecture. In 
Sections 5−8, we present an example and discuss protocol implementations and higher-level 
services. We discuss related work in Section 9 and summarize our discussion in Section 10. 

2 The Need for Grid Technologies 
Grid technologies support the sharing and coordinated use of diverse resources in dynamic 
VOs—that is, the creation, from geographically and organizationally distributed components, of 
virtual computing systems that are sufficiently integrated to deliver desired QoS [29]. 

Grid concepts and technologies were first developed to enable resource sharing within far-flung 
scientific collaborations [15, 16, 24, 26, 40, 57]. Applications include collaborative visualization 
of large scientific datasets (pooling of expertise), distributed computing for computationally 
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demanding data analyses (pooling of compute power and storage), and coupling of scientific 
instruments with remote computers and archives (increasing functionality as well as availability) 
[39]. We expect similar applications to become important in commercial settings, initially for 
scientific and technical computing applications (where we can already point to success stories) 
and then for commercial distributed computing applications, including enterprise application 
integration and business to business (B2B) partner collaboration over the Internet. Just as the 
World Wide Web began as a technology for scientific collaboration and was adopted for e-
business, we expect a similar trajectory for Grid technologies. 

Nevertheless, we argue that Grid concepts are critically important for commercial computing not 
primarily as a means of enhancing capability, but rather as a solution to new challenges relating 
to the construction of reliable, scalable, and secure distributed systems. These challenges derive 
from the current rush, driven by technology trends and commercial pressures, to decompose and 
distribute through the network previously monolithic host-centric services, as we now discuss. 

2.1 The Evolution of Enterprise Computing 
In the past, computing typically was performed within highly integrated host-centric enterprise 
computing centers. While sophisticated distributed systems (e.g., command and control systems, 
reservation systems, the Internet Domain Name System [46]) existed, these have remained 
specialized, niche entities [9, 48]. 

The rise of the Internet and the emergence of e-business have, however, led to a growing 
awareness that an enterprise’s IT infrastructure also encompasses external networks, resources, 
and services. Initially, this new source of complexity was treated as a network-centric 
phenomenon and attempts were made to construct “intelligent networks” that intersect with 
traditional enterprise IT data centers only at “edge servers”: for example, an enterprise’s Web 
point of presence, or the virtual private network server that connects an enterprise network to 
service provider resources. The assumption was that the impact of e-business and the Internet on 
an enterprise’s core IT infrastructure could thus be managed and circumscribed. 

This attempt has, in general, failed because IT services decomposition is also occurring inside 
enterprise IT facilities. New applications are being developed to programming models (such as 
the Enterprise Java Beans component model [58]) that insulate the application from the 
underlying computing platform and support portable deployment across multiple platforms. This 
portability in turn allows platforms to be selected on the basis of price/performance and QoS 
requirements, rather than operating system supported. Thus, for example, Web serving and 
caching applications target commodity servers rather than traditional mainframe computing 
platforms. The resulting proliferation of Unix and NT servers necessitates distributed connections 
to legacy mainframe application and data assets. Increased load on those assets has caused 
companies to off-load nonessential functions (such as query processing) from back-end 
transaction processing systems to mid-tier servers. Meanwhile, Web access to enterprise 
resources requires ever-faster request servicing, further driving the need to distribute and cache 
content closer to the edge of the network. The overall result is a decomposition of highly 
integrated internal IT infrastructure into a collection of heterogeneous and fragmented systems. 
Enterprises must then reintegrate (with QoS) these distributed servers and data resources, 
addressing issues of navigation, distributed security, and content distribution inside the enterprise, 
much as on external networks. 

In parallel with these developments, enterprises are engaging ever more aggressively in e-
business and are realizing that a highly robust IT infrastructure is required to handle the 
associated unpredictability and rapid growth. Enterprises are also now expanding the scope and 
scale of their enterprise resource planning projects as they try to provide better integration with 
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customer relationship management, integrated supply chain, and existing core systems. These 
developments are adding to the significant pressures on the enterprise IT infrastructure. 

The aggregate effect is that qualities of service traditionally associated with mainframe host-
centric computing [49] are now essential to the effective conduct of e-business across distributed 
compute resources, inside as well as outside the enterprise. For example, enterprises must 
provide consistent response times to customers, despite workloads with significant deviations 
between average and peak utilization. Thus, they require flexible resource allocation in 
accordance with workload demands and priorities. Enterprises must also provide a secure and 
reliable environment for distributed transactions flowing across a collection of dissimilar servers, 
must deliver continuous availability as seen by end-users, and must support disaster recovery for 
business workflow across a distributed network of application and data servers. Yet the current 
paradigm for delivering QoS to applications via the vertical integration of platform-specific 
components and services just does not work in today’s distributed environment: the 
decomposition of monolithic IT infrastructures is not consistent with the delivery of QoS through 
vertical integration of services on a given platform. Nor are distributed resource management 
capabilities effective, being limited by their proprietary nature, inaccessibility to platform 
resources, and inconsistencies between similar resources across a distributed environment. 

The result of these trends is that IT systems integrators take on the burden of re-integrating 
distributed compute resources with respect to overall QoS. However, without appropriate 
infrastructure tools, the management of distributed computing workflow becomes increasingly 
labor-intensive, complex, and fragile as platform-specific operations staff watch for “fires” in 
overall availability and performance and verbally collaborate on corrective actions across 
different platforms. This situation is not scalable, cost-effective, or tenable in the face of changes 
to the computing environment and application portfolio. 

2.2 Service Providers and Business-to-Business Computing 
Another key trend is the emergence of service providers (SPs) of various types, such as web-
hosting SPs, content distribution SPs, applications SPs, and storage SPs. By exploiting economies 
of scale, SPs aim to take standard e-business processes, such as creation of a web-portal presence, 
and provide them to multiple customers with superior price/performance. Even traditional 
enterprises with their own IT infrastructures are offloading such processes because they are 
viewed as commodity functions.  

Such emerging “eUtilities” (a term used to refer to service providers offering continuous, on-
demand access) are beginning to offer a model for carrier-grade IT resource delivery through 
metered usage and subscription services. Unlike the computing services companies of the past, 
which tended to provide offline batch-oriented processes, resources provided by eUtilities are 
often tightly integrated with of enterprise computing infrastructures and used for business 
processes that span both in-house and outsourced resources. Thus, a price of exploiting the 
economies of scale that are enabled by eUtility structures is a further decomposition and 
distribution of enterprise computing functions. EUtilities providers face their own technical 
challenges. To achieve economies of scale, eUtility providers require server infrastructures that 
can be easily customized on demand to meet specific customer needs. Thus, there is a demand for 
IT infrastructure that (1) supports dynamic resource allocation in accordance with service-level 
agreement policies, efficient sharing and reuse of IT infrastructure at high utilization levels, and 
distributed security from edge of network to application and data servers and (2) delivers 
consistent response times and high levels of availability—which in turn drives a need for end-to-
end performance monitoring and real-time reconfiguration. 

Still another key IT industry trend is cross-enterprise business-to-business (B2B) collaboration 
such as multi-organization supply chain management, virtual web malls, and electronic market 
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auctions. B2B relationships are, in effect, virtual organizations, as defined above—albeit with 
particularly stringent requirements for security, auditability, availability, service level 
agreements, and complex transaction processing flows. Thus, B2B computing represents another 
source of demand for distributed systems integration, characterized by often large differences 
among the information technologies deployed within different organizations. 

3 Background 
We review two technologies on which we build to define the Open Grid Services Architecture: 
the Globus Toolkit, which has been widely adopted as a Grid technology solution for scientific 
and technical computing, and Web services, which have emerged as a popular standards-based 
framework for accessing network applications. 

3.1 The Globus Toolkit  
The Globus Toolkit [25, 29] is a community-based, open-architecture, open-source set of services 
and software libraries that support Grids and Grid applications. The toolkit addresses issues of 
security, information discovery, resource management, data management, communication, fault 
detection, and portability. Globus Toolkit mechanisms are in use at hundreds of sites and by 
dozens of major Grid projects worldwide. 

The toolkit components that are most relevant to OGSA are the Grid Resource Allocation and 
Management (GRAM) protocol and its “gatekeeper” service, which provides for secure, reliable, 
service creation and management [21]; the Meta Directory Service (MDS-2) [20], which provides 
for information discovery through soft state registration [52, 62], data modeling, and a local 
registry (“GRAM reporter” [21]); and the Grid Security Infrastructure (GSI), which supports 
single sign on, delegation, and credential mapping. As illustrated in Figure 1, these components 
provide the essential elements of a service-oriented architecture, but with less generality than is 
achieved in OGSA.  

Gatekeeper
(factory)

Reporter
(registry +
discovery)

User
process #2

User
process #1

Grid
Information

Index Server
(discovery)

User

Proxy Proxy #2

Other service
(e.g.,

GridFTP)

Authenticate &
create proxy

credential

Request
process
creation

Create
process Contact

other
service

Register with discovery service

Register

 

Figure 1: Selected Globus Toolkit mechanisms, showing initial creation of a proxy credential and 
subsequent authenticated requests to a remote gatekeeper service, resulting in the creation of user 
process #2, with associated (potentially restricted) proxy credential, followed by a request to another 
remote service. Also shown is soft-state service registration via MDS-2. 

The GRAM protocol provides for the reliable, secure remote creation and management of 
arbitrary computations: what we term in this article transient service instances. GSI mechanisms 
are used for authentication, authorization, and credential delegation [33] to remote computations. 
A two-phase commit protocol is used for reliable invocation, based on techniques used in the 
Condor system [44]. Service creation is handled by a small, trusted “gatekeeper” process (termed 
a factory in this article), while a GRAM reporter monitors and publishes information about the 
identity and state of local computations (registry). 
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MDS-2 [20] provides a uniform framework for discovering and accessing system configuration 
and status information such as compute server configuration, network status, or the locations of 
replicated datasets (what we term a discovery interface in this article). MDS-2 uses a soft-state 
protocol, the Grid Notification Protocol [38], for lifetime management of published information. 

The public-key-based Grid Security Infrastructure (GSI) protocol [28] provides single sign-on 
authentication, communication protection, and some initial support for restricted delegation. In 
brief, single sign-on allows a user to authenticate once and thus create a proxy credential that a 
program can use to authenticate with any remote service on the user’s behalf. Delegation allows 
for the creation and communication to a remote service of delegated proxy credentials that the 
remote service can use to act on the user’s behalf, perhaps with various restrictions; this 
capability is important for nested operations. (Similar mechanisms can be implemented within the 
context of other security technologies, such as Kerberos [56], although with potentially different 
characteristics.) 

GSI uses X.509 certificates, a widely employed standard for PKI certificates, as the basis for user 
authentication. GSI defines an X.509 proxy certificate [60] to leverage X.509 for support of 
single sign-on and delegation. (This proxy certificate is similar in concept to a Kerberos 
forwardable ticket but is based purely on public key cryptographic techniques.) GSI typically uses 
the Transport Layer Security (TLS) protocol (the follow-on to SSL) for authentication, although 
other public key-based authentication protocols could be used with X.509 proxy certificates. A 
remote delegation protocol of X.509 proxy certificates is layered on top of TLS. An Internet 
Engineering Task Force draft defines the X.509 Proxy Certificate extensions [60]. Global Grid 
Forum drafts define the delegation protocol for remote creation of an X.509 Proxy Certificate 
[60] and GSS-API extensions that allow this API to be used effectively for Grid programming. 

Rich support for restricted delegation has been demonstrated in prototypes and is a critical part of 
the proposed X.509 Proxy Certificate Profile [60]. Restricted delegation allows one entity to 
delegate just a subset of its total privileges to another entity. Such restriction is important to 
reduce the adverse effects of either intentional or accidental misuse of the delegated credential. 

3.2 Web Services  
The term Web services describes an important emerging distributed computing paradigm that 
differs from other approaches such as DCE, CORBA, and Java RMI in its focus on simple, 
Internet-based standards (e.g., eXtensible Markup Language: XML [13, 23]) to address 
heterogeneous distributed computing. Web services define a technique for describing software 
components to be accessed, methods for accessing these components, and discovery methods that 
enable the identification of relevant service providers. Web services are programming language-, 
programming model-, and system software-neutral.  

Web services standards are being defined within the W3C and other standards bodies and form 
the basis for major new industry initiatives such as Microsoft (.NET), IBM (Dynamic e-
Business), and Sun (Sun ONE). We are particularly concerned with three of these standards: 
SOAP, WSDL, and WS-Inspection. 

• The Simple Object Access Protocol (SOAP) [4] provides a means of messaging between a 
service provider and a service requestor. SOAP is a simple enveloping mechanism for XML 
payloads that defines a remote procedure call (RPC) convention and a messaging convention. 
SOAP is independent of the underlying transport protocol; SOAP payloads can be carried on 
HTTP, FTP, Java Messaging Service (JMS), and the like. We emphasize that Web services 
can describe multiple access mechanisms to the underlying software component. SOAP is 
just one means of formatting a Web service invocation. 
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• The Web Services Description Language (WSDL) [18] is an XML document for describing 
Web services as a set of endpoints operating on messages containing either document-
oriented (messaging) or RPC payloads. Service interfaces are defined abstractly in terms of 
message structures and sequences of simple message exchanges (or operations, in WSDL 
terminology) and then bound to a concrete network protocol and data-encoding format to 
define an endpoint. Related concrete endpoints are bundled to define abstract endpoints 
(services). WSDL is extensible to allow description of endpoints and the concrete 
representation of their messages for a variety of different message formats and network 
protocols. Several standardized binding conventions are defined describing how to use 
WSDL in conjunction with SOAP 1.1, HTTP GET/POST, and MIME. 

• WS-Inspection [14] comprises a simple XML language and related conventions for locating 
service descriptions published by a service provider. A WS-Inspection language (WSIL) 
document can contain a collection of service descriptions and links to other sources of service 
descriptions. A service description is usually a URL to a WSDL document; occasionally, a 
service description can be a reference to an entry within a Universal Description, Discovery, 
and Integration (UDDI) [5] registry. A link is usually a URL to another WS-Inspection 
document; occasionally, a link is a reference to a UDDI entry. With WS-Inspection, a service 
provider creates a WSIL document and makes the document network accessible. Service 
requestors use standard Web-based access mechanisms (e.g., HTTP GET) to retrieve this 
document and discover what services the service provider advertises. WSIL documents can 
also be organized in different forms of index. 

Various other Web services standards have been or are being defined. For example, Web Services 
Flow Language (WSFL) [6] addresses Web services orchestration, that is, the building of 
sophisticated Web services by composing simpler Web services. 

The Web services framework has two advantages for our purposes. First, our need to support the 
dynamic discovery and composition of services in heterogeneous environments necessitates 
mechanisms for registering and discovering interface definitions and endpoint implementation 
descriptions and for dynamically generating proxies based on (potentially multiple) bindings for 
specific interfaces. WSDL supports this requirement by providing a standard mechanism for 
defining interface definitions separately from their embodiment within a particular binding 
(transport protocol and data encoding format). Second, the widespread adoption of Web services 
mechanisms means that a framework based on Web services can exploit numerous tools and 
extant services, such as WSDL processors that can generate language bindings for a variety of 
languages (e.g., Web Services Invocation Framework: WSIF [47]), workflow systems that sit on 
top of WSDL, and hosting environments for Web services (e.g., Microsoft .NET and Apache 
Axis). We emphasize that the use of Web services does not imply the use of SOAP for all 
communications. If needed, alternative transports can be used, for example to achieve higher 
performance or to run over specialized network protocols. 

4 An Open Grid Services Architecture 
We have argued that within internal enterprise IT infrastructures, SP-enhanced IT infrastructures, 
and multi-organizational Grids, computing is increasingly concerned with the creation, 
management, and application of dynamic ensembles of resources and services (and people)—
what we call virtual organizations [29]. Depending on context, these ensembles can be small or 
large, short-lived or long-lived, single institutional or multi-institutional, and homogeneous or 
heterogeneous. Individual ensembles may be structured hierarchically from smaller systems and 
may overlap in membership. 



Physiology of the Grid  10 

This is a DRAFT document and a work in progress. Version: 2/17/2002. 
Comments to foster@mcs.anl.gov, carl@isi.edu, jnick@us.ibm.com, tuecke@mcs.anl.gov 

We assert that regardless of these differences, developers of applications for VOs face common 
requirements as they seek to deliver QoS—whether measured in terms of common security 
semantics, distributed workflow and resource management, coordinated fail-over, problem 
determination services, or other metrics—across a collection of resources with heterogeneous and 
often dynamic characteristics. 

We now turn to the nature of these requirements and the mechanisms required to address them in 
practical settings. Extending our analysis in [29], we introduce an Open Grid Services 
Architecture that supports the creation, maintenance, and application of ensembles of services 
maintained by VOs. 

We start our discussion with some general remarks concerning the utility of a service-oriented 
Grid architecture, the importance of being able to virtualize Grid services, and essential service 
characteristics. Then, we introduce the specific aspects that we standardize in our definition of 
what we call a Grid service. We present more technical details in Section 6 (and in [59]).  

4.1 Service Orientation and Virtualization 
When describing VOs, we can focus on the physical resources being shared (as in [29]) or on the 
services supported by these resources. (A service is a network-enabled entity that provides some 
capability. The term object could arguably also be used, but we avoid that term due to its 
overloaded meaning.) In OGSA, we focus on services: computational resources, storage 
resources, networks, programs, databases, and the like are all represented as services. 

Regardless of our perspective, a critical requirement in a distributed, multiorganizational Grid 
environment is for mechanisms that enable interoperability [29]. In a service-oriented view, we 
can partition the interoperability problem into two subproblems, namely the definition of service 
interfaces and the identification of the protocol(s) that can be used to invoke a particular 
interface—and, ideally, agreement on a standard set of such protocols. 

A service-oriented view allows us to address the need for standard interface definition 
mechanisms, local/remote transparency, adaptation to local OS services, and uniform service 
semantics. A service-oriented view also simplifies virtualization—that is, the encapsulation 
behind a common interface of diverse implementations. Virtualization allows for consistent 
resource access across multiple heterogeneous platforms with local or remote location 
transparency, and enables mapping of multiple logical resource instances onto the same physical 
resource and management of resources within a VO based on composition from lower-level 
resources. Virtualization allows the composition of services to form more sophisticated 
services—without regard for how the services being composed are implemented. Virtualization of 
Grid services also underpins the ability to map common service semantic behavior seamlessly 
onto native platform facilities. 

Virtualization is easier if service functions can be expressed in a standard form, so that any 
implementation of a service is invoked in the same manner. WSDL, which we adopt for this 
purpose, supports a service interface definition that is distinct from the protocol bindings used for 
service invocation. WSDL allows for multiple bindings for a single interface, including 
distributed communication protocol(s) (e.g., HTTP) as well as locally optimized binding(s) (e.g., 
local IPC) for interactions between request and service processes on the same host. Other binding 
properties may include reliability (and other forms of QoS) as well as authentication and 
delegation of credentials. The choice of binding should always be transparent to the requestor 
with respect to service invocation semantics—but not with respect to other things: for example, a 
requestor should be able to choose a particular binding for performance reasons. 

The service interface definition and access binding are also distinct from the implementation of 
the functionality of the service. A service can support multiple implementations on different 
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platforms, facilitating seamless overlay not only to native platform facilities but also, via the 
nesting of service implementations, to virtual ensembles of resources. Depending on the platform 
and context, we might use the following implementation approaches. 

1. We can use a reference implementation constructed for full portability across multiple 
platforms to support the execution environment (container) for hosting a service. 

2. On a platform possessing specialized native facilities for delivering service functionality, 
we might map from the service interface definition to the native platform facilities. 

3. We can also apply these mechanisms recursively so that a higher-level service is 
constructed by the composition of multiple lower-level services, which themselves may 
either map to native facilities or decompose further. The service implementation then 
dispatches operations to lower-level services (see also Section 4.4) 

As an example, consider a distributed trace facility that records trace records to a repository. On a 
platform that does not support a robust trace facility, a reference implementation can be created 
and hosted in a service execution environment for storing and retrieving trace records on demand. 
On a platform already possessing a robust trace facility, however, we can integrate the distributed 
trace service capability with the native platform trace mechanism, thus leveraging existing 
operational trace management tools, auxiliary offload, dump/restore, and the like, while 
semantically preserving the logical trace stream through the distributed trace service. Finally, in 
the case of a higher-level service, trace records obtained from lower-level services would be 
combined and presented as the integrated trace facility for the service. 

Central to this virtualization of resource behaviors is the ability to adapt to operating system 
functions on specific hosts. A significant challenge when developing these mappings is to enable 
exploitation of native capabilities—whether concerned with performance monitoring, workload 
management, problem determination, or enforcement of native platform security policy—so that 
the Grid environment does not become the least common denominator of its constituent pieces. 
Grid service discovery mechanisms are important in this regard, allowing higher-level services to 
discover what capabilities are supported by a particular implementation of an interface. For 
example, if a native platform supports reservation capabilities, an implementation of a resource 
management interface (e.g., GRAM [21, 27]) can exploit those capabilities. 

Thus, our service architecture supports local and remote transparency with respect to service 
location and invocation. It also provides for multiple protocol bindings to facilitate localized 
optimization of services invocation when the service is hosted locally with the service requestor, 
as well as to enable protocol negotiation for network flows across organizational boundaries 
where we may wish to choose between several interGrid protocols, each optimized for a different 
purpose. Finally, we note that an implementation of a particular Grid service interface may map 
to native, nondistributed, platform functions and capabilities. 

4.2 Service Semantics: The Grid Service 
Our ability to virtualize and compose services depends on more than standard interface 
definitions. We also require standard semantics for service interactions so that, for example, 
different services follow the same conventions for error notification. To this end, OGSA defines 
what we call a Grid service: a Web service that provides a set of well-defined interfaces and that 
follows specific conventions. The interfaces address discovery, dynamic service creation, lifetime 
management, notification, and manageability; the conventions address naming and 
upgradeability. We expect also to address authorization and concurrency control as OGSA 
evolves. Two other important issues, authentication and reliable invocation, are viewed as service 
protocol bindings and are thus external to the core OGSA definition. This separation of concerns 
increases the generality of the architecture without compromising functionality. 
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The interfaces and conventions that define a Grid service are concerned, in particular, with 
behaviors related to the management of transient service instances. VO participants typically 
maintain not merely a static set of persistent services that handle complex activity requests from 
clients. They often need to instantiate new transient service instances dynamically, which then 
handle the management and interactions associated with the state of particular requested 
activities. When the activity’s state is no longer needed, the service can be destroyed. For 
example, in a videoconferencing system, the establishment of a videoconferencing session might 
involve the creation of service instances at intermediate points to manage end-to-end data flows 
according to QoS constraints. Or, in a Web serving environment, service instances might be 
instantiated dynamically to provide for consistent user response time by managing application 
workload through dynamically added capacity. Other examples of transient service instances 
might be a query against a database, a data mining operation, a network bandwidth allocation, a 
running data transfer, and an advance reservation for processing capability. (These examples 
emphasize that service instances can be extremely lightweight entities, created to manage even 
short-lived activities.) Transience has significant implications for how services are managed, 
named, discovered, and used. 

4.2.1 Upgradeability Conventions and Transport Protocols 
Services within a complex distributed system must be independently upgradeable. Hence, 
versioning and compatibility between services must be managed and expressed so that clients can 
discover not only specific service versions but also compatible services. Further, services (and the 
hosting environments in which they run) must be upgradeable without disrupting the operation of 
their clients. For example, an upgrade to the hosting environment may change the set of network 
protocols that can be used to communicate with the service, and an upgrade to the service itself 
may correct errors or even enhance the interface. Hence, OGSA defines conventions that allow us 
to identify when a service changes and when those changes are backwardly compatible with 
respect to interface and semantics (but not necessarily network protocol). OGSA also defines 
mechanisms for refreshing a client’s knowledge of a service, such as what operations it supports 
or what network protocols can be used to communicate with the service. 

A service’s description indicates the protocol binding(s) that can be used to communicate with the 
service. Two properties will often be desirable in such bindings. 

• Reliable service invocation. Services interact with one another by the exchange of 
messages. In distributed systems prone to component failure, however, one can never 
guarantee that a message has been delivered. The existence of internal state makes it 
important to be able to guarantee that a service has received a message either once or not 
at all. From this foundation one can build a broad range of higher-level per-operation 
semantics, such as transactions. 

• Authentication. Authentication mechanisms allow the identity of individuals and services 
to be established for policy enforcement. Thus, one will often desire a transport protocol 
that provides for mutual authentication of client and service instance, as well as the 
delegation of proxy credentials. From this foundation one can build a broad range of 
higher-level authorization mechanisms. 

4.2.2 Standard Interfaces 
The interfaces (in WSDL terms, portTypes) that define a Grid service are listed in Table 1, 
introduced here, and described in more detail in Section 6 (and in [59]). Note that while OGSA 
defines a variety of behaviors and associated interfaces, all but one of these interfaces 
(GridService) are optional. 
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Table 1: Proposed OGSA Grid service interfaces (see text for details). The names provided here will 
likely change in the future. Interfaces for authorization, policy management, manageability, and 
likely other purposes remain to be defined. 

PortType Operation Description 

FindServiceData Query a variety of information about the Grid service 
instance, including basic introspection information 
(handle, reference, primary key, home handleMap: terms 
to be defined), richer per-interface information, and 
service-specific information (e.g., service instances 
known to a registry). Extensible support for various 
query languages. 

SetTerminationTime Set (and get) termination time for Grid service instance 

GridService 

Destroy Terminate Grid service instance 

SubscribeTo-
NotificationTopic 

Subscribe to notifications of service-related events, 
based on message type and interest statement. Allows 
for delivery via third party messaging services. 

Notification-
Source 

 UnSubscribeTo-
NotificationTopic 

Unsubscribe 

Notification-
Sink 

DeliverNotification Carry out asynchronous delivery of notification 
messages 

RegisterService Conduct soft-state registration of Grid service handles Registry 

 
UnregisterService Deregister a Grid service handle 

Factory CreateService Create new Grid service instance 

FindByPrimaryKey Return a Grid Service Handle for the Grid service 
instance created with the specified key 

PrimaryKey 

DestroyByPrimary-
Key 

Destroy the Grid service instance created with the 
specified key 

HandleMap FindByHandle Return Grid Service Reference currently associated with 
supplied Grid Service Handle 

 

Discovery. Applications require mechanisms for discovering available services and for 
determining the characteristics of those services so that they can configure themselves and their 
requests to those services appropriately. We address this requirement by defining 

• a standard representation for service data, that is, information about Grid service 
instances, which we structure as a set of named and typed XML fragments called service 
data elements, encapsulated in a standard container format; 

• a standard operation, FindServiceData (within the required GridService interface), for 
retrieving service data from individual Grid service instances; and 
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• standard interfaces for registering information about Grid service instances with registry 
services (Registry) and for mapping from “handles” to “references” (HandleMap—to be 
explained in Section 6, when we discuss naming). 

Dynamic service creation. The ability to dynamically create and manage new service instances is 
a basic tenet of the OGSA model and necessitates the existence of service creation services. The 
OGSA model defines a standard interface (Factory) and semantics that any service creation 
service must provide. 

Lifetime management. Any distributed system must be able to deal with inevitable failures. In a 
system that incorporates transient, stateful service instances, mechanisms must be provided for 
reclaiming services and state associated with failed operations. For example, termination of a 
videoconferencing session might also require the termination of services created at intermediate 
points to manage the flow. We address this requirement by defining two standard operations: 
Destroy and SetTerminationTime (within the required GridService interface), for explicit 
destruction and soft state lifetime management of Grid service instances, respectively. (Soft state 
protocols [52, 62] allow state established at a remote location to be discarded eventually, unless 
refreshed by a stream of subsequent “keepalive” messages. Such protocols have the advantages of 
being both resilient to failure—a single lost message need not cause irretrievable harm—and 
simple: no reliable “discard” protocol message is required.) 

Notification. A collection of dynamic, distributed services must be able to notify each other 
asynchronously of interesting changes to their state. OGSA defines common abstractions and 
service interfaces for subscription to (NotificationSource) and delivery of (NotificationSink) such 
notifications, so that services constructed by the composition of simpler services can deal with 
notifications (e.g., for errors) in standard ways. (We might refer to the capabilities provided by 
these interfaces as an event service, but we avoid that term due to its overloaded meaning.)  

Other interfaces. We expect to define additional standard interfaces in the near future, to address 
issues such as authorization, policy management, and the monitoring and management of 
potentially large sets of Grid service instances. 

4.3 The Role of Hosting Environments  
OGSA defines the semantics of a Grid service instance: how it is created, how it is named, how 
its lifetime is determined, how to communicate with it, and so on. However, while OGSA is 
prescriptive on matters of basic behavior, it does not place requirements on what a service does or 
how it performs that service. In other words, OGSA does not address issues of implementation 
programming model, programming language, implementation tools, or execution environment. 

In practice, Grid services are instantiated within a specific execution environment or hosting 
environment. A particular hosting environment defines not only implementation programming 
model, programming language, development tools, and debugging tools, but also how an 
implementation of a Grid service meets its obligations with respect to Grid service semantics. 

Today’s e-science Grid applications typically rely on native operating system processes as their 
hosting environment, with for example creation of a new service instance involving the creation 
of a new process. In such environments, a service itself may be implemented in a variety of 
languages such as C, C++, Java, or Fortran. Grid semantics may be implemented directly as part 
of the service, or provided via a linked library. Typically semantics are not provided via external 
services, beyond those provided by the operating system. Thus, for example, lifetime 
management functions must addressed within the application itself, if required. 

Web services, on the other hand, may be implemented on more sophisticated container or 
component-based hosting environments such as J2EE, Websphere, .NET, and Sun One. Such 
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environments define a framework (container) within which components adhering to environment-
defined interface standards can be instantiated and composed to build complex applications. 
Compared with the low levels of functionality provided by native hosting environments, 
container/component hosting environments tend to offer superior programmability, 
manageability, flexibility, and safety. Consequently, component/container based hosting 
environments are seeing widespread use for building e-business services. In the OGSA context, 
the container (hosting environment) has primary responsibility for ensuring that the services it 
supports adhere to Grid service semantics, and thus OGSA may motivate modifications or 
additions to the container/component interface. 

By defining service semantics, OGSA specifies interactions between services in a manner 
independent of any hosting environment. However, as the above discussion highlights, successful 
implementation of Grid services can be facilitated by specifying baseline characteristics that all 
hosting environments must possess, defining the “internal” interface from the service 
implementation to the global Grid environment. These characteristics would then be rendered into 
different implementation technologies (e.g., J2EE or shared libraries). 

A detailed discussion of hosting environment characteristics is beyond the scope of this article. 
However, we can expect a hosting environment to address mapping of Grid-wide names (i.e., 
Grid service handles) into implementation-specific entities (C pointers, Java object references, 
etc.); dispatch of Grid invocations and notification events into implementation-specific actions 
(events, procedure calls); protocol processing and the formatting of data for network 
transmission; lifetime management of Grid service instances; and inter-service authentication. 

4.4 Using OGSA Mechanisms to Build VO Structures 
Applications and users must be able to create transient services and to discover and determine the 
properties of available services. The OGSA Factory, Registry, GridService, and HandleMap 
interfaces support the creation of transient service instances and the discovery and 
characterization of the service instances associated with a VO. (In effect, a registry service—a 
service instance that supports the Registry interface for registration and the GridService 
interface’s FindServiceData operation, with appropriate service data, for discovery—defines the 
service set associated with a VO.) These interfaces can be used to construct a variety of VO 
service structures, as illustrated in Figure 2 and described in the following. 

Simple hosting environment. A simple execution environment is a set of resources located within 
a single administrative domain and supporting native facilities for service management: for 
example, a J2EE application server, Microsoft .NET system, or Linux cluster. In OGSA, the user 
interface to such an environment will typically be structured as a registry, one or more factories, 
and a handleMap service. Each factory is recorded in the registry, to enable clients to discover 
available factories. When a factory receives a client request to create a Grid service instance, the 
factory invokes hosting-environment-specific capabilities to create the new instance, assigns it a 
handle, registers the instance with the registry, and makes the handle available to the handleMap 
service. The implementations of these various services map directly into local operations. 
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Figure 2: Three different VO structures, as described in the text. From left to right: simple hosting 
environment, virtual hosting environment, and collective services. 

Virtual hosting environment. In more complex environments, the resources associated with a VO 
will span heterogeneous, geographically distributed “hosting environments.” (For example, in 
Figure 2, these resources span two simple hosting environments.) Nevertheless, this “virtual 
hosting environment” (which corresponds, perhaps, to the set of resources associated with a B2B 
partnership) can be made accessible to a client via exactly the same interfaces as were used for 
the hosting environment just described. We create one or more “higher-level” factories that 
delegate creation requests to lower-level factories. Similarly, we create a higher-level registry that 
knows about the higher-level factories and the service instances that they have created, as well 
any VO-specific policies that govern the use of VO services. Clients can then use the VO registry 
to find factories and other service instances associated with the VO, and then use the handles 
returned by the registry to talk directly to those service instances. The higher-level factories and 
registry implement standard interfaces and so, from the perspective of the user, are 
indistinguishable from any other factory or registry. 

Note that here, as in the previous example, the registry handle can be used as a globally unique 
name for the service set maintained by the VO. Resource management policies can be defined 
and enforced on the platforms hosting VO services, targeting the VO by this unique name.  

Collective operations. We can also construct a “virtual hosting environment” that provides VO 
participants with more sophisticated, virtual, “collective” or “end-to-end” services. In this case, 
the registry keeps track of and advertises factories that create higher-level service instances. Such 
instances are implemented by asking lower-level factories to create multiple service instances and 
by composing the behaviors of those multiple lower-level service instances into that single, 
higher-level service instance.  

These three examples, and the preceding discussion, illustrate how Grid service mechanisms can 
be used to integrate distributed resources both across virtual multi-organizational boundaries and 
within internal commercial IT infrastructures. In both cases, a collection of Grid services 
registered with appropriate discovery services can support functional capabilities delivering QoS 
interactions across distributed resource pools. Applications and middleware can exploit these 
services for distributed resource management across heterogeneous platforms with local and 
remote transparency and locally optimized flows. 

Implementations of Grid services that map to native platform resources and APIs enable seamless 
integration of higher-level Grid services such as those just described with underlying platform 
components. Furthermore, service sets associated with multiple VOs can map to the same 
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underlying physical resources, with those services represented as logically distinct at one level 
but sharing physical resource systems at lower levels. 

5 Application Example 
We illustrate in Figure 3 the following stages in the life of a data mining computation, which we 
use to illustrate the working of basic remote service invocation, lifetime management, and 
notification functions. 

1. The environment initially comprises (from left to right) four simple hosting 
environments: one that runs the user application; one that encapsulates computing and 
storage resources (and that supports two factory services, one for creating storage 
reservations and the other for creating mining services); and two that encapsulate 
database services. The “R”s represent registry services. 

2. The user application invokes “create Grid service” requests on the two factories in the 
second hosting environment, requesting the creation of a “data mining service” that will 
perform the data mining operation on its behalf, and an allocation of temporary storage 
for use by that computation. Each request involves mutual authentication of the user and 
the relevant factory (using an authentication mechanism described in the factory’s service 
description) followed by authorization of the request. Each request is successful and 
results in the creation of a Grid service instance with some initial lifetime. The new data 
mining service instance is also provided with delegated proxy credentials that allow it to 
perform further remote operations on behalf of the user. 

3. The newly created data mining service uses its proxy credentials to start requesting data 
from the two database services, placing intermediate results in local storage. The data 
mining service also uses notification mechanisms to provide the user application with 
periodic updates on its status. Meanwhile, the user application generates periodic 
“keepalive” requests to the two Grid service instances that it has created. 

4. The user application fails for some reason. The data mining computation continues for 
now, but as no other party has an interest in its results, no further keepalive messages are 
generated. 

5. (Not shown in figure) Due to the application failure, keepalive messages cease, and so the 
two Grid service instances eventually time out and are terminated, freeing the storage and 
computing resources that they were consuming. 



Physiology of the Grid  18 

This is a DRAFT document and a work in progress. Version: 2/17/2002. 
Comments to foster@mcs.anl.gov, carl@isi.edu, jnick@us.ibm.com, tuecke@mcs.anl.gov 

R

(1)

RStorage
reservation

factory

Mining
service
factory

Storage
Storage Storage

Database
service

RDatabase
service

User
Application

R

R

(2)
Storage

reservation
Mining
service

RStorage
reservation

factory

Mining
service
factory

Storage
Storage Storage

Database
service

RDatabase
service

User
Application

R

R

(3)
Storage

reservation
Mining
service

RStorage
reservation

factory

Mining
service
factory

Storage
Storage Storage

Database
service

RDatabase
service

User
Application

R

Create
Storage

Reservation

Create
Mining
Service

Query
Keepalive

Status
Update

Notification

R

(4)
Storage

reservation
Mining
service

RStorage
reservation

factory

Mining
service
factory

Storage
Storage Storage

Database
service

RDatabase
service

User
Application

R

Query

Status
Update

 

Figure 3: An example of Grid services at work. See text for details. 

6 Technical Details 
We now present a more detailed description of the Grid service abstraction and associated 
interfaces and conventions.  

6.1 The OGSA Service Model 
A basic premise of OGSA is that everything is represented by a service: a network enabled entity 
that provides some capability through the exchange of messages. Computational resources, 
storage resources, networks, programs, databases, and so forth are all services. This adoption of a 
uniform service-oriented model means that all components of the environment are virtual. 

More specifically, OGSA represents everything as a Grid service: a Web service that conforms to 
a set of conventions and supports standard interfaces for such purposes as lifetime management. 
This core set of consistent interfaces, from which all Grid services are implemented, facilitates 
the construction of hierarchal, higher-order services that can be treated in a uniform way across 
layers of abstraction. 
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Grid services are characterized (typed) by the capabilities that they offer. A Grid service 
implements one or more interfaces, where each interface defines a set of operations that are 
invoked by exchanging a defined sequence of messages. Grid service interfaces correspond to 
portTypes in WSDL. The set of portTypes supported by a Grid service, along with some 
additional information relating to versioning, are specified in the Grid service’s serviceType, a 
WSDL extensibility element defined by OGSA. 

Grid services can maintain internal state for the lifetime of the service. The existence of state 
distinguishes one instance of a service from another that provides the same interface. We use the 
term Grid service instance to refer to a particular instantiation of a Grid service. 

The protocol binding associated with a service interface can define a delivery semantics that 
addresses, for example, reliability. Services interact with one another by the exchange of 
messages. In distributed systems prone to component failure, however, one can never guarantee 
that a message that is sent has been delivered. The existence of internal state can make it 
important to be able to guarantee that a service has received a message once or not at all, even if 
failure recovery mechanisms such as retry are in use. In such situations, we may wish to use a 
protocol that guarantees exactly-once delivery or some similar semantics. Another frequently 
desirable protocol binding behavior is mutual authentication during communication. 

OGSA services can be created and destroyed dynamically. Services may be destroyed explicitly, 
or may be destroyed or become inaccessible as a result of some system failure such as operating 
system crash or network partition. Interfaces are defined for managing service lifetime. 

Because Grid services are dynamic and stateful, we need a way to distinguish one dynamically 
created service instance from another. Thus, every Grid service instance is assigned a globally 
unique name, the Grid service handle (GSH), that distinguishes a specific Grid service instance 
from all other Grid service instances that have existed, exist now, or will exist in the future. (If a 
Grid service fails and is restarted in such as way as to preserve its state, then it is essentially the 
same instance, and the same GSH can be used.) 

Grid services may be upgraded during their lifetime, for example to support new protocol 
versions or to add alternative protocols. Thus, the GSH carries no protocol- or instance-specific 
information such as network address and supported protocol bindings. Instead, this information is 
encapsulated, along with all other instance-specific information required to interact with a 
specific service instance, into a single abstraction called a Grid service reference (GSR). Unlike a 
GSH, which is invariant, the GSR(s) for a Grid service instance can change over that service’s 
lifetime. Each GSR has an explicit expiration time, and OGSA defines mapping mechanisms, 
described below, for obtaining an updated GSR. 

The result of using a GSR whose lifetime has expired is undefined. Note that holding a valid GSR 
does not guarantee access to a Grid service instance: local policy or access control constraints (for 
example maximum number of current requests) may prohibit servicing a request. In addition, the 
referenced Grid service instance may have failed, preventing the use of the GSR. 

As everything in OGSA is a Grid service, there must be Grid services that manipulate the Grid 
service, handle, and reference abstractions that define the OGSA model. Defining a specific set of 
services would result in a specific rendering of the OGSA service model. We therefore take a 
more flexible approach and define a set of basic OGSA interfaces (i.e., WSDL portTypes) for 
manipulating service model abstractions. These interfaces can then be combined in different ways 
to produce a rich range of Grid services. Table 1 presents names and descriptions for the Grid 
service interfaces defined to date. Note that only the GridService interface must be supported by 
all Grid services. 
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6.2 Creating Transient Services: Factories  
OGSA defines a class of Grid services that implement an interface that creates new Grid service 
instances. We call this the Factory interface and a service that implements this interface a factory. 
The Factory interface’s CreateService operation creates a requested Grid service and returns the 
GSH and initial GSR for the new service instance. 

The Factory interface does not specify how the service instance is created. One common scenario 
is for the factory interface to be implemented in some form of hosting environment (such as .NET 
or J2EE) that provides standard mechanisms for creating (and subsequently managing) new 
service instances. The hosting environment may define how services are implemented (e.g., 
language), but this is transparent to service requestors in OGSA, which see only the factory 
interface. Alternatively, one can construct “higher-level” factories that create services by 
delegating the request to other factory services (see Section 4.4). For example, in a Web serving 
environment, a new computer might be integrated into the active pool by asking an appropriate 
factory service to instantiate a “Web serving” service on an idle computer. 

6.3 Service Lifetime Management 
The introduction of transient service instances raises the issue of determining the service’s 
lifetime: that is, determining when a service can or should be terminated so that associated 
resources can be recovered. In normal operating conditions, a transient service instance is created 
to perform a specific task and either terminates on completion of this task or via an explicit 
request from the requestor or from another service designated by the requestor. In distributed 
systems, however, components may fail and messages may be lost. One result is that a service 
may never see an expected explicit termination request, thus causing it to consume resources 
indefinitely. 

OGSA addresses this problem through a soft state approach [19, 62] in which Grid service 
instances are created with a specified lifetime. The initial lifetime can be extended by a specified 
time period by explicit request of the client or another Grid service acting on the client’s behalf 
(subject of course to the policy of the service). If that time period expires without having received 
a re-affirmation of interest from a client, either the hosting environment or the service instance 
itself is at liberty to terminate the service instance and release any associated resources. 

Our approach to Grid service lifetime management has two desirable properties: 

• A client knows, or can determine, when a Grid service instance will terminate. This 
knowledge allows the client to determine reliably when a service instance has terminated 
and hence its resources have been recovered, even in the face of system faults (e.g., 
failures of servers, networks, clients). The client knows exactly how long it has in order 
to request a final status from the service instance or to request an extension to the 
service’s lifetime. Moreover, it also knows that if system faults occur, it need not 
continue attempting to contact a service after a known termination time, and that any 
resources associated with that service would be released after that time—unless another 
client succeeded in extending the lifetime. In brief, lifetime management enables robust 
termination and failure detection, by clearly defining the lifetime semantics of a service 
instance. 

• A hosting environment is guaranteed that resource consumption is bounded, even in the 
face of system failures outside of its control. If the termination time of a service is 
reached, the hosting environment can reclaim all associated resources. 

We implement soft state lifetime management via the SetTerminationTime operation within the 
required GridService interface, which defines operations for negotiating an initial lifetime for a 
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new service instance, for requesting a lifetime extension, and for harvesting a service instance 
when its lifetime has expired. We describe each of these mechanisms in turn. 

Negotiating an initial lifetime. When requesting the creation of a new Grid service instance 
through a factory, a client indicates minimum and maximum acceptable initial lifetimes. The 
factory selects an initial lifetime and returns this to the client. 

Requesting a lifetime extension. A client requests a lifetime extension via a SetTerminationTime 
message to the Grid service instance, which specifies a minimum and maximum acceptable new 
lifetime. The service instance selects a new lifetime and returns this to the client. Note that a 
keepalive message is effectively idempotent: the result of a sequence of requests is the same, even 
if intermediate requests are lost or reordered, as long as not so many requests are lost that the 
service instance’s lifetime expires. 

The periodicity of keepalive messages can be determined by the client based on the initial 
lifetime negotiated with the service instance (and perhaps renegotiated via subsequent keepalive 
messages) and knowledge about network reliability. The interval size allows tradeoffs between 
currency of information and overhead. 

We note that this approach to lifetime management provides a service with considerable 
autonomy. Lifetime extension requests from clients are not mandatory: the service can apply its 
own policies on granting such request. A service can decide at any time to extend its lifetime, 
either in response to a lifetime extension request by a client or any other reason. A service 
instance can also cancel itself at any time, for example if resource constraints and priorities 
dictate that it relinquishes its resources. Subsequent client requests that refer to this service will 
fail. 

The use of absolute time in the SetTerminationTime operation—and, for that matter, in Grid 
service information elements, and commonly in security credentials—implies the existence of a 
global clock that is sufficiently well synchronized. The Network Time Protocol (NTP) provides 
standardized mechanisms for clock synchronization and can typically synchronize clocks within 
at most tens of milliseconds, which is more than adequate for the purposes of lifetime 
management. Note that we are not implying by these statements a requirement for ordering of 
events, although we expect to introduce some such mechanisms in future revisions. 

6.4 Managing Handles and References 
As discussed above, the result of a factory request is a GSH and a GSR. While the GSH is 
guaranteed to reference the created Grid service instance in perpetuity, the GSR is created with a 
finite lifetime and may change during the service’s lifetime. While this strategy has the advantage 
of increased flexibility from the perspective of the Grid service provider, it introduces the 
problem of obtaining a valid GSR once the GSR returned by the service creation operation 
expires. At its core, this is a bootstrapping problem: how does one establish communication with 
a Grid service given only its GSH. 

The approach taken in OGSA is to define a handle-to-reference mapper interface (HandleMap). 
The operations provided by this interface take a GSH and return a valid GSR. Mapping 
operations can be access controlled and thus a mapping request may be denied. An 
implementation of the HandleMap interface may wish to keep track of what Grid service 
instances are actually in existence and not return references to instances that it knows have 
terminated. However, possession of a valid GSR does not assure that a Grid service instance can 
be contacted: the service may have failed or been explicitly terminated between the time the GSR 
was given out and the time that it was used. (Obviously, if termination of a service is scheduled, it 
is desirable to represent this in the GSR lifetime, but it is not required.) 
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By introducing the HandleMap interface, we partition the general problem of obtaining a GSR for 
an arbitrary service into two more specific subproblems:  

1) Identifying a handleMap service that contains the mapping for the specified GSH, and 

2) Contacting that handleMap to obtain the desired GSR. 

We address these two subproblems in turn. To ensure that we can always map a GSH to a GSR, 
we require that every Grid service instance be registered with at least one handleMap, which we 
call the home handleMap. By structuring the GSH to include the home handleMap’s identity, we 
can easily and scalably determine which handleMap to contact to obtain a GSR for a given GSH. 
Hence, unique names can be determined locally, thus avoiding scalability problems associated 
with centralized name allocation services—although relying on the Domain Name System [46]. 
Note that GSH mappings can also live in other handleMaps. However, every GSH must have 
exactly one home handleMap. 

How do we identify the home handleMap within a GSH? Any service that implements the 
HandleMap interface is a Grid service, and as such will have a GSH. If we use this name in 
constructing a GSH, however, then we are back in the same position of trying to obtain a GSR 
from the handleMap service’s GSH. To resolve this bootstrapping problem, we need a way to 
obtain the GSR for the handleMap without requiring a handleMap! We accomplish this by 
requiring that all home handleMap services be identified by a URL and support a bootstrapping 
operation that is bound to a single, well-known protocol, namely, HTTP (or HTTPS). Hence, 
instead of using a GSR to describe what protocols should be used to contact the handleMap 
service, an HTTP GET operation is used on the URL that points to the home handleMap, and the 
GSR for the handleMap, in WSDL form, is returned. 

Note that a relationship exists between services that implement the HandleMap and Factory 
interfaces. Specifically, the GSH returned by a factory request must contain the URL of the home 
handleMap, and the GSH/GSR mapping must be entered and updated into the handleMap service. 
The implementation of a factory must decide what service to use as the home handleMap. Indeed 
a single service may implement both the Factory and HandleMap interfaces.  

6.5 Service Information and Service Discovery 
Associated with each Grid service instance is a set of service data, a collection of XML 
fragments encapsulated as service data elements. The packaging of each element includes a name 
that is unique to the Grid service instance, a type, and time-to-live information that a recipient can 
use for lifetime management. 

The obligatory GridService interface defines a standard WSDL operation, FindServiceData, for 
querying and retrieving service data. This operation allows for the specification of the query 
language used, which may be for example Xquery [17]. 

The Grid service specification defines for each Grid service interface a set of zero or more service 
data elements that must be supported by any Grid service instance that supports that interface. 
Associated with the GridService interface, and thus obligatory for any Grid service instance, are a 
set of elements containing basic information about a Grid service instance, such as its GSH, GSR, 
primary key, and home handleMap. 

One application of the GridService interface’s FindServiceData operation is service discovery. 
Our discussion above assumed that one has a GSH that represents a desired service. But how does 
one obtain the GSH in the first place? This is the essence of service discovery, which we define 
here as the process of identifying a subset of GSHs from a specified set based on GSH attributes 
such as the interfaces provided, the number of requests that have been serviced, the load on the 
service, or policy statements such as the number of outstanding requests allowed. 
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A Grid service that supports service discovery is called a registry. A registry service is defined by 
two things: the Registry interface, which provides operations by which GSHs can be registered 
with the registry service, and an associated service data element used to contain information 
about registered GSHs. Thus, the Registry interface is used to register a GSH and the GridService 
interface’s FindServiceData operation is used to retrieve information about registered GSHs.  

The Registry interface allows a GSH to register with a registry service to augment the set of 
GSHs that are considered for subsetting. As in MDS-2 [20], a service (or VO) can use this 
operation to notify interested parties within a VO of its existence and the service(s) that it 
provides. These interested parties typically include various forms of service discovery services, 
which collect and structure service information in order to respond efficiently to service 
discovery requests. As with other stateful interfaces in OGSA, GSH registration is a soft state 
operation and must be periodically refreshed, thus allowing discovery services to deal naturally 
with dynamic service availability. 

We note that specification of the attributes associated with a GSH is not tied to the registration of 
a GSH to a service implementing the GridService interface. This feature is important because 
attribute values may be dynamic and there may be a variety of ways in which attribute values 
may be obtained, including consulting another service implementing the GridService interface. 

When using a factory that supports discovery of Grid service instances created by that factory, a 
client can specify a Grid service primary key to the factory as part of its creation request. The key 
type is specific to the factory and the key must be unique among all simultaneously existing Grid 
service instances created by that factory. A client can use this key to query a factory for a 
particular Grid service instance. 

6.6 Notification 
The OGSA notification framework allows clients to register interest in being notified of particular 
messages (the NotificationSource interface) and supports asynchronous, one-way delivery of such 
notifications (NotificationSink). If a particular service wishes to support subscription of 
notification messages, it must support the NotificationSource interface to manage the 
subscriptions. A service that wishes to receive notification messages must implement the 
NotificationSink interface, which is used to deliver notification messages. To start notification 
from a particular service, one invokes the subscribe operation on the notification source interface, 
giving it the service GSH of the notification sink. A stream of notification messages then flow 
from the source to the sink, while the sink sends periodic keepalive messages to notify the source 
that it is still interested in receiving notifications. If reliable delivery is desired, this behavior can 
be implemented by defining an appropriate protocol binding for this service. 

The framework allows both for direct service-to-service notification message delivery, and for 
integration with various third-party services, such as messaging services commonly used in the 
commercial world, or custom services that filter, transform, or specially deliver notification 
messages on behalf of the notification source. Notification semantics are a property of the 
protocol binding used to deliver the message. For example, a SOAP/HTTP protocol or direct 
UDP binding would provide point-to-point, best-effort, notification, while other bindings (e.g., 
some proprietary message service) would provide better than best-effort delivery. A multicast 
protocol binding would support multiple receivers. 

6.7 Change Management 
In order to support discovery and change management of Grid services, Grid service interfaces 
must be globally and uniquely named. In WSDL, an interface is defined by a portType and is 
globally and uniquely named by the portType’s qname (i.e., an XML namespace as defined by 
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the targetNamespace attribute in the WSDL document’s definitions element, and a local name 
defined by the portType element’s name attribute). Any changes made to the definition of a Grid 
service, either by changing its interface or by making semantically significant implementation 
changes to the operations, must be reflected through new interface names (i.e., new portTypes). 
This feature allows clients that require Grid Services with particular properties (either particular 
interfaces or implementation semantics) to discover compatible services. 

6.8 Other Interfaces 
We expect in the future to define an optional Manageability interface that supports a set of 
manageability operations. Such operations allow potentially large sets of Grid service instances to 
be monitored and managed from management consoles, automation tools, and the like. 

7 Network Protocol Bindings 
The Web services framework can be instantiated on a variety of different protocol bindings. 
SOAP+HTTP with TLS for security is one example, but others can and have been defined. Here 
we discuss some issues that arise in the OGSA context. 

In selecting network protocol bindings within an OGSA context, we must address four primary 
requirements: 

• Reliable transport. As discussed above, the Grid services abstraction can require support 
for reliable service invocation. One way to address this requirement is to incorporate 
appropriate support within the network protocol binding, as for example in HTTP-R. 

• Authentication and delegation. As discussed above, the Grid services abstraction can 
require support for communication of proxy credentials to remote sites. One way to 
address this requirement is to incorporate appropriate support within the network protocol 
binding, as for example in TLS extended with proxy credential support. 

• Ubiquity. The Grid goal of enabling the dynamic formation of VOs from distributed 
resources means that, in principle, it must be possible for any arbitrary pair of services to 
interact. 

• GSR Format. Recall that the Grid Service Reference can take a binding-specific format. 
One possible GSR format is a WSDL document; CORBA IOR is another. 

The successful deployment of large-scale interoperable OGSA implementations would benefit 
from the definition of a small number of standard protocol bindings for Grid service discovery 
and invocation. Just as the ubiquitous deployment of the Internet Protocol allows essentially any 
two entities to communicate, so ubiquitous deployment of such “InterGrid” protocols will allow 
any two services to communicate. Hence, clients can be particularly simple, since they need to 
know about only one set of protocols. (Notice that the definition of such standard protocols does 
not prevent a pair of services from using an alternative protocol, if both support it.) Whether or 
not such InterGrid protocols can be defined and gain widespread acceptance remains to be seen. 
In any case, their definition is beyond the scope of this article. 

8 Higher-Level Services 
The abstractions and services described in this article provide building blocks that can be used to 
implement a variety of higher-level Grid services. We intend to work closely with the community 
to define and implement a wide variety of such services that will, collectively, address the diverse 
requirements of e-business and e-science applications. These are likely to include the following: 
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• Distributed data management services, supporting access to and manipulation of 
distributed data, whether in databases or files [51]. Services of interest include database 
access, data translation, replica management, replica location, and transactions. 

• Workflow services, supporting the coordinated execution of multiple application tasks on 
multiple distributed Grid resources. 

• Auditing services, supporting the recording of usage data, secure storage of that data, 
analysis of that data for purposes of fraud and intrusion detection, and so forth. 

• Instrumentation and monitoring services, supporting the discovery of “sensors” in a 
distributed environment, the collection and analysis of information from these sensors, 
the generation of alerts when unusual conditions are detected, and so forth. 

• Problem determination services for distributed computing, including dump, trace, and log 
mechanisms with event tagging and correlation capabilities. 

• Security protocol mapping services, enabling distributed security protocols to be 
transparently mapped onto native platform security services for participation by platform 
resource managers not implemented to support the distributed security authentication and 
access control mechanism. 

The flexibility of our framework means that such services can be implemented and composed in a 
variety of different ways. For example, a coordination service that supports the simultaneous 
allocation and use of multiple computational resources can be instantiated as a service instance, 
linked with an application as a library, or incorporated into yet higher-level services. 

It appears straightforward to re-engineer the resource management, data transfer, and information 
service protocols used within the current Globus Toolkit to build on these common mechanisms 
(see Figure 4). In effect, we can refactor the design of those protocols, extracting similar elements 
to exploit commonalities. In the process, we enhance the capabilities of the current protocols and 
arrive at a common service infrastructure. This process will produce Globus Toolkit 3.0. 

GRAM

HTTP

GridFTP

FTP

MDS

LDAP

TLS/GSI

IP

GRAM

Grid Services Abstraction

GridFTP MDS

IP

SOAP+TLS/GSI Other Transports

 
Figure 4: On the left, some current Globus Toolkit protocols; on the right, a potential 
refactoring to exploit OGSA mechanisms. 

9 Related Work 
We note briefly some relevant prior and other related work, focusing in particular on issues 
relating to the secure and reliable remote creation and management of transient, stateful services. 

As discussed in Section 3.1, many OGSA mechanisms derive from the Globus Toolkit v2.0: in 
particular, the factory (GRAM gatekeeper [21]), registry (GRAM reporter [21] and MDS-2 [20]), 
use of soft-state registration (MDS-2 [20]), secure remote invocation with delegation (GSI [28]), 
and reliable remote invocation (GRAM [21]). The primary differences relate to how these 
different mechanisms are integrated, with OGSA refactoring key design elements so that, for 
example, common notification mechanisms are used for service registration and service state. 

OGSA can be viewed as a distributed object system, in the sense that each Grid service instance 
has a unique identity with respect to the other instances in the system, and each instance can be 
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characterized as state coupled with behavior published through type-specific operations. In this 
respect, OGSA exploits ideas developed previously in systems such as Eden [7], Argus [42], 
CORBA [1], SOS [53], Spring [45], Globe [55], Mentat [36], and Legion [35, 37], among others. 
In Grid computing, the Legion group has promoted the use of object models, and we can draw 
parallels between certain OGSA and Legion constructs, in particular the factory (“Class Object”), 
handleMap (“Binding Agent”), and timeouts on bindings. However, we also note that OGSA is 
nonprescriptive on several issues that are often viewed as central to distributed object systems, 
such as the use of object technologies in implementations, the exposure of inheritance 
mechanisms at the interface level, and hosting technology.   

Soft state mechanisms have been used for management of specific state in network entities within 
Internet protocols [19, 54, 62] and (under the name “leases”) in RMI and Jini [50]. In OGSA, all 
services and information are open to soft state management. We prefer soft state techniques to 
alternatives such as distributed reference counting [11] because of their relative simplicity. 

Our reliable invocation mechanisms are inspired by those used in Condor [31, 43, 44], which in 
turn build on much prior work in distributed systems. 

As noted in Section 4.3, the various OGSA service behaviors defined will, in general, be 
supported via some form of hosting environment that simplifies the development of individual 
components by managing persistence, security, lifecycle management, and so forth. The notion of 
a hosting environment appears in various operating systems and object systems. 

The application of Web services mechanisms to Grid computing has also been investigated and 
advocated by others (e.g., [30, 32]), with a recent workshop focusing on this issue and providing 
overviews of a number of interesting and relevant efforts [2]. For example, Gannon et al. [32] 
discuss the application of various contemporary technologies to e-science applications and 
propose “application factories” (with WSDL interfaces) as a means of creating application 
services dynamically. De Roure et al. [22] discuss how to extend the Grid to construct a smarter 
“Semantic Grid,” by analogy to the Semantic Web [10], and propose a range of higher-level 
services. 

Sun Microsystems’ JXTA system [3] addresses several important issues encountered in Grids, 
including discovery of, and membership in, virtual organizations—what JXTA calls “peer 
groups.” We believe that these abstractions can be implemented within the OGSA framework. 

There are connections to be made with component models for distributed and high-performance 
computing [8, 12, 61], some implementations of which build on Globus Toolkit mechanisms. 

10 Summary 
We have defined an Open Grid Services Architecture (OGSA) that supports, via standard 
interfaces and conventions, the creation, termination, management, and invocation of stateful, 
transient services as named, managed entities with dynamic, managed lifetime. 

Within OGSA, everything is represented as a Grid service, that is, a (potentially transient) service 
that conforms to a set of conventions (expressed using WSDL) for such purposes as lifetime 
management, discovery of characteristics, notification, and so on. Grid service implementations 
can target native platform facilities for integration with, and of, existing IT infrastructures. 
Standard interfaces for creating, registering, and discovering Grid services can be configured to 
create various forms of VO structure. 

The merits of this service-oriented model are as follows. All components of the environment are 
virtualized. By providing a core set of consistent interfaces from which all Grid services are 
implemented, we facilitate the construction of hierarchal, higher-order services that can be treated 
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in a uniform way across layers of abstraction. Virtualization also enables mapping of multiple 
logical resource instances onto the same physical resource, composition of services regardless of 
implementation, and management of resources within a VO based on composition from lower-
level resources. It is virtualization of Grid services that underpins the ability for mapping 
common service semantic behavior seamlessly onto native platform facilities. 

The development of OGSA represents a natural evolution of the Globus Toolkit 2.0, in which the 
key concepts of factory, registry, reliable and secure invocation, etc., exist, but in a less general 
and flexible form than here, and without the benefits of a uniform interface definition language. 
In effect, OGSA refactors key design elements so that, for example, common notification 
mechanisms are used for service registration and service state. OSGA also further abstracts these 
elements so that they can be applied at any level to virtualize VO resources. The Globus Toolkit 
will provide the basis for an open source OGSA implementation, Globus Toolkit 3.0, that 
supports existing Globus APIs as well as WSDL interfaces, as described at www.globus.org/ogsa. 

The development of OGSA also represents a natural evolution of Web services. By integrating 
support for transient, stateful service instances with existing Web services technologies, OGSA 
extends significantly the power of the Web services framework, while requiring only minor 
extensions to existing technologies. 
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