

 Distributed Systems

 Java RMI

Goals/Principles Of RMI

• Distributed Java
• Almost the same syntax and

semantics used by non-distributed
applications

• Allow code that defines behavior
and code that implements behavior
to remain separate and to run on
separate JVMs

• The transport layer is TCP/IP

Goals/Principles Of RMI
•  On top of TCP/IP, RMI originally used a

protocol called Java Remote Method Protocol
(JRMP). JRMP is proprietary.

•  For increased interoperability RMI now uses
the Internet Inter-ORB Protocol (IIOP). This
protocol is language neutral and runs on TCP/
IP providing a standard way to make method
calls to remote objects.

•  RMI is all about remote calls at runtime. It’s
not about compilation against a remote class.

Protocol Layers

Client app

Stub

Remote Reference
Layer

Transport Layer

Service App

Skeleton

Remote Reference
Layer

Transport Layer

Goals/Principles Of RMI

•  RMI uses the proxy design pattern. An
object in one context is represented by
another (the stub) in a separate
context. The stub knows how to forward
method calls between the participating
objects.

Goals/Principles Of RMI

•  A naming or directory service is run on
a well-known host and port number

•  Usually a DNS name is used instead of
an IP address

•  RMI itself includes a simple service
called the RMI Registry, rmiregistry.
The RMI Registry runs on each machine
that hosts remote service objects and
accepts queries for services, by default
on port 1099

Goals/Principles Of RMI

•  On the client side, the RMI Registry is
accessed through the static class
Naming. It provides the method
lookup() that a client uses to query a
registry.

•  The registry is not the only source of
remote object references. A remote
method may return a remote reference.

•  The registry returns references when
given a registered name. It may also

 return stubs to the client.

Client
Virtual Machine

Server
Virtual Machine

method calls with
parameters
return values and
exceptions

Java RMI

The Proxy Design Pattern

Service Proxy Service Implementation

Client

Service Proxy(stub) Service Implementation

Service Interface

Summary of Activities

1.  Compile the java files:
 javac *.java
2.  Run rmic on the ProductImpl.class producing the file
 ProductImpl_Stub.class

 rmic –v1.2 ProductImpl
3.  Start the RMI registry

 start rmiregistry
4.  Start the server
 start java ProductServer
5.  Run the client
 java –Djava.security.policy=client.policy ProductClient

Parameter Passing in
Remote Methods

When a remote object is passed from the server, the
client receives a stub (or already has one locally):

 Product c1 = (Product)Naming.lookup(url + "toaster");

Using the stub, it can manipulate the server object by
invoking remote methods. The object, however, remains
on the server.

Parameter Passing in
Remote Methods

It is also possible to pass and return any objects via a
remote method call, not just those that implement the
remote interface.

The method call

 c1.getDescription()

returned a full blown String object to the client. This then
became the client’s String object. It has been copied via
java serialization.

